Photosynthetica 2018, 56(1):354-365 | DOI: 10.1007/s11099-018-0767-y

Photosynthetic efficiency in sun and shade plants

S. Mathur1, L. Jain1, A. Jajoo1,*
1 School of Life Science, Devi Ahilya University, Indore, India

Photosynthesis is amongst the plant cell functions that are highly sensitive to any type of changes. Sun and shade conditions are prevalent in fields as well as dense forests. Dense forests face extreme sun and shade conditions, and plants adapt themselves accordingly. Sun flecks cause changes in plant metabolic processes. In the field, plants have to face high light intensity and survive under such conditions. Sun and shade type of plants develops a respective type of chloroplasts which help plants to survive and perform photosynthesis under adverse conditions. PSII and Rubisco behave differently under different sun and shade conditions. In this review, morphological, physiological, and biochemical changes under conditions of sun (high light) and shade (low light) on the process of photosynthesis, as well as the tolerance and adaptive mechanisms involved for the same, were summarized.

Keywords: chlorophyll fluorescence; high light; low light; photosynthesis; shade; sun

Received: June 6, 2017; Accepted: September 8, 2017; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Mathur, S., Jain, L., & Jajoo, A. (2018). Photosynthetic efficiency in sun and shade plants. Photosynthetica56(1), 354-365. doi: 10.1007/s11099-018-0767-y.
Download citation

References

  1. Adir N., Zer H., Shochat S. et al.: Photoinhibition-a historical perspective.-Photosynth. Res. 76: 343-370, 2003. Go to original source...
  2. Allahverdiyeva Y., Suorsa M., Tikkanen M. et al.: Photoprotection of photosystems in fluctuating light intensities.-J. Exp. Bot. 66: 2427-2436, 2014.
  3. Allen J.F.: Botany. State transitions-a question of balance.-Science 299: 1530-1532, 2003. Go to original source...
  4. Anderson J.M.: Photoregulation of the composition, function and structure of thylakoid membranes.-Ann. Rev. Plant Physio. 37: 93-136, 1986. Go to original source...
  5. Anderson J.M., Aro E.M.: Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis.-Photosynth. Res. 41: 315-326, 1994. Go to original source...
  6. Atanasova L., Stefanov D., Yordanov I. et al.: Comparative characteristics of growth and photosynthesis of sun and shade leaves from normal and pendulum walnut (Juglans regia L.) trees.-Photosynthetica 41: 289-292, 2003. Go to original source...
  7. Bailey S., Walters R.G., Jansson S. et al.: Acclimation of Arabidopsis thaliana to light environment: the existence of separate low light and high light responses.-Planta 213: 794-801, 2001. Go to original source...
  8. Bailey S., Horton P., Walters R.G.: Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition.-Planta 218: 793-802, 2004. Go to original source...
  9. Bellafiore S., Barneche F., Peltier G. et al.: State transitions and light adaptation require chloroplast thylakoid protein kinase STN7.-Nature 433: 892-895, 2005. Go to original source...
  10. Björkman O., Powles S.B.: Leaf movement in the shade species Oxalis oregana. I. Response to light level and light quality.-Carnegie I. Wash. 80: 59-62, 1981.
  11. Björkman O.: Responses to different quantum flux densities.-In: Lange O.L., Nobel P.S., Osmond C.B., Zeigler H. (ed.): Encyclopedia of Plant Physiology, New Series. Physiological Plant Ecology5. Pp. 47-107. Springer, Berlin-New York 1981. Go to original source...
  12. Boardman N.K.: Comparative photosynthesis of sun and shade plants.-Annu. Rev. Plant Physio. 28: 355-377, 1977. Go to original source...
  13. Bonardi V., Pesaresi P., Becker T. et al.: Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases.-Nature 437: 1179-1182, 2005. Go to original source...
  14. Bräutigam K., Dietzel L., Kleine T. et al.: Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis.-Plant Cell 21: 2715-2732, 20 Go to original source...
  15. Brestic M., Cornic G., Fryer M. et al.: Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress?-Planta 196: 450-457, 1995. Go to original source...
  16. Brugnoli E., Björkman O.: Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation.-Photosynth. Res. 32: 23-35, 1992. Go to original source...
  17. Casal J.J.: Photoreceptor signaling networks in plant responses to shade.-Plant Biol. 64: 403-427, 2013. Go to original source...
  18. Chow W.S., Anderson J.M.: Photosynthetic responses of Pisum sativum to an increase in irradiance during growth. II. Thylakoid membrane components.-Aust. J. Plant Physiol. 14: 9-19, 1987.
  19. Cuzzuol G.R.F., Milanez C.R.D.: Morphological and physiological adjustments in juvenile tropical trees under contrasting sunlight irradiance.-In: Najafpour M.M. (ed.): Advances in Photosynthesis. Fundamental Aspects. Pp. 501-518. In Tech Croatia, Rijeka 2012.
  20. DalCorso G., Pesaresi P., Masiero S. et al: A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis.-Cell 132: 273-285, 2008. Go to original source...
  21. Demmig-Adams B., Adams W.W. III: Carotenoid composition in sun and shade leaves of plants with different life forms.-Plant Cell Environ. 15: 411-419, 1992. Go to original source...
  22. Demmig-Adams B., Moeller D.L., Logan B.A. et al.: Positive correlation between levels of retained zeaxanthin+ anthrexanthin and degree of photoinhibition in shade leaves of Schefflera arboricola.-Planta 205: 367-374, 19
  23. Deng Y.M., Chen S.M., Chen F.D. et al.: The embryo rescue derived intergeneric hybrid between Chrysanthemum and Ajania przewalskii shows enhanced cold tolerance.-Plant Cell Rep. 30: 2177-2186, 2011. Go to original source...
  24. Dietzel L., Bräutigam K., Pfannschmidt T.: Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry-functional relationships between short-term and long-term light quality acclimation in plants.-FEBS J. 275: 1080-1088, 2008. Go to original source...
  25. Dong C.J., Wang X.L., Shang Q.M.: Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings.-Sci. Hortic.-Amsterdam 129: 629-636, 2011.
  26. Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis.-Annu. Rev. Plant Physiol. 33: 317-345, 1982. Go to original source...
  27. Foyer C.H., Noctor G.: Oxygen processing in photosynthesis: regulation and signaling.-New Phytol. 146: 359-388, 2000. Go to original source...
  28. Ganeteg U., Külheim C., Andersson J. et al.: Is each light harvesting complex protein important for plant fitness?-Plant Physiol. 134: 502-509, 2004. Go to original source...
  29. Gonçalves J.F.D.C., Marenco R.A., Vieira G.: Concentration of photosynthetic pigments and chlorophyll fluorescence of mahogany and tonka bean under two light environments.-R. Bras. Fisiol. Veg. 13: 149-157, 2001. Go to original source...
  30. Grieco M., Tikkanen M., Paakkarinen V. et al.: Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light.-Plant Physiol. 160: 1896-1910, 2012. Go to original source...
  31. Guo H.X., Liu W.Q., Shi Y.C.: Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco.-Photosynthetica 44: 140-142, 2006. Go to original source...
  32. Hertle A.P., Blunder T., Wunder T. et al.: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow.-Mol. Cell 49: 511-523, 2013. Go to original source...
  33. Hirth M., Dietzel L., Steiner S. et al.: Photosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions.-Front. Plant Sci. 4: 1-12, 2013.
  34. Hogewoning S.W., Wientjes E., Douwstra P.: Photosynthetic quantum yield dynamics: from photosystems to leaves.-Plant Cell 24: 1921-1935, 2012.
  35. Jia H., Liggins J.R., Chow W.S.: Acclimation of leaves to low light produces large grana: the origin of the predominant attractive force at work.-Phil.T. Roy. Soc. B 367: 3494-3502, 2012. Go to original source...
  36. Jiang C.D., Wang X., Gao H.Y. et al.: Systemic regulation of leaf anatomical structure, photosynthetic performance, and highlight tolerance in sorghum.-Plant Physiol. 155: 1416-1424, 2011. Go to original source...
  37. Joliot P., Johnson G.N.: Regulation of cyclic and linear electron flow in higher plants.-P. Natl. Acad. Sci. USA 108: 13317-13322, 2011. Go to original source...
  38. Kalaji H.M., Jajoo A., Oukarroum A.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.-Acta Physiol Plant. 38: 102, 2016. Go to original source...
  39. Kobza J., Seemann J.R.: Mechanisms for light-dependent regulation of ribulose-1,5-bisphosphate carboxylase activity and photosynthesis in intact leaves.-P. Natl. Acad. Sci. USA 85: 3815-3819, 1988. Go to original source...
  40. Kono M., Noguchi K., Terashima I.: Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana.-Plant Cell Physiol. 55: 990-1004, 20 Go to original source...
  41. Kouřil R., Wientjes E., Bultema J.B. et al.: High-light vs. lowlight: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana.-Biochim. Biophys. Acta 1827: 411-419, 20 Go to original source...
  42. Kromdijk J., Głowacka K., Leonelli L. et al.: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.-Science 354: 857-861, 2016. Go to original source...
  43. Kurepin L.V., Pharis R.P.: Light signaling and the phytohormonal regulation of shoot growth.-Plant Sci. 229: 280-289, 2014. Go to original source...
  44. Kyle D.J., Ohad I., Arntzen C.J.: Membrane protein damage and repair. I. Selective loss of quione protein function in chloroplast membranes.-P. Natl. Acad. Sci. USA 81: 4070-4074, 1984. Go to original source...
  45. Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensities I. Study on the distribution of chlorophyll-protein complexes.-Photosynth. Res. 5: 105-115, 1984a. Go to original source...
  46. Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensities II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis.-Photosynth. Res. 5: 117-128, 1984b. Go to original source...
  47. Leong T.Y., Anderson J.M.: Light-quality and irradiance adaptation of the composition and function of pea thylakoid membranes.-BBA-Bioenergetics 850: 57-63, 1986. Go to original source...
  48. Li Q., Deng M., Xiong Y. et al.: Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis.-Sci. World J. 2014: 347461, 20 Go to original source...
  49. Li T., Liu L.N., Jiang C.D. et al.: Effects of mutual shading on the regulation of photosynthesis in field grown sorghum.-J. Photoch. Photobio. B 137: 31-38, 2014. Go to original source...
  50. Lichtenthaler H.K., Buschmann C., Döll M. et al.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves.-Photosynth. Res. 2: 115-141, 1981. Go to original source...
  51. Lichtenthaler H.K., Meier D., Buschmann C.: Development of chloroplasts at high and low light quanta fluence rates.-Israel J. Bot. 33: 185-194, 1984.
  52. Lunde C., Jensen P.E., Haldrup A. et al.: The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis.-Nature 408: 613-615, 2000. Go to original source...
  53. Marchiori P.E.R., Machado E.C., Ribeiro R.V.: Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties.-Field Crop. Res. 155: 30-37, 2014. Go to original source...
  54. Martins S.C.V., Detmann K.C., Reis J.V.D. et al.: Photosynthetic induction and activity of enzymes related to carbon metabolism: insights into the varying net photosynthesis rates of coffee sun and shade leaves.-Theor. Exp. Plant Physiol. 25: 62-69, 2013. Go to original source...
  55. Martins S.C.V., Galmés J., Cavatte P.C. et al.: Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis.-PLoS ONE 9: e95571, 2014. Go to original source...
  56. Maxwell K., Johnson G.N.: Chlorophyll fluorescence-a practical guide.-J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  57. Meier D., Lichtenthaler H.K.: Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon.-Protoplasma 107: 195-207, 1981. Go to original source...
  58. Melis A.: Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?-Trends Plant Sci. 4: 130-135, 1999. Go to original source...
  59. Mishra Y., Jänkänpää J.H., Kiss A.Z. et al.: Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components.-BMC Plant Biol. 12: 6, 2012.
  60. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.-Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  61. Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis.-Cell 110: 361-371, 20
  62. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis.-Nature 429: 579-582, 2004. Go to original source...
  63. Muraoka H., Tang Y.H., Terashima I. et al.: Contribution of diffusional limitation, photo inhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light.-Plant Cell Environ. 23: 235-250, 2000. Go to original source...
  64. Nandha B., Finazzi G., Joliot P. et al.: The role of PGR5 in the redox poising of photosynthetic electron transport.-Biochim. Biophys. Acta 1767: 1252-1259, 2007. Go to original source...
  65. Niinemets U.: Photosynthesis and resource distribution through plant canopies.-Plant Cell Environ. 30: 1052-1071, 2007. Go to original source...
  66. Nishiyama Y., Yamamoto H., Allakhverdiev S.I. et al.: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery.-EMBO J. 20: 5587-5594, 2001. Go to original source...
  67. Ojanguren C.T., Goulden M.L.: Photosynthetic acclimation within individual Typha latifolia leaf segments.-Aquat. Bot. 111: 54-61, 2013. Go to original source...
  68. Oquist G., Chow W.S., Anderson J.M.: Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosynthesis.-Planta 186: 450-460, 1992.
  69. Osmond C.B.: What is photoinhibition? Some insights from comparisons of shade and sun plants.-In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Pp. 1-24. BIOS Sci. Publ. Ltd, Oxford, UK 1994.
  70. Park Y.I., Chow W.S., Anderson J.M. et al.: Differential susceptibility of photosystem II to light stress in lightacclimated pea leaves depends on the capacity for photochemical and non-radiative dissipation of light.-Plant Sci. 115: 137-149, 1996. Go to original source...
  71. Pearcy R.W., Sims D.A.: Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant.-In: Caldwell M.M., Pearcy R.W. (ed.): Exploitation of Environmental Heterogeneity by Plants. Pp. 145-174. Academic Press, San Diego 1994. Go to original source...
  72. Pesaresi P., Hertle A., Pribil M. et al.: Optimizing photosynthesis under fluctuating light. The role of the Arabidopsis STN7 kinase.-Plant Signal. Behav. 5: 21-25, 2010. Go to original source...
  73. Pfannschmidt T.: Chloroplast redox signals: how photosynthesis controls its own genes.-Trends Plant Sci. 8: 33-41, 2003. Go to original source...
  74. Powles S.B.: Photoinhibition of photosynthesis induced by visible light.-Annu. Rev. Plant Physio. 35: 15-44, 1984. Go to original source...
  75. Rintamäki E., Martinsuo P., Pursiheimo S. et al.: Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts.-P. Natl. Acad. Sci. USA 97: 11644-11649, 2000. Go to original source...
  76. Robinson S., Lovelock C.E., Osmond C.B.: Wax as a mechanism for protection against photoinhibition-A study of Cotyledon orbiculata.-Plant Biol. 106: 307-312, 19
  77. Rochaix J.D.: Role of thylakoid protein kinases in photosynthetic acclimation.-FEBS Lett. 581: 2768-2775, 2007. Go to original source...
  78. Sarijeva G., Knapp M., Lichtenthaler H.K.: Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus.-J. Plant Physiol. 164: 950-955, 2007. Go to original source...
  79. Schulze E.D., Lange O.L., Kappen L. et al.: The role of air humidity and leaf temperature in regulating stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbondioxide concentration.-Oecologia 18: 219-233, 1975. Go to original source...
  80. Šetlík I., Allakhverdiev S.I., Nedbal L. et al.: Three types of photosystem II photoinactivation. I. Damaging processes on the acceptor side.-Photosynth. Res. 23: 39-48, 1990. Go to original source...
  81. Shao Q., Wang H., Guo H. et al.: Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii.-PLoS ONE 9: e85996, 20
  82. Smirnoff N.: Ascorbate biosynthesis and function in photoprotection.-Philos. T. R. Soc. Lond. B 355: 1455-1464, 2000. Go to original source...
  83. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient.-J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  84. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.-Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  85. Sugimoto K., Okegawa Y., Tohri A. et al: A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI.-Plant Cell Physiol. 54: 1525-1534, 2013. Go to original source...
  86. Suorsa M., Järvi S., Grieco M. et al: PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions.-Plant Cell 24: 2934-2948, 2012. Go to original source...
  87. Terashima I.: Anatomy of non-uniform leaf photosynthesis.-Photosynth. Res. 31: 195-212, 1992. Go to original source...
  88. Tezara W., Martínez D., Rengifo E. et al.: Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray.-Ann. Bot.-London 92: 757-765, 2003. Go to original source...
  89. Thayer S.S., Björkman O.: Leaf xanthophyll content and composition in sun and shade determined by HPLC.-Photosynth. Res. 23: 331-343, 1990. Go to original source...
  90. Tikkanen M., Piippo M., Suorsa M. et al.: State transitions revisited: a buffering system for dynamic low light acclimation of Arabidopsis.-Plant Mol. Biol. 62: 779-793, 20
  91. Tikkanen M., Grieco M., Kangasjärvi S. et al.: Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light.-Plant Physiol. 152: 723-735, 2010. Go to original source...
  92. Timperio A.M., Gevi F., Ceci L.R. et al.: Acclimation to intense light implies changes at the level of trimeric subunits involved in the structural organization of the main light-harvesting complex of photosystem II (LHCII) and their isoforms.-Plant Physiol. Bioch. 50: 8-14, 2012. Go to original source...
  93. Vass I.: Molecular mechanisms of photodamage in the Photosystem II complex.-Biochim. Biophys. Acta 1817: 209-217, 2012. Go to original source...
  94. Valladares F., Niinemets U.: Shade tolerance, a key plant feature of complex nature and consequence.-Ann. Rev. Ecol. Evol. Syst. 39: 237-257, 2008.
  95. Vogelmann T.C., Martin G.: The functional-significance of palisade tissue-penetration of directional versus diffuse light.-Plant Cell Environ. 16: 65-72, 1993. Go to original source...
  96. Walters R.G.: Towards an understanding of photosynthesis acclimation.-J. Exp. Bot. 56: 435-447, 2005.
  97. Way D.A., Pearcy R.W.: Sunflecks in trees and forests: from photosynthetic physiology to global change biology.-Tree Physiol. 32: 1066-1081, 2012. Go to original source...
  98. Wollman F.A.: State transitions reveal the dynamics and flexibility of the photosynthetic apparatus.-EMBO J. 20: 3623-30, 2001. Go to original source...
  99. Yamori W., Makino A., Shikanai T.: A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice.-Nat. Sci. Rep. 6: 20147, 2016. Go to original source...
  100. Zivcak M., Brestic M., Kalaji H.M. et al.: Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light?-Photosynth. Res. 119: 339-354, 2014. Go to original source...