Photosynthetica, 2007 (vol. 45), issue 3

Photosynthetica 2007, 45(3):433-440 | DOI: 10.1007/s11099-007-0072-7

Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grasses

B. R. Maricle1,*, R. W. Lee1, C. E. Hellquist1, O. Kiirats1, G. E. Edwards1
1 School of Biological Sciences, Washington State University, Pullman, USA

The effects of salinity (sea water at 0 ‰ versus 30 ‰) on gross rates of O2 evolution (J O2) and net rates of CO2 uptake (P N) were measured in the halotolerant estuarine C4 grasses Spartina patens, S. alterniflora, S. densiflora, and Distichlis spicata in controlled growth environments. Under high irradiance, salinity had no significant effect on the intercellular to ambient CO2 concentration ratio (C i/C a). However, during photosynthesis under limiting irradiance, the maximum quantum efficiency of CO2 fixation decreased under salinity across species, suggesting there is increased leakage of the CO2 delivered to the bundle sheath cells by the C4 pump. Growth under salinity did not affect the maximum intrinsic efficiency of photosystem 2, PS2 (FV/FM) in these species, suggesting salinity had no effect on photosynthesis by inactivation of PS2 reaction centers. Under saline conditions and high irradiance, P N was reduced by 75 % in Spartina patens and S. alterniflora, whereas salinity had no effect on P N in S. densiflora or D. spicata. This inhibition of P N in S. patens and S. alterniflora was not due to an effect on stomatal conductance since the ratio of C i/C a did not decrease under saline conditions. In growth with and without salt, P N was saturated at ∼500 µmol(quantum) m-2 s-1 while J O2 continued to increase up to full sunlight, indicating that carbon assimilation was not tightly coupled to photochemistry in these halophytic species. This increase in alternative electron flow under high irradiance might be an inherent function in these halophytes for dissipating excess energy.

Keywords: Distichlis spicata; gas exchange; net photosynthetic rate; salt stress; Spartina species; species differences; stomatal conductance

Received: December 7, 2006; Accepted: March 16, 2007; Published: September 1, 2007Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Maricle, B.R., Lee, R.W., Hellquist, C.E., Kiirats, O., & Edwards, G.E. (2007). Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grasses. Photosynthetica45(3), 433-440. doi: 10.1007/s11099-007-0072-7.
Download citation

References

  1. Baerlocher, M.O., Campbell, D.A., Ireland, R.J.: Developmental progression of photosystem II electron transport and CO2 uptake in Spartina alterniflora, a facultative halophyte, in a northern salt marsh.-Can. J. Bot. 82: 365-375, 2004. Go to original source...
  2. Bilger, W., Björkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.-Photosynth. Res. 25: 173-185, 1990. Go to original source...
  3. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.-Planta 170: 489-504, 1987. Go to original source...
  4. Björkman, O., Demmig-Adams, B.: Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants.-In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 17-47. Springer-Verlag, Berlin 1995. Go to original source...
  5. Bolhàr-Nordenkampf, H.R., Öquist, G.: Chlorophyll fluorescence as a tool in photosynthesis research.-In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual. Pp. 193-206. Chapman & Hall, London-Glasgow-New York-Tokyo-Melbourne-Madras 1993. Go to original source...
  6. Bowman, W.D., Hubick, K.T., Caemmerer, S. von, Farquhar, G.D.: Short-term changes in leaf carbon isotope discrimination in salt-and water-stressed C4 grasses.-Plant Physiol. 90: 162-166, 1989. Go to original source...
  7. Brugnoli, E., Björkman, O.: Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy.-Planta 187: 335-347, 1992. Go to original source...
  8. Brugnoli, E., Lauteri, M.: Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes.-Plant Physiol. 95: 628-635, 1991. Go to original source...
  9. Castillo, J.M., Fernandez-Baco, L., Castellanos, E.M., Luque, C.J., Figueroa, M.E., Davy, A.J.: Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances.-J. Ecol. 88: 801-812, 2000. Go to original source...
  10. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599-626, 1992. Go to original source...
  11. Drake, B.G.: Photosynthesis of salt marsh species.-Aquat. Bot. 34: 167-180, 1989. Go to original source...
  12. Earl, H.J., Tollenaar, M.: Relationship between thylakoid electron transport and photosynthetic CO2 uptake in leaves of three maize (Zea mays L.) hybrids.-Photosynth. Res. 58: 245-257, 1998. Go to original source...
  13. Edwards, G.E., Baker, N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?-Photosynth. Res. 37: 89-102, 1993.
  14. Epstein, E.: Mineral Nutrition of Plants: Principles and Perspectives.-J. Wiley & Sons, New York 1972.
  15. Ewing, K., McKee, K., Mendelssohn, I., Hester, M.: A comparison of indicators of sublethal salinity stress in the salt marsh grass, Spartina patens (Ait.) Muhl.-Aquat. Bot. 52: 59-74, 1995. Go to original source...
  16. Farage, P.K., Blowers, D., Long, S.P., Baker, N.R.: Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chillingtolerant C4 species, Cyperus longus L. and Miscanthus × giganteus.-Plant Cell Environ. 29: 720-728, 2006. Go to original source...
  17. Farquhar, G.D., Ball, M.C., Caemmerer, S. von, Roksandic, Z.: Effect of salinity and humidity on δ13C value of halophytes-evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions.-Oecologia 52: 121-124, 1982. Go to original source...
  18. Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature.-Plant Physiol. 116: 571-580, 1998. Go to original source...
  19. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  20. James, R.A., Rivelli, A.R., Munns, R., Caemmerer, S. von: Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat.-Funct. Plant Biol. 29: 1393-1403, 2002.
  21. Jimenez, M.S., Gonzalez-Rodriguez, A.M., Morales, D., Cid, M.C., Socorro, A.R., Caballero, M.: Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses.-Photosynthetica 33: 291-301, 1997. Go to original source...
  22. Krall, J.P., Edwards, G.E.: Quantum yields of photosystem II electron transport and carbon dioxide fixation in C4 plants.-Aust. J. Plant Physiol. 17: 579-588, 1990.
  23. Krall, J.P., Edwards, G.E.: Relationship between photosystem II activity and CO2 fixation in leaves.-Physiol. Plant. 86: 180-187, 1992. Go to original source...
  24. Kubien, D.S., Cammerer, S. von, Furbank, R.T., Sage, R.F.: C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of Rubisco.-Plant Physiol. 132: 1577-1585, 2003. Go to original source...
  25. Laisk, A., Edwards, G.E.: Oxygen and electron flow in C4 photosynthesis: Mehler reaction, photorespiration and CO2 concentration in the bundle sheath.-Planta 205: 632-645, 1998. Go to original source...
  26. Lal, A., Edwards, G.E.: Maximum quantum yields of O2 evolution in C4 plants under high CO2.-Plant Cell Physiol. 36: 1311-1317, 1995.
  27. Lal, A., Edwards, G.E.: Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays: Electron transport, CO2 fixation and carboxylation capacity.-Aust. J. Plant Physiol. 23: 403-412, 1996. Go to original source...
  28. Long, S.P.: Environmental responses.-In: Sage, R.F., Monson, R.K. (ed.): C4 Plant Biology. Pp. 215-249. Academic Press, San Diego 1999. Go to original source...
  29. Long, S.P., Woolhouse, H.W.: Primary production in Spartina marshes.-In: Jefferies, R.L., Davy, A.J. (ed.): Ecological Processes in Coastal Environments. Pp. 333-352. Blackwell Scientific Publications, Oxford 1979.
  30. Lu, C.M., Qiu, N.W., Lu, Q.T., Wang, B.S., Kuang, T.Y.: Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors?-Plant Sci. 163: 1063-1068, 2002. Go to original source...
  31. Maricle, B.R., Lee, R.W.: Effects of environmental salinity on carbon isotope discrimination and stomatal conductance in Spartina grasses.-Mar. Ecol. Progr. Ser. 313: 305-310, 2006.
  32. Masojidek, J., Torzillo, G., Kopecky, J., Koblizek, M., Nidiaci, L., Komenda, J., Lukavska, A., Sacchi, A.: Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress.-J. appl. Phycol. 12: 417-426, 2000. Go to original source...
  33. Meinzer, F.C., Plaut, Z., Saliendra, N.Z.: Carbon isotope discrimination, gas exchange, and growth of sugarcane cultivars under salinity.-Plant Physiol. 104: 521-526, 1994. Go to original source...
  34. Mishra, S.K., Subrahmanyam, D., Singhal, G.S.: Interrelationship between salt and light stress on primary processes of photosynthesis.-J. Plant Physiol. 138: 92-96, 1991. Go to original source...
  35. Misra, A.N., Srivastava, A., Strasser, R.J.: Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings.-J. Plant Physiol. 158: 1173-1181, 2001. Go to original source...
  36. Morant-Manceau, A., Pradier, E., Tremblin, G.: Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress.-J. Plant Physiol. 161: 25-33, 2004. Go to original source...
  37. Naidoo, G., Kift, J.: Responses of the saltmarsh rush Juncus kraussii to salinity and waterlogging.-Aquat. Bot. 84: 217-225, 2006. Go to original source...
  38. Naidu, S.L., Long, S.P.: Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: an in vivo analysis.-Planta 220: 145-155, 2004.
  39. Neales, T.F., Fraser, M.S., Roksandic, Z.: Carbon isotope composition of the halophyte Disphyma clavellatum (Haw.) Chinnock (Aizoaceae), as affected by salinity.-Aust. J. Plant Physiol. 10: 437-444, 1983.
  40. Nieva, F.J.J., Castellanos, E.M., Figueroa, M.E., Gil, F.: Gas exchange and chlorophyll fluorescence of C3 and C4 saltmarsh species.-Photosynthetica 36: 397-406, 1999. Go to original source...
  41. Nieva, F.J.J., Castillo, J.M., Luque, C.J., Figueroa, M.E.: Ecophysiology of tidal and non-tidal populations of the invading cordgrass Spartina densiflora: seasonal and diurnal patterns in a Mediterranean climate.-Estuar. coast. Shelf Sci. 57: 919-928, 2003. Go to original source...
  42. Oberhuber, W., Dai, Z.-Y., Edwards, G.E.: Light dependence of quantum yields of Photosystem II and CO2 fixation in C3 and C4 plants.-Photosynth. Res. 35: 265-274, 1993. Go to original source...
  43. Oberhuber, W., Edwards, G.E.: Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants.-Plant Physiol. 101: 507-512, 1993. Go to original source...
  44. Odum, E.P., Fanning, M.E.: Comparison of the productivity of Spartina alterniflora and Spartina cynosuroides in Georgia coastal marshes.-Bull. Georgia Acad. Sci. 31: 1-12, 1973.
  45. Pennings, S.C., Bertness, M.D.: Salt marsh communities.-In: Bertness, M.D., Gaines, S.D., Hay, M.E. (ed.): Marine Community Ecology. Pp. 289-316. Sinauer Associates, Sunderland 2001.
  46. Ranjbarfordoei, A., Samson, R., van Damme, P.: Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl.-Photosynthetica 44: 513-522, 2006. Go to original source...
  47. Sandquist, D.R., Ehleringer, J.R.: Carbon isotope discrimination in the C4 shrub Atriplex confertifolia along a salinity gradient.-Gr. Basin Nat. 55: 135-141, 1995.
  48. Sixto, H., Aranda, I., Grau, J.M.: Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence.-Photosynthetica 44: 169-173, 2006. Go to original source...
  49. van Groenigen, J.-W., van Kessel, C.: Salinity-induced patterns of natural abundance carbon-13 and nitrogen-15 in plant and soil.-Soil Sci. Soc. Amer. J. 66: 489-498, 2002. Go to original source...
  50. Willmer, C.M.: Stomata.-Longman, London-New York 1983.
  51. Zhu, J., Meinzer, F.C.: Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress.-Aust. J. Plant Physiol. 26: 79-86, 1999.
  52. Zhu, J.-K.: Plant salt tolerance.-Trends Plant Sci. 6: 66-71, 2001. Go to original source...