Photosynthetica 2017, 55(3):411-420 | DOI: 10.1007/s11099-016-0655-2

Light availability and soil flooding regulate photosynthesis of an imperiled shrub in lowland forests of the Mississippi Alluvial Valley, USA

B. R. Lockhart1,*, E. S. Gardiner1, T. D. Leininger1, M. S. Devall1, A. D. Wilson1, K. F. Connor1, P. B. Hamel1, N. M. Schiff1
1 USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Stoneville, USA

Physiological responses to light availability and soil flooding on Lindera melissifolia (Walt.) Blume were studied. Shrubs were grown under 70, 37 or 5% of full sunlight with either 0, 45, or 90 d of soil flooding. We measured leaf photosynthetic rate (PN) to test the hypothesis that soil flooding reduces P N in L. melissifolia following shrub acclimation to low light availability. Results showed that light availability and soil flooding interacted to affect P N. In the 0 d and 45 d flooding regimes (flood water removed 36-39 d prior to measurement), P N was similar between shrubs receiving 70% or 37% light, and these shrubs had 147% greater P N than shrubs receiving 5% light. Shrubs receiving 90 d of soil flooding had similar low rates of area-based P N regardless of light level. Similar P N between 0 d and 45 d flooded shrubs indicated physiological recovery following removal of flood water.

Keywords: blade area; blade mass; interaction; plasticity; pondberry

Received: February 5, 2016; Accepted: July 15, 2016; Published: September 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lockhart, B.R., Gardiner, E.S., Leininger, T.D., Devall, M.S., Wilson, A.D., Connor, K.F., Hamel, P.B., & Schiff, N.M. (2017). Light availability and soil flooding regulate photosynthesis of an imperiled shrub in lowland forests of the Mississippi Alluvial Valley, USA. Photosynthetica55(3), 411-420. doi: 10.1007/s11099-016-0655-2.
Download citation

References

  1. Aleric K.M., Kirkman L.K.: Growth and photosynthetic response of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments.-Am. J. Bot. 92: 682-689, 2005. Go to original source...
  2. Anderson P.H., Pezeshki S.R.: The effects of intermittent flooding on seedlings of three forest species.-Photosynthetica 37: 543-552, 1999.
  3. Anella L.B., Whitlow T.H.: Photosynthetic response to flooding of Acer rubrum seedlings from wet and dry sites.-Am. Midl. Nat. 143: 330-341, 2000. Go to original source...
  4. Angelov M.N., Sung S.S., Doong R.L. et al.: Long-and shortterm flooding effects on survival and sink-source relationships of swamp-adapted tree species.-Tree Physiol. 16: 477-484, 1996. Go to original source...
  5. Bedinger M.S.: Hydrology of bottomland hardwood forests of the Mississippi Embayment.-In: Clark J.R., Benforado J. (ed.): Wetlands of Bottomland Hardwood Forests. Pp. 161-176. Elsevier Sci. Publ. Co., New York 1981. Go to original source...
  6. Blom C.W.P.M., Bögermann G.M., Laan P. et al.: Adaptations to flooding in plants from river areas.-Aquat. Bot. 38: 29-47, 1990. Go to original source...
  7. Boardman N.K.: Comparative photosynthesis of sun and shade plants.-Annu. Rev. Plant Physiol. 28: 355-377, 1977. Go to original source...
  8. Chabot B.F., Jurik T.W., Chabot J.F.: Influence of instantaneous light-flux density on leaf anatomy and photosynthesis.-Am. J. Bot. 66: 940-945, 1979. Go to original source...
  9. Currie R.R.: Endangered and threatened wildlife and plants; determination of endangered status for Lindera melissifolia.-Fed. Reg. 51: 27495-27500, 1986.
  10. De Laune R.D., Pezeshki S.R., Lindau C.W.: Influence of soil redox potential on nitrogen uptake and growth of wetland oak seedlings.-J. Plant Nut. 21: 757-768, 1998. Go to original source...
  11. De Lay L., O'Conner R., Ryan J. et al.: Recovery plan for pondberry (Lindera melissifolia). Pp. 49. U.S. Fish and Wildlife Service, Southeast Region, Atlanta 1993.
  12. Dreyer E., Colin-Belgrand M., Biron P.: Photosynthesis and shoot water status of seedlings from different oak species submitted to waterlogging.-Ann. Sci. For. 48: 205-214, 1991.
  13. Ellsworth D.S., Reich P.B.: Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments.-Funct. Ecol. 6: 423-435, 1992. Go to original source...
  14. Evans J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants.-Oecologia 78: 9-19, 1989. Go to original source...
  15. Fukao T., Bailey-Serres J.: Plant responses to hypoxia-is survival a balancing act?-Trends Plant Sci. 9: 449-456, 2004. Go to original source...
  16. Gardiner E.S., Krauss K.W.: Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes.-Tree Physiol. 21: 1103-1111, 2001. Go to original source...
  17. Gardiner E., Stanturf J., Leininger T. et al.: Establishing a research and demonstration area initiated by managers: the Sharkey Restoration Research and Demonstration Site.-J. For. 106: 363-369, 2008.
  18. Givnish T.J.: Adaptation to sun and shade: a whole-plant perspective.-Aust. J. Plant. Physiol. 15: 63-92, 1988. Go to original source...
  19. Goldschmidt E.E., Huber S.C.: Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars.-Plant Physiol. 99: 1443-1448, 1992. Go to original source...
  20. Gravatt D.A., Kirby C.J.: Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding.-Tree Physiol. 18: 411-417, 1998. Go to original source...
  21. Harrington C.A.: Responses of red alder and black cottonwood seedlings to flooding.-Physiol. Plantarum 69: 35-48, 1987. Go to original source...
  22. Hawkins T.S., Gardiner E.S., Comer, G.S.: Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research.-J. Nat. Conserv. 17: 125-129, 2009a. Go to original source...
  23. Hawkins T.S., Schiff N.M., Leininger T.D. et al.: Growth and intraspecific competitive abilities of the dioecious Lindera melissifolia (Lauraceae) in varied flooding regimes.-J. Torrey Bot. Soc. 136: 91-101, 2009b. Go to original source...
  24. Hawkins T.S., Skojac III D.A., Lockhart B.R. et al.: Bottomland forests in the Lower Mississippi Alluvial Valley associated with the endangered Lindera melissifolia.-Castanea 74: 105-113, 2009c. Go to original source...
  25. Hawkins T.S., Skojac, D.S., Schiff N.M. et al.: Floristic composition and potential competitors in Lindera melissifolia (Lauraceae) colonies in Mississippi with reference to hydrologic regime.-J. Bot. Res. Inst. Texas 4: 381-390, 2010.
  26. Hawkins T.S., Schiff N., Wilson A.D. et al.: Growth and competitive abilities of the federally endangered Lindera melissifolia and the potentially invasive Brunnichia ovata in varying densities, hydrologic regimes, and light availabilities.-Botany 94: 269-276, 2016. Go to original source...
  27. Herrera A., Tezara W., Marin O. et al.: Stomatal and nonstomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest.-Physiol. Plantarum 134: 41-48, 2008. Go to original source...
  28. Iio A., Fukawawa H., Nose Y. et al.: Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy tops of Fagus crenata Blume on Naeba mountain in Japan.-Trees 18: 510-517, 2004. Go to original source...
  29. Iwanaga F., Yamamoto F.: Growth, morphology and photosynthetic activity in flooded Alnus japonica seedlings.-J. For. Res. 12: 243-246, 2007. Go to original source...
  30. Jaeger C., Gessler A., Biller S. et al.: Differences in C metabolism of ash species and provenances as a consequence of root oxygen deprivation by waterlogging.-J. Exp. Bot. 60: 4335-4345, 2009. Go to original source...
  31. Jensen A.M., Gardiner E.S., Vaughn K.C.: High-light acclimation in Quercus robur L. seedlings upon over-topping a shaded environment.-Environ. Exp. Bot. 78: 25-32, 2012. Go to original source...
  32. Kamakura M., Kosugi Y., Muramatsu K. et al.: Simulations and observations of patchy stomatal behavior in leaves of Quercus crispula, a cool-temperate deciduous broad-leaved tree species.-J. Plant Res. 125: 339-349, 2012. Go to original source...
  33. Kozlowski T.T.: Responses of woody plants to flooding and salinity.-Tree Physiol. Monograph No. 1, 1997. Go to original source...
  34. Kozlowski T.T.: Physiological-ecological impacts of flooding on riparian forest ecosystems.-Wetlands 22: 550-561, 2002. Go to original source...
  35. Kreuzwieser J., Papadopoulou E., Rennenberg H.: Interaction of flooding with carbon metabolism of forest trees.-Plant Biol. 6: 299-306, 2004. Go to original source...
  36. Lavinsky A.O., De Sonza Sant'Ana C., Mielke M.S. et al.: Effects of light availability and soil flooding on growth and photosynthetic characteristics of Genipa americana L. seedlings.-New Forest. 34: 41-50, 2007. Go to original source...
  37. Lenssen J.P.M., Menting F.B.J., Van der Putten W.H.: Plant responses to simultaneous stress of waterlogging and shade: amplified or hierarchical effects?-New Phytol. 157: 281-290, 2003. Go to original source...
  38. Lhotka J.M., Loewenstein E.F.: Indirect measures for characterizing light along a gradient of mixed-hardwood riparian forest canopy structures.-Forest Ecol. Manag. 226: 310-318, 2006. Go to original source...
  39. Li X.L., Li N., Jin Y. et al.: Morphological and photosynthetic responses of riparian plant Distylium chinense seedlings to simulated Autumn and Winter flooding in Three Gorges Reservoir Region of the Yangtze River, China.-Acta Ecol. Sin. 31: 31-39, 2011.
  40. Liu A., Dickmann D.I.: Responses of two hybrid Populus clones to flooding, drought, and nitrogen availability. I. Morphology and growth.-Can. J. Bot. 70: 2265-2270, 1992.
  41. Lockhart B.R., Gardiner E.S., Leininger T.D. et al.: Flooding facility helps scientists examine the ecophysiology of floodplain species used in bottomland hardwood restorations.-Ecol. Restor. 24: 151-157, 2006. Go to original source...
  42. Lockhart B.R., Gardiner E.S., Stautz T. et al.: Development and plasticity of endangered shrub Lindera melissifolia (Lauraceae) seedlings under contrasting light regimes.-Plant Spec. Biol. 27: 30-45, 2012. Go to original source...
  43. Lockhart B.R., Gardiner E.S., Leininger T.D. et al.: Lindera melissifolia responses to flood duration and light regimes suggest strategies for recovery and conservation.-Plant Ecol. 214: 893-905, 2013. Go to original source...
  44. Luken J.O., Kuddes L.M., Tholemeier T.C. et al.: Comparative response of Lonicera maackii (Amur honeysuckle) and Lindera benzoin (spicebush) to increased light.-Am. Midl. Nat. 138: 331-343, 1997. Go to original source...
  45. Mielke M.S., Schaffer B.: Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity.-Environ. Exp. Bot. 68: 113-121, 2010. Go to original source...
  46. Niinemets Ü., Valladares F.: Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints.-Plant Biol. 6: 254-268, 2004. Go to original source...
  47. Niinemets Ü.: Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation.-Forest Ecol. Manag. 260: 1623-1639, 2010. Go to original source...
  48. Peterson D.L., Bazzaz F.A.: Photosynthetic and growth responses of silver maple (Acer saccharinum L.) seedlings to flooding.-Am. Mid. Nat. 112: 261-272, 1984. Go to original source...
  49. Pezeshki S.R., Chambers J.L.: Stomatal and photosynthetic response of sweetgum (Liquidambar styraciflua) to flooding.-Can. J. Forest Res. 15: 371-375, 1985.
  50. Pezeshki S.R., Anderson P.H.: Response of three bottomland species with different flood tolerance capabilities to various flooding regimes.-Wetl. Ecol. Manag. 4: 245-256, 1997.
  51. Pezeshki S.R.: Wetland plant responses to soil flooding.-Environ. Exp. Bot. 46: 299-312, 2001. Go to original source...
  52. Regehr D.L., Bazzaz F.A., Boggess W.R.: Photosynthesis, transpiration and leaf conductance of Populus deltoides in relation to flooding and drought.-Photosynthetica 9: 52-61, 1975.
  53. Rosati A., Day K.R., De Jong T.M.: Distribution of leaf mass per unit area and leaf nitrogen concentration determine partitioning of leaf nitrogen within tree canopies.-Tree Physiol. 20: 271-276, 2000. Go to original source...
  54. Smit B., Stachowiak M., Van Volkenburgh E.: Cellular processes limiting leaf growth in plants under hypoxic root stress.-J. Exp. Bot. 40: 89-94, 1989. Go to original source...
  55. Unks R.R., Shear T.H., Krings A. et al.: Environmental controls of reproduction and early growth of Lindera melissifolia (Lauraceae).-Castanea 79: 266-277, 2014. Go to original source...
  56. Vu J.V.C., Yelenosky G.: Photosynthetic responses of citrus trees to soil flooding.-Physiol. Plantarum 81: 7-14, 1991. Go to original source...
  57. Wiggers M.S.: Pondberry (Lindera melissifolia) 5-year review: Summary and Evaluation. Pp. 42. U.S. Fish and Wildlife Service, Southeast Region, Mississippi Field Office, Jackson, 2014 WorldClimate: Rolling Fork, Sharkey County, Mississippi USA.-Available from http://www.worldclimate.com (accessed December 9, 2015).
  58. Wright R.D.: Photosynthetic competence of an endangered shrub, Lindera melissifolia.-Proc. Ark. Acad. Sci. 44: 118-120, 1990.
  59. Yasumura Y., Onoda Y., Hikosaka K. et al.: Nitrogen resorption from leaves under different growth irradiance in three deciduous species.-Plant Ecol. 178: 29-37, 2005. Go to original source...
  60. Yasumura Y., Hikosaka K., Hirose T.: Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellate leaves grown in high and low irradiance.-Tree Physiol. 26: 1315-1323, 2006. Go to original source...