Photosynthetica, 2008 (vol. 46), issue 2

Photosynthetica 2008, 46(2):170-178 | DOI: 10.1007/s11099-008-0028-6

Corrections to current approaches used to calculate energy partitioning in photosystem 2

D. Kornyeyev1,2,*, A. S. Holaday2
1 Institute of Plant Physiology and Genetics, Kyiv, Ukraine
2 Department of Biological Sciences, Texas Tech University, Lubbock, USA

We analyzed several approaches dealing with the components of non-photochemical energy dissipation and introduced improved versions of the equations used to calculate this parameter. The usage of these formulae depends on the conditions of the sample (acclimation to dark or irradiation, presence or absence of the "actinic light"). The parameter known as "excess" cannot be used as a component of energy partitioning. In reality, this parameter reflects the differences between potential and actual quantum yields of photochemistry.

Keywords: Arabidopsis; chlorophyll fluorescence; Gossypium; lincomycin; Lycopersicon; mutant; PsbS protein; thermal dissipation

Received: July 18, 2007; Accepted: November 23, 2007; Published: June 1, 2008Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kornyeyev, D., & Holaday, A.S. (2008). Corrections to current approaches used to calculate energy partitioning in photosystem 2. Photosynthetica46(2), 170-178. doi: 10.1007/s11099-008-0028-6.
Download citation

References

  1. Bilger, W., Björkman, O.: Relationships among violaxanthin de-epoxidation, thylakoid membrane conformation, and nonphotochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.).-Planta 193: 238-246, 1994. Go to original source...
  2. Cailly, A.L., Rizza, F., Genty, B., Harbinson, J.: Fate of excitation at PS2 in leaves: The non-photochemical side.-Plant Physiol. Biochem. (special issue): 86, 1996.
  3. Demmig-Adams, B., Adams, W.W., III, Baker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation.-Physiol. Plant. 98: 253-264, 1996.
  4. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-90, 1989. Go to original source...
  5. Hakala, M., Tuominen, I., Keränen, M., Tyystjärvi, T., Tyystjärvi, E.: Evidence of the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II.-Biochim. biophys. Acta 1706: 68-80, 2005. Go to original source...
  6. Hendrickson, L., Förster, B., Pogson, B.J., Chow, W.S.: A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of Photosystem II.-Photosynth. Res. 84: 43-49, 2005. Go to original source...
  7. Hendrickson, L., Furbank, R.T., Chow, W.S.: A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence.-Photosynth. Res. 82: 73-81, 2004. Go to original source...
  8. Hikosaka, K., Kato, M.C., Hirose, T.: Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves.-Physiol. Plant. 121: 699-708, 2004. Go to original source...
  9. Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 655-684, 1996. Go to original source...
  10. Kato, M.C., Hikosaka, K., Hirotsu, N., Makino, A., Hirose, T.: The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II.-Plant Cell Physiol. 44: 318-325, 2003. Go to original source...
  11. Kitajima, M., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.-Biochim. biophys. Acta 376: 105-115, 1975. Go to original source...
  12. Kornyeyev, D., Hendrickson, L.: Energy partitioning in photosystem II complexes subjected to photoinhibitory treatment.-Funct. Plant Biol. 34: 214-220, 2007.
  13. Kornyeyev, D., Holaday, A.S., Logan, B.A.: Predicting the extent of photosystem II photoinactivation using chlorophyll a fluorescence parameters measured during illumination.-Plant Cell Physiol. 44: 1064-1070, 2003. Go to original source...
  14. Kornyeyev, D., Holaday, A.S., Logan, B.A.: Minimization of the photon energy absorbed by 'closed' reaction centers of photosystem 2 as a photoprotective strategy in higher plants.-Photosynthetica 42: 377-386, 2004. Go to original source...
  15. Kornyeyev, D., Logan, B.A., Payton, P., Allen, R.D., Holaday, A.S.: Enhanced photochemical light utilization and decreased chilling-induced photoinactivation of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes.-Physiol. Plant. 113: 323-331, 2001. Go to original source...
  16. Kornyeyev, D., Logan, B.A., Payton, P., Allen, R.D., Holaday, A.S.: Field-grown cotton plants with elevated activity of chloroplastic glutathione reductase show no significant alteration of diurnal or seasonal patterns of excitation energy partitioning and CO2 fixation.-Field Crops Res. 94: 165-175, 2005. Go to original source...
  17. Kornyeyev, D., Logan, B.A., Tissue, D.T., Allen, R.D., Holaday, A.S.: Compensation for photosystem II photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation.-Plant Cell Physiol. 47: 437-446, 2006. Go to original source...
  18. Kramer, D.M., Johnson, G., Kiirats, O., Edwards, G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.-Photosynth. Res. 79: 209-218, 2004. Go to original source...
  19. Laisk, A., Oja, V., Rasulov, B., Eichelmann, H., Sumberg, A.: Quantum yield and rate constants of photochemical and nonphotochemical excitation quenching. Experiment and model.-Plant Physiol. 115: 803-815, 1997. Go to original source...
  20. Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S., Niyogi, K.K.: A pigment-binding protein essential for regulation of photosynthetic light harvesting.-Nature 403: 391-395, 2000. Go to original source...
  21. Lichtenthaler, H.K., Burkart, S.: Photosynthesis and light stress.-Bulg. J. Plant Physiol. 25: 3-16, 1999.
  22. Logan, B.A., Adams, W.W., III, Demmig-Adams, B.: Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions.-Funct. Plant Biol. 34: 853-859, 2007.
  23. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide.-J. exp. Bot. 51: 659-668, 2000. Go to original source...
  24. Müller, P., Li, X.-P., Niyogi, K.K.: Non-photochemical quenching. A response to excess light energy.-Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  25. Oxborough, K., Baker, N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv'/Fm' without measuring Fo'.-Photosynth. Res. 54: 135-142, 1997. Go to original source...
  26. Quick, W.P., Stitt, M.: An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves.-Biochim. biophys. Acta 977: 287-296, 1989. Go to original source...
  27. Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships.-Photosynthetica 40: 13-29, 2002. Go to original source...
  28. Schreiber, U., Bilger, W., Hormann, H., Neubauer, C.: Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance.-In: Raghavendra, A.S. (ed.): Photosynthesis: A Comprehensive Treatise. Pp. 320-336. Cambridge University Press, Cambridge 1998.
  29. Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51-62, 1986. Go to original source...
  30. Shinkarev, V.P., Govindjee: Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis.-Proc. nat. Acad. Sci. USA 90: 7466-7469, 1993. Go to original source...
  31. Tsonev, T.D., Hikosaka, K.: Contribution of photosynthetic electron transport, heat dissipation, and recovery of photoinactivated photosystem II to photoprotection at different temperatures in Chenopodium album leaves.-Plant Cell Physiol. 44: 828-835, 2003. Go to original source...
  32. Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147-150, 1990. Go to original source...
  33. Walters, R.G., Horton, P.: Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves.-Photosynth. Res. 27: 121-133, 1991. Go to original source...
  34. Walters, R.G., Horton, P.: Theoretical assessment of alternative mechanisms for non-photochemical quenching of PS II fluorescence in barley leaves.-Photosynth. Res. 36: 119-139, 1993. Go to original source...