Photosynthetica 2018, 56(4):1378-1386 | DOI: 10.1007/s11099-018-0832-6

Foliar exposure of grapevine (Vitis vinifera L.) to TiO2 nanoparticles under field conditions: Photosynthetic response and flavonol profile

P. Teszlák1, M. Kocsis2, A. Scarpellini3, G. Jakab1,2, L. Kőrösi1,*
1 Research Institute for Viticulture and Oenology, University of Pécs, Pécs, Hungary
2 Department of Plant Biology, University of Pécs, Pécs, Hungary
3 Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genova, Italy

In the past decade, utilization of nanostructured materials has increased intensively in a wide range of applications. Titanium dioxide nanoparticles (TiO2 NPs), for instance, can be applied for the inactivation of various pathogens through photo-induced generation of reactive oxygen species. Although TiO2 NPs with high antimicrobial activity are of great importance, in practice, their phytotoxic effects have not yet been fully clarified. In this study, we investigated the potential phytotoxicity of TiO2 NPs on grapevine (Vitis vinifera L.) under field conditions. After foliar exposure, two particularly stress-sensitive parameters, photosynthetic function and the flavonol profile, were examined. Micro- and macroelement composition of the leaves was also studied by ICP-AES measurements. We found that TiO2 NPs significantly decreased the net CO2 assimilation and increased stomatal conductance, indicating metabolic (nonstomatal) inhibition of the photosynthesis. The lower electron transport rate and lower nonphotochemical quenching in treated leaves are indicative of diminished photoprotective processes.

Keywords: chlorophyll fluorescence; flavonols; grapevine; macroelement; nanotoxicity; photosynthesis; titanium dioxide

Received: September 24, 2017; Accepted: January 15, 2018; Prepublished online: December 1, 2018; Published: November 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Teszlák, P., Kocsis, M., Scarpellini, A., Jakab, G., & Kőrösi, L. (2018). Foliar exposure of grapevine (Vitis vinifera L.) to TiO2 nanoparticles under field conditions: Photosynthetic response and flavonol profile. Photosynthetica56(4), 1378-1386. doi: 10.1007/s11099-018-0832-6.
Download citation

Supplementary files

Download filephs-201804-0044_S1.pdf

File size: 465.79 kB

References

  1. Amtmann A., Blatt M.R.: Regulation of macronutrient transport.-New Phytol. 181: 35-52, 2009. Go to original source...
  2. Andelkovic M., Radovanovic B., Andelkovic A.M. et al.: Phenolic compounds and bioactivity of healthy and infected grapevine leaf extracts from red varieties Merlot and Vranac (V. vinifera L.).-Plant Food. Hum. Nutr. 70: 317-323, 2015. Go to original source...
  3. Burke D.J., Zhu S., Pablico-Lansigan M.P., Hewins et al.: Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance.-Biol. Fertil. Soils 50: 1169-1173, 2014. Go to original source...
  4. Carp O., Huisman C.L., Reller A.: Photoinduced reactivity of titanium dioxide.-Prog. Solid State Ch. 32: 33-177, 2004. Go to original source...
  5. Castiglione M.R., Giorgetti L., Geri C. et al.: The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L.-J. Nanopart. Res. 13: 2443-2449, 2011. Go to original source...
  6. Chacón J.L., García E., Martínez J. et al.: Impact of the vine water status on the berry and seed phenolic composition of 'Merlot' (Vitis vinifera L.) cultivated in a warm climate: Consequence for the style of wine.-Vitis 48: 7-9, 2009.
  7. Du W., Sun Y., Ji R. et al.: TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil.-J. Environ. Monit. 13: 822-828, 2011. Go to original source...
  8. Fadeel B., Pietroiusti A., Shvedova A. (ed.): Adverse Effects of Engineered Nanomaterials. Exposure, Toxicology, and Impact on Human Health. Pp. 468. Elsevier Academic Press, New York 2017.
  9. Flamini R., Traldi P.: Grape and wine polyphenols.-In: Desiderio D.M., Nibbering N.M.M. (ed.): Mass Spectrometry in Grape and Wine Chemistry. Pp. 163-214. Wiley & Sons Inc., Hoboken 2010. Go to original source...
  10. Flexas J., Bota J., Escalona J.M. et al.: Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations.-Funct. Plant Biol. 29: 461-471, 2002. Go to original source...
  11. Flexas J., Scoffoni C., Gago J. et al.: Leaf mesophyll conductance and leaf hydraulic conductance: An introduction to their measurement and coordination.-J. Exp. Bot. 64: 3965-3981, 2013. Go to original source...
  12. Gao J., Xu G., Qian H. et al.: Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings.-Environ. Pollut. 176: 63-70, 2013. Go to original source...
  13. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  14. Hashimoto K., Irie H., Fujishima A.: TiO2 photocatalysis: A historical overview and future prospects.-Jpn. J. Appl. Phys. 44: 8269-8285, 2005. Go to original source...
  15. Hernández I., Alegre L., van Breusegem F. et al.: How relevant are flavonoids as antioxidants in plants?-Trends Plant Sci. 14: 125-132, 2009. Go to original source...
  16. Iacono F., Buccela A., Peterlunger E.: Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines.-Sci. Hortic.-Amsterdam 75: 27-39, 1998.
  17. Jacob D.L., Borchardt J.D., Navaratnam L. et al.: Uptake and translocation of Ti from nanoparticles in crops and wetland plants.-Int. J. Phytoremediat. 15: 142-153, 2013. Go to original source...
  18. Keller M.: The Science of Grapevines: Anatomy and Physiology. Pp. 1-377. Academic Press Elsevier, New York 2010. Go to original source...
  19. Kim T.H., Böhmer M., Hu H. et al.: Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling.-Annu. Rev. Plant Biol. 61: 561-591, 2010. Go to original source...
  20. Khan M.N., Mobin M., Abbas Z.K. et al.: Role of nanomaterials in plants under challenging environments.-Plant Physiol. Bioch. 110: 194-209, 2017. Go to original source...
  21. Korösi L., Dömötör D., Beke S. et al.: Antibacterial activity of nanocrystalline TiO2(B) on multiresistant Klebsiella pneumoniae strains.-Sci. Adv. Mater. 5: 1184-1192, 2013. Go to original source...
  22. Korösi L., Prato M., Scarpellini A. et al.: H2O2-assisted photocatalysis on flower-like rutile TiO2 nanostructures: Rapid dye degradation and inactivation of bacteria.-Appl. Surf. Sci. 365: 171-179, 2016. Go to original source...
  23. Larue C., Castillo-Michel H., Sobanska S. et al.: Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure.-J. Hazard. Mater. 273: 17-26, 2014. Go to original source...
  24. Lorenzo M.N., Taboada J.J., Lorenzo J.F., Ramos A.M.: Influence of climate on grape production and wine quality in the Rías Baixas, north-western Spain.-Reg. Environ. Change 13: 887-896, 2012.
  25. Maxwell K., Johnson G.N.: Chlorophyll fluorescence-a practical guide.-J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  26. Medrano H., Bota J., Abadía A. et al.: Effects of drought on lightenergy dissipation mechanisms in high-light-acclimated, fieldgrown grapevines.-Funct. Plant Biol. 29: 1197-1207, 2002.
  27. Medrano H., Tomás M., Martorell S. et al.: From leaf to wholeplant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target.-Crop J. 3: 220-228, 2015. Go to original source...
  28. Ohtani B., Prieto-Mahaney O.O., Li D. et al.: What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test.-J. Photoch. Photobio. A 216: 179-182, 2010. Go to original source...
  29. Qi M., Liu Y., Li T.: Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress.-Biol. Trace Elem. Res. 156: 323-328, 2013. Go to original source...
  30. Raliya R., Biswas P., Tarafdar J.C.: TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.).-Biotechnol. Rep. 5: 22-26, 2015. Go to original source...
  31. Servin A.D., Morales M.I., Castillo-Michel H. et al.: Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain.-Environ. Sci. Technol. 47: 11592-11598, 2013. Go to original source...
  32. Song U., Shin M., Lee G. et al.: Functional analysis of TiO2 nanoparticle toxicity in three plant species.-Biol. Trace Elem. Res. 155: 93-103, 2013. Go to original source...
  33. Taware P.B., Dhumal K.N., Oulkar D.P. et al.: Phenolic alterations in grape leaves, berries and wines due to foliar and cluster powdery mildew infections.-Int. J. Pharm. Biol. Sci. 1: 1-14, 2010.
  34. Teszlák P., Kocsis M., Gaál K. et al.: Regulatory effects of exogenous gibberellic acid (GA3) on water relations and CO2 assimilation among grapevine (Vitis vinifera L.) cultivars.-Sci. Hortic.-Amsterdam 159: 41-51, 2013.
  35. Tomás M., Medrano H., Escalona J.M. et al.: Variability of water use efficiency in grapevines.-Environ. Exp. Bot. 103: 148-157, 2014. Go to original source...
  36. Tortosa I., Escalona J.M., Bota J. et al.: Exploring the genetic variability in water use efficiency: Evaluation of inter and intra cultivar genetic diversity in grapevines.-Plant Sci. 251: 35-43, 2016. Go to original source...
  37. von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.-Planta 153: 376-387, 1981. Go to original source...
  38. Weir A., Westerhoff P., Fabricius L. et al.: Titanium dioxide nanoparticles in food and personal care products.-Environ. Sci. Technol. 46: 2242-2250, 2012. Go to original source...
  39. Yokel R.A. MacPhail R.C.: Engineered nanomaterials: exposures, hazards, and risk prevention.-J. Occup. Med. Toxicol. 6: 7, 2011.
  40. Yu J., Yu H., Cheng B. et al.: Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment.-J. Mol. Catal. A-Chem. 253: 112-118, 2006.
  41. Ze Y., Liu C., Wang L. et al.: The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana.-Biol. Trace Elem. Res. 143: 1131-1141, 2011. Go to original source...
  42. Zhao Y., Zhang Z., Feng W. (ed.): Toxicology of Nanomaterials. Pp. 407. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2016.
  43. Zhou R., Su W.H., Zhang G.F. et al.: Relationship between flavonoids and photoprotection in shade-developed Erigeron breviscapus transferred to sunlight.-Photosynthetica 54: 201-209, 2016. Go to original source...