Photosynthetica 2019, 57(2):377-387 | DOI: 10.32615/ps.2019.045

Allelopathic effects of phenolic acids on seedling growth and photosynthesis in Rhododendron delavayi Franch.

Y.H. FU1, W. X. QUAN1, C.C. LI1,2, C.Y. QIAN1, F.H. TANG1, X.J. CHEN3
1 Guizhou Provincial Key Laboratory of Mountainous Environmental Protection, Guizhou Normal University, 550001 Guiyang, China
2 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
3 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 100101 Beijing, China

The effects of different concentrations of ferulic acid, chlorogenic acid, and protocatechuic acid were studied in a pot experiment to assess the response of Rhododendron delavayi seedlings. The results showed that three kinds of phenols promoted increases in chlorophyll (Chl) a, Chl b, total Chl, and carotenoid contents, but inhibited the accumulation of biomass. Low concentrations of ferulic acid significantly inhibited stomatal opening, the stomatal opening ratio, stomatal length and width. Chlorogenic acid and the moderate and high concentrations of ferulic acid also significantly inhibited stomatal density. Ferulic acid significantly inhibited net photosynthetic rate and stomatal conductance in seedlings, whereas chlorogenic acid significantly inhibited stomatal conductance. The low and moderate concentrations of chlorogenic acid significantly inhibited transpiration rate, and high concentrations of ferulic acid significantly inhibited the stomatal limitation value. The moderate concentration of protocatechuic acid significantly inhibited net photosynthetic rate and stomatal conductance. Ferulic acid exhibited a greater toxic effect than that of chlorogenic acid and protocatechuic acid for R. delavayi seedlings.

Keywords: allelopathy; gas-exchange parameters; photosynthetic pigment content; redundancy analysis.

Received: December 5, 2017; Accepted: September 12, 2018; Prepublished online: February 12, 2019; Published: May 16, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
FU, Y.H., QUAN, W.X., LI, C.C., QIAN, C.Y., TANG, F.H., & CHEN, X.J. (2019). Allelopathic effects of phenolic acids on seedling growth and photosynthesis in Rhododendron delavayi Franch. Photosynthetica57(2), 377-387. doi: 10.32615/ps.2019.045.
Download citation

Supplementary files

Download file1853 Supplementary tables.docx

File size: 26.41 kB

References

  1. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphe-noloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  2. Baziramakenga R., Simard R.R., Leroux G.D.: Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean. - J. Chem. Ecol. 20: 2821-2833, 1994. Go to original source...
  3. Blum U., Geric G.M.: Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. - J. Chem. Ecol. 31: 1907-1932, 2005.
  4. Cai Y.F., Li S.F., Li S.F. et al.: How do leaf anatomies and photosynthesis of three Rhododendron species relate to their natural environments? - Bot. Stud. 55: 1-9, 2014. Go to original source...
  5. Cairney J.W.G., Meharg A.A.: Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. - Eur. J. Soil. Sci. 54: 735-740, 2003. Go to original source...
  6. Chen X., Consaul L., Huang J.Y. et al.: Rhododendron subroseum sp. nov. and R. denudatum var. glabriovarium var. nov. (Ericaceae) from the Guizhou Province, China. - Nord. J. Bot. 28: 496-498, 2010. Go to original source...
  7. Chen X., Zhang D.L., Li W.J. et al.: Natural habitat of Rhodo-dendron delavayi Franch. - HortScience 42: 951-951, 2007.
  8. Chon S. U., Choib S.K., Jung S.: Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. - Crop. Prot. 21: 1077-1082, 2002. Go to original source...
  9. Choudhury N. K., Behera R.K.: Photoinhibition of photosynthesis: role of carotenoids in photoprotection of chloroplast constituents. - Photosynthetica 39: 481-488, 2001. Go to original source...
  10. Djurdjevic L., Dinic A., Pavlovic P. et al.: Allelopathic potential of Allium ursinum L. - Biochem. Syst. Ecol. 32: 533-544, 2004. Go to original source...
  11. Dwyer S. A., Chow W. S., Yamori W., et al.: Antisense reductions in the PsbO protein of photosystem II leads to decreased quantum yield but similar maximal photosynthetic rates. - J. Exp. Bot. 63: 4781-4795, 2012. Go to original source...
  12. Efeoğlu B., Ekmekçi.Y., Çiçek N.: Physiological responses of three maize cultivars to drought stress and recovery. - S. Afr. J. Bot. 75: 34-42, 2009.
  13. Einheling F.A., Rasmussen J.A.: Effects of three phenolic acids on chorophyll content and growth of soybean and grain sorghum seedlings. - J. Chem. Ecol. 5: 815-824, 1979. Go to original source...
  14. Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. - Annu. Rev. Plant Phys. 33: 317-345, 1982. Go to original source...
  15. Gu Z.Y., Chen X., Wu H.W.: Production of Rhododendron delavayi Franch. - HortScience 40: 1061-1061, 2005.
  16. Heleno S.A., Martins A., Queiroz M.J. et al.: Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. - Food. Chem. 173: 501-503, 2015. Go to original source...
  17. Hui J.Z., Qi Z.: Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress. - Photosynthetica 40: 523-527, 2002. Go to original source...
  18. Hussain M.I., Reigosa M.J.: Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. - J. Exp. Bot. 62: 4533-4545, 2011. Go to original source...
  19. Jensen A.: Chlorophylls and carotenoids. - In: Hellebust J.A., Craigie J.S. (ed.): Handbook of Phycological Methods. Pp. 59-70. Cambridge University Press, Cambridge 1978.
  20. Jing O.U.: [Effects of inoculation with different ERM isolates on photosynthesis and chlorophyll fluorescence parameter of Rhododendron annae Franch. seedlings.] - Microbiology 40: 1423-1436, 2013. [In Chinese]
  21. John J.: Role of phenolics in allelopathic interactions. - Allelopathy J. 29: 215-229, 2012.
  22. Khan W., Prithiviraj B., Smith D.L.: Photosynthetic response of corn and soybean to foliar application of salicylates. - J. Plant Physiol. 160: 485-492, 2003. Go to original source...
  23. Khattak A., Ullah F., Wazir S.M. et al.: Allelopathic potential of Jatropha curcas L. leaf aqueous extracts on seedling growth of wheat. - Pak. J. Bot. 47: 2449-2454, 2015.
  24. Li Z.H., Wang Q., Ruan X. et al.: Phenolics and plant allelopathy. - Molecules 15: 8933-8952, 2010. Go to original source...
  25. Lin L.C., Lee M.J., Chen J.L.: Decomposition of organic matter by the ericoid mycorrhizal endophytes of Formosan rhododendron (Rhododendron formosanum Hemsl.). - Mycorrhiza 21: 331-339, 2011. Go to original source...
  26. Lu X.F., Zhang H., Lyu S.S. et al.: Effects of exogenous phenolic acids on photosystem functions and photosynthetic electron transport rate in strawberry leaves. - Photosynthetica 56: 611-622, 2018. Go to original source...
  27. Mandal S., Mandal M.A., Pati B. et al.: Stimulation of indole-acetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids. - Arch. Microbiol. 191: 389-393, 2009. Go to original source...
  28. Marchiosi R., Bido G.D.S., Böhm P.A.F. et al.: Photosynthetic response of soybean to L-DOPA and aqueous extracts of velvet bean. - Plant Growth Regul. 80: 171-182, 2016. Go to original source...
  29. Mateo A., Funck D., Mühlenbock P. et al.: Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. - J. Exp. Bot. 57: 1795-1807, 2006.
  30. Mathesius U.: Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. - J. Exp. Bot. 52: 419-426, 2001. Go to original source...
  31. Mersie W., Singh M.: Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. - J. Chem. Ecol. 19: 1293-1301, 1993. Go to original source...
  32. Mori I.C., Pinontoan R., Kawano T. et al.: Involvement of super-oxide generation in salicylic acid-induced stomatal closure in Vicia faba. - Plant Cell Physiol. 42: 1383-1388, 2001. Go to original source...
  33. Muscolo A., Panuccio M.R., Sidari M.: Glyoxylate cycle in germination of Pinus laricio seeds: effects of phenolic compounds extracted from different forest soils. - Plant Growth Regul. 37: 1-5, 2002. Go to original source...
  34. Nilsen E.T., Orcutt D.M.: The Physiology of Plants under Stress. Pp. 322-361. John Wiley & Sons, New York 1996.
  35. Read D.J.: The structure and function of the ericoid mycorrhizal root. - Ann. Bot.-London 77: 365-374, 1996. Go to original source...
  36. Ribeiro R.C., Feitoza R.B.B., Lima H.R.P., de Carvalho M.G.: Phytotoxic effects of phenolic compounds on Calopogonium mucunoides (Fabaceae) roots. - Aust. J. Bot. 63: 679-686, 2016.
  37. Rice E.L.: Allelopathy. Pp. 1-7. Academic Press, Norman 1984. Go to original source...
  38. Rice E.L.: Biological Control of Weeds and Plant Diseases: Advances in Applied Allelopathy. Pp. 3-37. University of Oklahoma Press, Norman 1995.
  39. Roleira F.M., Tavares-da-Silva E.J., Varela C.L. et al.: Plant derived and dietary phenolic antioxidants: Anticancer properties. - Food. Chem. 183: 235-258, 2015. Go to original source...
  40. Ronzhina D.A., Nekrasova G.F., P'yankov V.I.: Comparative characterization of the pigment complex in emergent, floating, and submerged leaves of hydrophytes. - Russ. J. Plant Physl+ 51: 21-27, 2004.
  41. Shahidi F., Ambigaipalan P.: Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. - J. Funct. Foods 18: 820-897, 2015. Go to original source...
  42. Shang W.Q., Wang Z., He S.L. et al.: Research on the relationship between phenolic acids and rooting of tree peony (Paeonia suffruticosa) plantlets in vitro. - Sci. Hortic.-Amsterdam 224: 53-60, 2017.
  43. Singh H.P., Kaur S., Batish D.R. et al.: Ferulic acid impairs rhizogenesis and root growth, and alters associated biochemical changes in mung bean (Vigna radiata) hypocotyls. - J. Plant Interact. 9: 267-274, 2014. Go to original source...
  44. Sumbele S., Fotelli M.N., Nikolopoulos D. et al.: Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species. - AOB Plants 2012: doi: 10.1093/aobpla/pls025, 2012. Go to original source...
  45. Verma K.K., Singh M., Gupta R.K. et al.: Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzymes, and growth responses of Jatropha curcas during soil flooding. - Turk. J. Bot. 38: 130-140, 2014. Go to original source...
  46. Wang Y., Pan F., Zhang X. et al.: [Effects of phenolic acids on growth and photosynthetic characteristics of seedlings of Malus hupehensis.] - Sci. Silvae Sin. 51: 52-59, 2015. [In Chinese]
  47. Xie D.F., Zhang G.C., Xia X.X. et al.: The effects of phenolic acids on the photosynthetic characteristics and growth of Populus × euramericana cv. 'Neva' seedlings. - Photosynthetica 56: 981-988, 2018. Go to original source...
  48. Yang Z.Q., Zhang J., Jiang X.D. et al.: [The effect of red:far red ratio on the stomata characters and stomata conductance of Chrysanthemum leaves.] - Acta Ecol. Sin. 32: 2135-2141, 2012. [In Chinese] Go to original source...
  49. Zhang D.J., Zhang J., Yang W.Q. et al.: Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. - Ecol. Res. 25: 13-23, 2010. Go to original source...
  50. Zhao H.F., Zhao Y., Zhang C. et al.: Growth, leaf gas exchange, and chlorophyll fluorescence responses of two cultivars of Salix integra Thunb. to waterlogging stress. - J. Agr. Sci. Tech.-Iran 16: 137-149, 2014.
  51. Zhou S., Medlyn B., Sabaté S. et al.: Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. - Tree Physiol. 34: 1035-1046, 2014. Go to original source...
  52. Zhou X., Wu F.: Effects of amendments of ferulic acid on soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.). - Eur. J. Soil Biol. 50: 191-197, 2012. Go to original source...
  53. Zhou Y., Huang L.H., Wei X.L. et al.: Physiological, morpho-logical, and anatomical changes in Rhododendron agastum in response to shading. - Plant Growth Regul. 81: 23-30, 2017. Go to original source...