Photosynthetica 2019, 57(1):248-257 | DOI: 10.32615/ps.2019.036

Interactive effects of temperature and phosphorus nutrition on soybean: leaf photosynthesis, chlorophyll fluorescence, and nutrient efficiency

S.K. SINGH1,2, V.R. REDDY1, D.H. FLEISHER1, D.J. TIMLIN1
1 Adaptive Cropping Systems Laboratory, USDA-ARS, Beltsville, MD, USA
2 School of Environmental and Forest Sciences, University of Washington, WA, USA

An experiment was conducted to assess interactive effects of temperature (22, 26, 30, and 34°C daily mean T) and phosphorus (P) fertilization (sufficient, 0.5 mM, and deficient, 0.08 mM P) on soybean physiological traits. The P deficiency decreased leaf P concentration over approximately 50% across temperature regimes. However, a marked decrease in physiological traits under P deficiency was primarily observed below and at optimum temperature (26°C) but not at warmer temperatures. This resulted in a significant P × T interaction for parameters such as net photosynthetic rate (PN), stomatal conductance, quantum yield of PSII (ΦPSII), and SPAD value. A combination of photo-biochemical parameters (e.g., ΦPSII, carboxylation capacity, SPAD value), improved CO2 diffusion processes due to unaffected or reduced mesophyll or stomatal limitation, and higher tissue P utilization efficiency appeared to overcome limitations to PN imposed by P deficiency at warmer temperatures.

Keywords: chlorophyll fluorescence; compensation; coregulation; nutrient utilization efficiency; optimum temperature.

Received: April 5, 2017; Accepted: September 12, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SINGH, S.K., REDDY, V.R., FLEISHER, D.H., & TIMLIN, D.J. (2019). Interactive effects of temperature and phosphorus nutrition on soybean: leaf photosynthesis, chlorophyll fluorescence, and nutrient efficiency. Photosynthetica57(1), 248-257. doi: 10.32615/ps.2019.036.
Download citation

References

  1. Baker J.T., Kim S.H., Gitz D.C. et al.: A method for estimating carbon dioxide leakage rates in controlled-environment chambers using nitrous oxide. - Environ. Exp. Bot. 51: 103-110, 2004. Go to original source...
  2. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo - Plant Physiol. 130: 1992-1998, 2002.
  3. Bown H.E., Watt M.S., Mason E.G. et al.: The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata. - Tree Physiol. 29: 1143-1151, 2009. Go to original source...
  4. Bunce J.A.: Use of the response of photosynthesis to oxygen to estimate mesophyll conductance to carbon dioxide in water-stressed soybean leaves. - Plant Cell Environ. 32: 875-881, 2009. Go to original source...
  5. Campbell W.J., Allen J.L.H., Bowes G.: Response of soybean canopy photosynthesis to CO2 concentration, light, and temperature. - J. Exp. Bot. 41: 427-433, 1990. Go to original source...
  6. Cassman K.G., Whitney A.S., Fox R.L.: Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition. - Agron. J. 73: 17-22, 1981. Go to original source...
  7. Cordell D., Drangert J.-O., White S.: The story of phosphorus: Global food security and food for thought. - Global Environ. Chang. 19: 292-305, 2009. Go to original source...
  8. Cure J.D., Rufty T.W., Israel D.W.: Phosphorus stress effects on growth and seed yield responses of nonnodulated soybean to elevated carbon dioxide. - Agron. J. 80: 897-902, 1988. Go to original source...
  9. Edwards G.E., Baker N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? - Photosynth. Res. 37: 89-102, 1993. Go to original source...
  10. Fleisher D.H., Timlin D.J., Yang Y. et al.: Uniformity of soil-plant-atmosphere-research chambers. - T. ASABE 52: 1721-1731, 2009. Go to original source...
  11. Fleisher D.H., Wang Q., Timlin D.J. et al.: Response of potato gas exchange and productivity to phosphorus deficiency and carbon dioxide enrichment. - Crop Sci. 52: 1803-1815, 2012.
  12. Geiger D.R., Servaites J.C.: Diurnal regulation of photosynthetic carbon metabolism in C3 plants. - Annu. Rev. Plant Phys. 45: 235-256, 1994. Go to original source...
  13. Grassi G., Magnani F.: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. - Plant Cell Environ. 28: 834-849, 2005. Go to original source...
  14. Hartman, G.L., West, E.D., Herman, T.K.: Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. - Food Sec. 3: 5-17, 2011. Go to original source...
  15. Hewitt E.J.: Sand and Water Culture Methods Used in the Study of Plant Nutrition. Tech. Comm. 22. Pp. 187-190. Commonwealth Bureau of Horticulture and Plantation Crops. Bucks, Commonwealth Agricultural Bureau Farnham Royal, Maidstone, Kent. Bucks 1952.
  16. Hidaka A., Kitayama K.: Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. - J. Ecol. 97: 984-991, 2009. Go to original source...
  17. Hikosaka K., Ishikawa K., Borjigidai A. et al.: Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. - J. Exp. Bot. 57: 291-302, 2006. Go to original source...
  18. Israel D.W., Rufty T.W.: Influence of phosphorus nutrition on phosphorus and nitrogen utilization efficiencies and associated physiological responses in soybean. - Crop Sci. 28: 954-960, 1988. Go to original source...
  19. Jacob J., Lawlor D.W.: Extreme phosphate deficiency decreases the in vivo CO2/O2 specificity factor of ribulose 1,5-bisphosphate carboxylase-oxygenase in intact leaves of sunflower. - J. Exp. Bot. 44: 1635-1641, 1993. Go to original source...
  20. Jin J., Wang G., Liu X. et al.: Interaction between phosphorus nutrition and drought on grain yield, and assimilation of phosphorus and nitrogen in two soybean cultivars differing in protein concentration in grains. - J. Plant Nutr. 29: 1433-1449, 2006. Go to original source...
  21. Jones H.G.: Partitioning stomatal and non-stomatal limitations to photosynthesis. - Plant Cell Environ. 8: 95-104, 1985. Go to original source...
  22. Kim S.-H., Gitz D.C., Sicher R.C. et al.: Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. - Environ. Exp. Bot. 61: 224-236, 2007. Go to original source...
  23. Koerselman W., Meuleman A.F.M.: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. - J. Appl. Ecol. 33: 1441-1450, 1996. Go to original source...
  24. Koti S., Reddy K.R., Kakani V.G. et al.: Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development. - Environ. Exp. Bot. 60: 1-10, 2007. Go to original source...
  25. Lobell D.B., Asner G.P.: Climate and management contributions to recent trends in U.S. agricultural yields. - Science 299: 1032, 2003. Go to original source...
  26. Manoj K., Swarup A., Patra A.K. et al.: Effect of elevated CO2 and temperature on phosphorus efficiency of wheat grown in an inceptisol of subtropical India. - Plant Soil Environ. 58: 230-235, 2012. Go to original source...
  27. Marschner H.: Mineral Nutrition of Higher Plants. 2nd ed. Pp. 265-276. Academic Press, Orland 1995.
  28. Martineau J.R., Williams J.H., Specht J.E.: Temperature tolerance in soybean. II. Evaluation of segregating populations for membrane thermostability. - Crop Sci. 19: 79-81, 1979. Go to original source...
  29. Maxwell K., Johnson G.N.: Chlorophyll fluorescence: A practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  30. Mitchell R.A.C., Mitchell V.J., Driscoll S.P. et al.: Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. - Plant Cell Environ. 16: 521-529, 1993. Go to original source...
  31. Mittler R.: Abiotic stress, the field environment and stress combination. - Trends Plant Sci. 11: 15-19, 2006. Go to original source...
  32. Murakami Y., Tsuyama M., Kobayashi Y. et al.: Trienoic fatty acids and plant tolerance of high temperature. - Science 287: 476-479, 2000.
  33. Oberhuber W., Edwards G.E.: Temperature dependence of the linkage of quantum yield of Photosystem II to CO2 fixation in C4 and C3 plants. - Plant Physiol. 101: 507-512, 1993. Go to original source...
  34. Ort D.R., Baker N.R.: A photoprotective role for O2 as an alternative electron sink in photosynthesis? - Curr. Opin. Plant Biol. 5: 193-198, 2002. Go to original source...
  35. Plank C.O.: Plant Analysis Reference Procedures for the Southern Region of the United States: Southern Cooperative Series Bulletin #368. Pp. 68. University of GA., Athens, GA 1992.
  36. Rogers G.S., Payne L., Milham P., Conroy J.: Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO2 concentrations. - Plant Soil 155: 231-234, 1993. Go to original source...
  37. Römheld V., Kirkby E.: Research on potassium in agriculture: needs and prospects. - Plant Soil 335: 155-180, 2010. Go to original source...
  38. Rosenthal D.M., Ruiz-Vera U.M., Siebers M.H. et al.: Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions. - Plant Sci. 226: 136-146, 2014. Go to original source...
  39. Ruiz-Vera U.M., Siebers M., Gray S.B. et al.: Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the midwestern united states. - Plant Physiol. 162: 410-423, 2013. Go to original source...
  40. Sanglard L.M.V.P., Martins S.C.V., Detmann K.C. et al.: Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. - Physiol. Plantarum 152: 355-366, 2014. Go to original source...
  41. Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. - Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  42. Sinclair T.R.: Mineral nutrition and plant growth response to climate change. - J. Exp. Bot. 43: 1141-1146, 1992. Go to original source...
  43. Singh S.K., Reddy V.R., Fleisher H.D., Timlin J.D.: Growth, nutrient dynamics, and efficiency responses to carbon dioxide and phosphorus nutrition in soybean. - J. Plant Int. 9: 838-849, 2014. Go to original source...
  44. Singh S.K., Reddy V.R.: Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration. - J. Photochem. Photobio. B 151: 276-284, 2015. Go to original source...
  45. Singh S.K., Reddy V.R.: Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus stressed soybean across CO2. - Physiol. Plantarum 157: 234-254, 2016. Go to original source...
  46. Singh S.K., Reddy V.R.: Co-regulation of photosynthetic processes under potassium deficiency across CO2 levels in soybean: mechanisms of limitations and adaptations. - Photosynth. Res. 137: 183-200, 2018. Go to original source...
  47. Sionit N., Strain B.R., Flint E.P.: Interaction of temperature and CO2 enrichment on soybean: Photosynthesis and seed yield. - Can. J. Plant Sci. 67: 629-636, 1987. Go to original source...
  48. Staswick P.E., Huang J.-F., Rhee Y.: Nitrogen and methyl jasmonate induction of soybean vegetative storage protein genes. - Plant Physiol. 96: 130-136, 1991. Go to original source...
  49. Stocker T.F., Qin D., Plattner G-K. et al. (ed.): IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 1535. Cambridge University Press, Cambridge and New York 2013.
  50. Suriyagoda L.D.B., Ryan M.H., Renton M., Lambers H.: Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species. - Ann. Bot.-London 110: 959-968, 2012. Go to original source...
  51. Taiz L., Zeiger E., Møller I.M., Murphy A.: Plant Physiology and Development. Pp. 761. Sinauer Associates, Inc., Sunderland 2014.
  52. Taub D.: Effects of rising atmospheric concentrations of carbon dioxide on plants. - Nat. Educ. Knowledge 3: 21, 2010.
  53. Timlin D.J., Naidu T.C.M., Fleisher D.H., Reddy V.R.: Quantitative effects of phosphorus on maize canopy photosynthesis and biomass. - Crop Sci. 57: 3156-3169, 2017. Go to original source...
  54. van Kooten O., Snel F.H.J.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  55. Walker W.M., Raines G.A., Peck T.R.: Effect of soybean cultivar, phosphorus and potassium upon yield and chemical composition. - J. Plant Nutr. 8: 73-87, 1985. Go to original source...
  56. Warren C.R.: Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2? A test with Eucalyptus regnans. - Tree Physiol. 28: 11-19, 2008. Go to original source...
  57. Warren C.R.: How does P affect photosynthesis and metabolite profiles of Eucalyptus globulus? - Tree Physiol. 31: 727-739, 2011. Go to original source...
  58. Xu G., Singh S.K., Reddy V.R. et al.: Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: Varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. - J. Plant Physiol. 205: 20-32, 2016. Go to original source...
  59. Zheng G., Tian B., Zhang F. et al.: Plant adaptation to frequent alterations between high and low temperatures: remodeling of membrane lipids and maintenance of unsaturation levels. - Plant Cell Environ. 34: 1431-1442, 2011. Go to original source...