Photosynthetica 2019, 57(2):548-555 | DOI: 10.32615/ps.2019.080

Leaf traits and photosynthetic characteristics of endangered Sinopodophyllum hexandrum (Royle) Ying under different light regimesin Southeastern Tibet Plateau

Q.Q. GUO1,2, H.E. LI1, C. GAO1, R. YANG1
1 Institute for Forest Resources & Environment of Guizhou/College of Forestry, College of Agriculture, Guizhou University, 550025 Guiyang, Guizhou, China
2 Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry College, 860000 Nyingchi, Tibet, China

Sinopodophyllum hexandrum (Royle) Ying, a medicinal plant, has been endangered due to alpine habitat and overuse at Southeastern Tibet Plateau. This study aimed to examine the phenotypic traits and photosynthesis of S. hexandrum, including their relationship with main environmental factors, under low light (LL), moderate light (ML), and high light (HL) regimes. Low specific leaf mass was observed under LL, but the stomatal density and apparent quantum yield were the highest under this regime. The phenotypic traits, except for stomatal density and net photosynthetic rate, were the most notable under ML. The leaf area, stomatal density, apparent quantum yield, dark respiration, and stomatal conductance showed the smallest values under HL. Air temperature, photosynthetically active radiation, and air vapour pressure deficit significantly affected the stomatal characteristics and photosynthesis of S. hexandrum individuals. Our results suggested that a moderately shaded habitat could promote leaf development and the photosynthetic ability of S. hexandrum.

Keywords: dark respiration; environmental factor; gas exchange; stomatal characteristics.

Received: May 27, 2018; Accepted: October 3, 2018; Prepublished online: May 14, 2019; Published: May 16, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
GUO, Q.Q., LI, H.E., GAO, C., & YANG, R. (2019). Leaf traits and photosynthetic characteristics of endangered Sinopodophyllum hexandrum (Royle) Ying under different light regimesin Southeastern Tibet Plateau. Photosynthetica57(2), 548-555. doi: 10.32615/ps.2019.080.
Download citation

References

  1. Aasamaa K., Sõber A.: Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. - Environ. Exp. Bot. 71: 72-78, 2011. Go to original source...
  2. Albrecht M.A., McCarthy B.C.: Seedling establishment shapes the distribution of shade-adapted forest herbs across a topographical moisture gradient. - J. Ecol. 97: 1037-1049, 2009. Go to original source...
  3. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  4. Camargo M.A.B., Marenco R.A.: Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. ‒ Acta Amazon. 41: 205-2012, 2011.
  5. Campos M.L., Yoshida Y., Major I.T. et al.: Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. ‒ Nat. Commun. 7: 12570, 2016. Go to original source...
  6. Chapin F.S., Bloom A.J., Field C.B. et al.: Plant responses to multiple environmental factors. ‒ Bioscience 37: 49-57, 1987. Go to original source...
  7. Davison I.R.: Environmental effects on algal photosynthesis: temperature. ‒ J. Phycol. 27: 2-8,1991. Go to original source...
  8. Duanmu D., Casero D., Dent R.M. et al.: Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. ‒ P. Natl. Acad. Sci. USA 110: 3621-3626, 2013. Go to original source...
  9. Farquhar G.D, Sharkey T.D.: Stomatal conductance and photosynthesis. ‒ Annu. Rev. Plant Physio. 33: 317-345, 1982. Go to original source...
  10. Fini A., Ferrini F., Frangi P. et al.: Growth, leaf gas exchange and leaf anatomy of three ornamental shrubs grown under different light intensities. ‒ Eur. J. Hortic. Sci. 75: 111-117, 2010.
  11. Fu L., Chin C.M.: [China Plant Red Data Book.] Pp. 87. Science Press, Beijing 1992. [In Chinese]
  12. Galloway L.F., Etterson J.R.: Plasticity to canopy shade in a monocarpic herb: within-and between-generation effects. ‒ New Phytol. 182: 1003-1012, 2009. Go to original source...
  13. Givnish T.J.: Adaptation to sun and shade: a whole-plant perspective. ‒ Funct. Plant Biol. 15: 63-92, 1988. Go to original source...
  14. Gregoriou K., Pontikis K., Vemmos S.: Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). ‒ Photosynthetica 45: 172-181, 2007. Go to original source...
  15. Guo Q.Q., Li H.E., Zhang W.H.: Variations in leaf functional traits and physiological characteristics of Abies georgei var. smithii along the altitude gradient in the Southeastern Tibetan Plateau. ‒ J. Mt. Sci. 13: 1818-1828, 2016.
  16. Guo Q.Q., Wang S.L., Ren D.Z. et al.: [Environment factors and characteristics of endangered Sinopodophyllum hexandrum communities in Tibet.] - J. Lanzhou Univ. 48: 58-63, 2012. [In Chinese]
  17. Huber H., Brouwer J.D., Caluwe H.D. et al.: Shade induced changes in biomechanical petiole properties in the stoloniferous herb Trifolium repens. ‒ Evol. Ecol. 22: 417-417, 2008. Go to original source...
  18. Jifon J.L., Syvertsen J.P.: Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. ‒Tree Physiol. 23: 119-127, 2003. Go to original source...
  19. Kenzo T., Yoneda R., Sano M. et al.: Variations in leaf photosynthetic and morphological traits with tree height in various tree species in a Cambodian tropical dry evergreen forest. ‒ JARQ-Jpn. Agr. Res. Q. 46: 167-180, 2012. Go to original source...
  20. Kumari A., Singh H.R., Jha A. et al.: Transcriptome sequencing of rhizome tissue of Sinopodophyllum hexandrum at two temperatures. ‒ BMC Genom. 15: 1-17, 2014. Go to original source...
  21. La Rocca N., Sciuto K., Meneghesso A. et al.: Photosynthesis in extreme environments: responses to different light regimes in the Antarctic alga Koliella antarctica. ‒ Physiol. Plantarum 153: 654-667, 2015. Go to original source...
  22. Lawson T., Davey P.A., Yates S.A. et al.: C3 photosynthesis in the desert plant Rhazya stricta is fully functional at high temperatures and light intensities. ‒ New Phytol. 201: 862-873, 2014. Go to original source...
  23. Li Z.Z., Liu D.H., Zhao S.W. et al.: [Mechanisms of photoinhibition induced by high light in Hosta grown outdoors.] - Chin. J. Plant Ecol. 38: 720-728, 2014. [In Chinese]
  24. Liu W., Liu J., Yin D. et al.: Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle) TS Ying. ‒ PLoS ONE 10: e0122981, 2015. Go to original source...
  25. Long S.P., Humphries S., Falkowski P.G.: Photoinhibition of photosynthesis in nature. ‒ Annu. Rev. Plant Biol. 45: 633-662, 1994. Go to original source...
  26. Lu J., Lan X, Luo J.: [Investigation and evaluation of the rare and endangered Tibetan medicinal plants in the Linzhi Region.] ‒ Resour. Sci. 33: 2362-2369, 2011. [In Chinese]
  27. Ma S.B., Hu, Z.H.: [Preliminary studies on the distribution pattern and ecological adaptation of Sinopodophyllum hexandrum (Royal) Ying (Berberidaceae).] - J. Wuhan Bot. Res. 14: 47-54, 1996. [In Chinese]
  28. Ma S.B., Xu Z.R., Hu, Z.H.: [Acontribution to the reproductive biology of Sinopodophyllum hexandrum (Royal) Ying (Berberidaceae).] - Acta Bot. Boreal. Occident. Sin. 17: 49-55, 1997. [In Chinese]
  29. Magyar G., Kun A., Oborny B. et al.: Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments. ‒ New Phytol. 174: 182-193, 2007. Go to original source...
  30. Meinzer F.C., Grantz D.A.: Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity. ‒ Plant Cell Environ. 13: 383-388, 1990. Go to original source...
  31. Mozzo M., Passarini F., Bassi R. et al.: Photoprotection in higher plants: the putative quenching site is conserved in all outer light-harvesting complexes of photosystem II. ‒ BBA-Bioenergetics 1777: 1263-1267, 2008. Go to original source...
  32. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. ‒ Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  33. Nadeem A., Kashani S., Ahmed N. et al.: Growth and yield of sesame (Sesamum indicum L.) under the influence of planting geometry and irrigation regimes. ‒ Am. J. Plant Sci. 6: 980-986, 2015. Go to original source...
  34. Ou Z.Y., Cao J.Z., Shen W.H. et al.: Understory flora in relation to canopy structure, soil nutrients, and gap light regime: a case study in southern China. ‒ Pol. J. Environ. Stud. 24: 2559-2568, 2015. Go to original source...
  35. Petter G., Wagner K., Wanek W. et al.: Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. ‒ Funct. Ecol. 30: 188-198, 2016. Go to original source...
  36. Pigliucci M., Kolodynska A.: Phenotypic plasticity to light intensity in Arabidopsis thaliana: invariance of reaction norms and phenotypic integration. ‒ Evol. Ecol. 16: 27-47, 2002. Go to original source...
  37. Pilahome W., Bunnag S., Suwanagul A.: Two-step salt stress acclimatization confers marked salt tolerance improvement in four rice genotypes differing in salt tolerance. ‒ Arab. J. Sci. Eng. 42: 2191-2200, 2017. Go to original source...
  38. Pons T.L.: Regulation of leaf traits in canopy gradients. - In: Kouki H., Ülo N., Niels P.R.A. (ed.):Canopy Photosynthesis: From Basics to Applications. Pp. 143-168. Springer, Dordrecht 2016. Go to original source...
  39. Portsmuth A., Niinemets Ü.: Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. ‒ Funct. Ecol. 21: 61-77, 2007. Go to original source...
  40. Puglielli G., Varone L., Gratani L. et al.: Specific leaf area variations drive acclimation of Cistus salvifolius in different light environments. ‒ Photosynthetica 55: 31-40, 2017. Go to original source...
  41. Rawson H.M., Begg J.E., Woodward R.G.: The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. ‒ Planta 134: 5-10, 1977. Go to original source...
  42. Rodríguez-López N.F., Martins S.C., Cavatte P.C. et al.: Morphological and physiological acclimations of coffee seedlings to growth over a range of fixed or changing light supplies. ‒ Environ. Exp. Bot. 102: 1-10, 2014. Go to original source...
  43. Santiago L.S., Wright S.J.: Leaf functional traits of tropical forest plants in relation to growth form. ‒ Funct. Ecol. 21: 19-27, 2007. Go to original source...
  44. Sato R., Ito H., Tanaka A.: Chlorophyll b degradation by chlorophyll b reductase under high-light conditions. ‒ Photosynth. Res. 126: 249-259, 2015. Go to original source...
  45. Sawhney B.L., Zelitch I.: Direct determination of potassium ion accumulation in guard cells in relation to stomatal opening in light. ‒ Plant Physiol. 44: 1350-1354, 1969. Go to original source...
  46. Suzuki M., Umeda H., Matsuo S. et al.: Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production. ‒ Sci. Hortic.-Amsterdam 187: 44-49, 2015.
  47. Terashima I., Miyazawa S.I., Hanba Y.T.: Why are sun leaves thicker than shade leaves? - Consideration based on analyses of CO2 diffusion in the leaf. ‒ J. Plant Res. 114: 93-105, 2001. Go to original source...
  48. Thornley J.H.M.: Mathematical Models in Plant Physiology. Pp. 85-106. Academic press, London 1976.
  49. Tomlinson P.B.: The Structural Biology of Palms. Clarendon Press, Oxford 1990.
  50. Tucci M.L.S., Erismann N.M., Machado E.C. et al.: Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions. - Photosynthetica 48: 421-429, 2010. Go to original source...
  51. Uddling J., Gelang-Alfredsson J., Piikki K. et al.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. - Photosynth. Res. 91: 37-46, 2007. Go to original source...
  52. Valladares F., Niinemets Ü.: Shade tolerance, a key plant feature of complex nature and consequences. - Annu. Rev. Ecol. Evol. S. 39: 237-257, 2008.
  53. Xiao H., Wang C., Liu J. et al.: Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities. - J. Forestry Res. 26: 613-621, 2015. Go to original source...
  54. Xiao M., Li Q., Guo L. et al.: AFLP analysis of genetic diversity of the endangered species Sinopodophyllum hexandrum in the Tibetan region of Sichuan Province, China. - Biochem. Genet. 44: 44-60, 2006. Go to original source...
  55. Yannelli F.A., Koch C., Jeschke J.M. et al.: Limiting similarity and darwin's naturalization hypothesis: understanding the drivers of biotic resistance against invasive plant species. - Oecologia 183: 775-784, 2017. Go to original source...
  56. Zhao L., Yang Y., Lin D.: Effects of light intensity on photosynthetic characteristics and quality of Taraxacum mongolicum. - Acta Horti. Sin. 34: 1555-1558, 2007.
  57. Zhang S., Gao R.: Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. - Photosynthetica 37: 559-571, 2000. Go to original source...