Photosynthetica 2018, 56(1):44-47 | DOI: 10.1007/s11099-017-0738-8

On oxygen production by photosynthesis: A viewpoint

A. Yu. Borisov1, L. O. Björn2,*
1 A.N. Belozersky Institute of Physico-Chemical Biology in M.V. Lomonosov Moscow State University, Moscow, Russia
2 Department of Biology, Lund University, Lund, Sweden

In this brief communication we provide an estimate of the part of the incident solar energy used for oxygen evolution as well as the time, in years, needed for the generation of the present amount of molecular oxygen in the biosphere by photosynthesis on land and in the ocean. We find this to be ≈3,000 yr. We also find that the ocean produces 22% more oxygen than the land surface.

Keywords: Govindjee; net primary production; oceanic oxygen production; solar radiation; terrestrial oxygen production

Received: February 12, 2017; Accepted: May 2, 2017; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yu. Borisov, A., & Björn, L.O. (2018). On oxygen production by photosynthesis: A viewpoint. Photosynthetica56(1), 44-47. doi: 10.1007/s11099-017-0738-8.
Download citation

References

  1. Albarrán-Zavala E., Angulo-Brown F.: A simple thermodynamic analysis of photosynthesis.-Entropy 9: 152-168, 2007. Go to original source...
  2. Behrenfeld M.J., Randerson J.T., McClain C.R. et al.: Biospheric primary production during an ENSO transition.-Science 291: 2594-2597, 2001. Go to original source...
  3. Björn L.O., Govindjee: The evolution of photosynthesis and its environmental impact.-In: Björn L.O. (ed.): Photobiology: The Science of Light and Life. Pp. 207-229. Springer Science+ Business Media, New York 2015. Go to original source...
  4. Blankenship R.E.: Molecular Mechanisms of Photosynthesis, 2nd ed. Pp. 312. Wiley-Blackwell, Hoboken 2014.
  5. Borisov A.Y.: Photosynthesizing organisms: converters of solar energy.-In: Barber J. (ed.): Photosynthesis in Relation to Model Systems. Pp 1-26. Elsevier/North Holland Biomedical Press, Amsterdam-New York-Oxford 1979.
  6. Brown C.W., Uz S.S., Corliss B.H.: Seasonality of oceanic primary production and its interannual variability from 1998 to 2007.-Deep-Sea Res. 190: 166-175, 2014. Go to original source...
  7. Budyko M.I., Ronov A.B., Yanshin A.L.: History of the Earth's Atmosphere. Pp. 139. Springer Verlag, Heidelberg, 1987. Go to original source...
  8. Demmig-Adams B., Garab G., Adams III W., Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation In Plants, Algae and Cyanobacteria, Advances in Photosynthesis and Respiration Including Bioenergy and Other Processes, Vol. 40. Pp. 649. Springer, Dordrecht 2014. Go to original source...
  9. Domalski E.S.: Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P, and S.-J. Phys. Chem. Ref. Data 1: 221-277, 1972. Go to original source...
  10. Escobedo J.F., Gomes E.N., Oliveira A.P., Soares J.: Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil.-Renew. Energ. 36: 169-178, 2011. Go to original source...
  11. Falkowski P., Raven J.: Aquatic Photosynthesis, 2nd ed. Pp. 484. Princton University Press, Princeton 2007.
  12. Field C.B., Behrenfeld M.J., Randerson J.T., Falkowski, P.: Primary production of the biosphere: integrating terrestrial and oceanic components.-Science 281: 237-240, 1998. Go to original source...
  13. Fischer W.W., Hemp J., Johnson J.E.: Evolution of oxygenic photosynthesis.-Annu. Rev. Earth Planet. Sci. 44: 647-683, 2016. Go to original source...
  14. Fröhlich C.: Observation of irradiance variations.-Space Sci. Rev. 94: 15-24, 2000. Go to original source...
  15. Huston M.A., Wolverton S.: The global distribution of net primary production: resolving the paradox.-Ecol. Monogr. 79: 343-377, 2009. Go to original source...
  16. Keeling R.F.: Development of an Interferometric Oxygen Analyzer for Precise Measurement of the Atmospheric O2 Mole Fraction. Pp. 178.-PhD Thesis, Harvard University, Harvard 1988a.
  17. Keeling R.F.: Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air.-J. Atm. Chem. 7: 153-l76, 1988b. Go to original source...
  18. Keeling R.F., Najjar R.P., Bender M.L., Tans P.P.: What atmos pheric oxygen measurements can tell us about the global car bon cycle.-Global Biogeochem. Cy. 7: 37-67, 1993. Go to original source...
  19. Keeling R.F., Garcia H.E.: The change in oceanic O2 inventory associated with recent global warming-P. Natl Acad. Sci. USA 99: 7848-7853, 2002. Go to original source...
  20. Knox R.S.: Thermodynamics and the primary processes of photosynthesis.-Biophys. J. 9: 1351-1362, 1969. Go to original source...
  21. Kopp G., Lean J.L.: A new, lower value of total solar irradiance: Evidence and climate significance.-Geophys. Res. Lett. 38: L01706, 2011. Go to original source...
  22. Livina V.N., Vaz Martins T.M., Forbes A.B.: Tipping point analysis of atmospheric oxygen concentration.-Chaos 25: 036403, 2015. Go to original source...
  23. Long M.C., Deutsch C, Ito T.: Finding forced trends in oceanic oxygen.-Glob. Biogeochem. Cycl. 30: 381-397, 2015.
  24. McCree K.J.: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants.-Agric. Meteorol. 9: 191-216, 1972.
  25. Mecherikunnel A.T., Richmond J.C.: Spectral distribution of solar radiation. NASA Report TM 82021. Pp. 86. Goddard Space Flight Center, Greenbelt 1980.
  26. Miller D.P., de Pablo J.J.: Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structure and function.-J. Phys. Chem. B 104: 8876-8883, 2000. Go to original source...
  27. Nemani R.R., Keeling C.D., Hashimoto H. et al.: Climate-driven increases in global terrestrial net primary production from 1982 to 1999.-Science 300: 1560-1563, 2003. Go to original source...
  28. Paradiso R., Meinen E. Snel J.F.H. et al.: Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose.-Sci. Hortic.-Amsterdam 127: 548-554, 2011.
  29. Rabinowitch E., Govindjee: Photosynthesis. Pp. 273. John Wiley & Sons, New York 1969.
  30. Running S.W., Zhao M.: User's guide daily GPP and annual NPP (MOD17A2/A3) products NASA Earth Observing System MODIS land algorithm. http://www.academia.edu/4620715/Users_Guide_GPP_and_NPP_MOD17A2_A3_Products_NASA_MODIS_Land_Algorithm, 2015.
  31. Running S.W., Nemani R.R., Heinsch F.A. et al: A continuous satellite-derived measure of global terrestrial primary production.-BioScience 54: 547-560, 2004. Go to original source...
  32. Sirignano C., Neubert R.E.M., Rödenbeck C., Meijer H.A.J.: Atmospheric oxygen and carbon dioxide observations from two European coastal stations 2000-2005: continental influence, trend changes and APO climatology.-Atmos. Chem. Phys. 10: 1599-1615, 2010. Go to original source...
  33. Skulachev V.R.: Bioenergetics: the evolution of molecular mechanisms and the development of bioenergetic concepts.-Anton. Leeuw. 65: 271-284, 1994. Go to original source...
  34. Yu H., Chin M., Yuan T. et al.: The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations.-Geophys. Res. Lett. 42: 1984-1991, 2015. Go to original source...
  35. Zagoni M.: A new diagram of Earth's global energy budget.-Acta Geod. Geophys. 51: 481-492, 2016. Go to original source...
  36. Zhao M., Running S., Heinsch F.A., Nemani R.: MODIS-derived terrestrial primary production.-In: Ramachandran B., Justice C.O., Abrams J. (ed.): Land Remote Sensing and Global Environmental Change Remote Sensing and Digital Image Processing. Pp. 635-660. Springer, New York 2011. Go to original source...