Photosynthetica 2011, 49(3):361 | DOI: 10.1007/s11099-011-0046-7

A comparison between yellow-green and green cultivars of four vegetable species in pigments, ascorbate, photosynthesis, energy dissipation, and photoinhibition

J. H. Weng1,2,*, L. F. Chien2, C. Y. Jiang2, F. C. Shih2, H. Y. Chen2
1 Graduate Institute of Ecology and Evolutionary Biology, China Medical University, Taichung, Taiwan
2 Department of Life Science, National Chung-Hsing University, Taichung, Taiwan

Yellow-green foliage cultivars of four vegetables grown outdoors, i.e., Chinese mustard (Brassica rapa), Chinese kale (Brassica oleracea var. alboglabra), sweet potato (Ipomoea batatas) and Chinese amaranth (Amaranthus tricolor), had lower chlorophyll (Chl) (a+b) (29-36% of green cultivars of the same species), total carotenoids (46-62%) and ascorbate (72-90%) contents per leaf area. Furthermore, yellow-green cultivars had smaller photosystem II (PSII) antenna size (65-70%) and lower photosynthetic capacity (52-63%), but higher Chl a/b (107-156%) and from low (60%) to high (129%) ratios of de-epoxidized xanthophyll cycle pigments per Chl a content. Potential quantum efficiency of PSII (Fv/Fm) of all overnight dark-adapted leaves was ca. 0.8, with no significant difference between yellow-green and green cultivars of the same species. However, yellow-green cultivars displayed a higher degree of photoinhibition (lower Fv/Fm after illumination) when they were exposed to high irradiance. Although vegetables used in this study are of either temperate or tropical origin and include both C3 and C4 plants, data from all cultivars combined revealed that Fv/Fm after illumination still showed a significant positive linear regression with xanthophyll cycledependent energy quenching (qE) and a negative linear regression with photoinhibitory quenching (qI). Fv/Fm was, however, not correlated with nonphotochemical quenching (NPQ). Yet, a higher degree of photoinhibition in yellow-green cultivars could recover during the night darkness period, suggesting that the repair of PSII in yellow-green cultivars would allow them to grow normally in the field.

Keywords: Amaranthus tricolor; ascorbate-deficient; Brassica oleracea var. alboglabra; Brassica rapa; chlorophylldeficient; energy dissipation; Ipomoea batatas; photoinhibition; photosynthesis

Received: June 3, 2010; Accepted: May 19, 2011; Published: September 1, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Weng, J.H., Chien, L.F., Jiang, C.Y., Shih, F.C., & Chen, H.Y. (2011). A comparison between yellow-green and green cultivars of four vegetable species in pigments, ascorbate, photosynthesis, energy dissipation, and photoinhibition. Photosynthetica49(3), 361. doi: 10.1007/s11099-011-0046-7.
Download citation

References

  1. Aksmann, A., Tukaj, Z.: Intact anthracene inhibits photosynthesis in algal cells: A fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. - Chemosphere 74: 26-32, 2008. Go to original source...
  2. Anderson, I.C., Robertson, D.S.: Role of carotenoids in protecting chlorophyll from photodestruction.- Plant Physiol. 35: 531-534, 1960. Go to original source...
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts polyphe noloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  4. Baker, N.R.: Chilling stress and photosynthesis. - In: Foyer, C.H., Mullineaux, P.M. (ed.): Cause of Photooxidative Stress and Amelioration of Defense Systems in Plants. Pp. 127-154. CRC Press, Boca Raton 1994.
  5. Chen, Q., Wang, L.F., Su, N., Qin, H.D., Niu, H.B., Wang, J.L., Zhai, H.Q., Wan, J.M.: Photosystem 2 photochemistry and pigment composition of a yellow mutant of rice (Oryza sativa L.) under different irradiances. - Photosynthetica 46: 35-39, 2008. Go to original source...
  6. Dai, X., Xu, X., Lu, W., Kuang, T.: Photoinhibition characteristics of a low chlorophyll b mutant of high yield rice. - Photosynthetica 41: 57-60, 2003. Go to original source...
  7. Dall'Osto, L., Cazzaniga, S., Havaux, M., Bassi, R.: Enhanced photoprotection by protein-bound vs free xanthophyll pools: A comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. - Mol. Plant 3: 576-593, 2010. Go to original source...
  8. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599-626, 1992. Go to original source...
  9. Demmig-Adams, B., Adams, W.W., III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. - Trends Plant Sci. 1: 21-26, 1996. Go to original source...
  10. Dreuw, A., Fleming, G.R., Head-Gordon, M.: Chlorophyll fluorescence quenching by xanthophylls. - Phys. Chem. Chem. Phys. 5: 3247-3256, 2003. Go to original source...
  11. Gilmore, A.M., Hazlett, T.L., Debrunner, P.G., Govindjee: Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants: Photochemical quenching and xanthophyll cycle-dependent nonphotochemical quenching of fluorescence. - Photosynth. Res. 48: 171-187, 1996. Go to original source...
  12. Gilmore, A.M., Yamamoto, H.Y.: Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. - J. Chromatogr. 543: 137-145, 1991. Go to original source...
  13. Goh, C.-H., Jang, S., Jung, S., et al.: Rice phot1a mutation reduces plant growth by affecting photosynthetic responses to light during early seedling growth. - Plant Mol. Biol. 69: 605-619, 2009. Go to original source...
  14. Hager, A.: Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin-→ Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung. - Planta 89: 224-243, 1969. Go to original source...
  15. Henriques, F.S.: Photosynthetic characteristics of light-sensitive, chlorophyll-deficient leaves from sectorially chimeric stinging-nettle. - Bot. Studies 49: 235-241, 2008.
  16. Horton, P., Hague, A.: Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. - Biochim. Biophys. Acta 932: 107-115, 1988. Go to original source...
  17. Jahns, P., Latowski, D., Strzalka, K.: Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. - Biochim. Biophys. Acta 1787: 3-4, 2009. Go to original source...
  18. Jiang, C.-Y.: The chlorophyll fluorescence and leaf reflectance spectra characteristics among sweet potato (Ipomoea batatas (L.) Lam) genotypes with various leaf colors. - Master Thesis, Dept. Life Sci., National Chung-Hsing Univ., Taichung 2007.
  19. Kalituho, L., Beran, K.C., Jahns, P.: The transiently generated nonphotochemical quenching of excitation energy in Arabidopsis leaves is modulated by zeaxanthin. - Plant Physiol. 143: 1861-1870, 2007.
  20. Kampfenkel, K., Vanmontagu, M., Inze, D.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. - Anal. Biochem. 225: 165-167, 1995. Go to original source...
  21. Keck, R.W., Dilley, R.A., Ke, B.: Photochemical characteristics in a soybean mutant. - Plant Physiol. 46: 699-704, 1970. Go to original source...
  22. Kurasová, I., Čajánek, M., Kalina, J., Urban, O., Špunda, V.: Characterization of acclimation of Hordeum vulgare to high irradiation based on different responses of photosynthetic activity and pigment composition. - Photosynth. Res. 72: 71-83, 2002. Go to original source...
  23. Leegood, R.C.: Effects of temperature on photosynthesis and photorespiration. - In:Smirnoff, N. (ed.): Environment and Plant Metabolism. Pp. 45-62. Bios Sci. Publ., Oxford 1995.
  24. Lin, Z.-F., Peng, C.-L., Lin, G.-Z., Ou, Z.-Y., Yang, C.-W., Zhang, J.-L.: Photosynthetic characteristics of two new chlorophyll b-less rice mutants. - Photosynthetica 41: 61-67, 2003. Go to original source...
  25. Malkin, S., Armond, P.A., Mooney, H.A., Fork, D.C.: Photosystem II photosynthetic unit size from fluorescence induction in leaves. Correlation to photosynthetic capacity. - Plant Physiol. 67: 570-579, 1981. Go to original source...
  26. Maury, P., Suc, S., Berger, M., Planchon, C.: Response of photochemical processes of photosynthesis to dinitrogen fixation in soybean. - Plant Physiol. 101: 493-497, 1993. Go to original source...
  27. Müller, P., Li, X.-P., Niyogi, K.K.: Non-photochemical quenching: A response to excess light energy. - Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  28. Müller-Moulé, P., Conklin, P.L., Niyogi, K.K.: Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. - Plant Physiol. 128: 970-977, 2002. Go to original source...
  29. Müller-Moulé, P., Golan, T., Niyogi, K.K.: Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. - Plant Physiol. 134: 1163-1172, 2004. Go to original source...
  30. Noctor, G., Veljovic-Jovanovic, S., Foyer, C.H.: Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. - Philos. Trans. Roy. Soc. Lond. B. Biol. Sci. 355: 1465-1475, 2000. Go to original source...
  31. Osmond, C.B., Grace, S.C.: Perspectives on photoinhibition and photorespiration in the field: Quintessential inefficiencies of the light and dark reactions of photosynthesis? - J. Exp. Bot. 46: 1351-1362, 1995. Go to original source...
  32. Peng, C.-L., Duan, J., Lin, G., Gilmore, A.M.: Correlation between photoinhibition sensitivity and the rates and relative extents of xanthophyll cycle de-epoxidation in chlorina mutants of barley (Hordeum vulgare L.). - Photosynthetica 40: 503-508, 2002. Go to original source...
  33. Peng, C.-L., Gilmore, A.M.: Comparison of high-light effects with and without methyl viologen indicate barley chlorina mutants exhibit contrasting sensitivities depending on the specific nature of the chlorina mutation: comparison of wild type, chlorophyll-b-less clo f2 and light-sensitive chlorophyll-b-deficient clo f104 mutants. Funct. Plant Biol. 29: 1171-1180, 2002. Go to original source...
  34. Sager, R., Zalokar, M.: Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. - Nature 182: 98-100, 1958. Go to original source...
  35. Schansker, G., Tóth, S.Z., Strasser, R.J.: Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. - Biochim. Biophys. Acta 1757: 787-797, 2006. Go to original source...
  36. Smirnoff, N.: Ascorbic acid: metabolism and functions of a multifaceted molecule. - Curr. Opin. Plant Biol. 3: 229-235, 2000. Go to original source...
  37. Štroch, M., Čajánek, M., Kalina, J., Špunda, V.: Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances. - J. Photochem. Photobiol. B: Biol. 75: 41-50, 2004. Go to original source...
  38. Tardy, F., Créach, A., Havaux, M.: Photosynthetic pigment concentration, organization and interconversions in a pale green Syrian landrace of barley (Hordeum vulgare L., Tadmor) adapted to harsh climatic conditions. - Plant Cell Environ. 21: 479-489, 1998. Go to original source...
  39. von Wettstein, D.: Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. - Exp. Cell Res. 12: 427-507, 1957. Go to original source...
  40. Weng, J.-H.: Underestimate of photosystem 2 efficiency in the field due to high leaf temperature resulting from leaf clipping and its amendment. - Photosynthetica 44: 467-470, 2006. Go to original source...
  41. Yi, X., McChargue, M., Laborde, S., Frankel, L.K., Bricker, T.M.: The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. - J. Biol. Chem. 280: 16170-16174, 2005. Go to original source...
  42. Yusuf, M.A., Kumar, D., Rajwanshi, R., Strasser, R.J., Tsimilli-Michael, M., Govindjee, Sarin, N.B.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - Biochim. Biophys. Acta 1797: 1428-1438, 2010. Go to original source...