Photosynthetica 2017, 55(3):478-490 | DOI: 10.1007/s11099-016-0661-4

Ozone sensitivity of four Pakchoi cultivars with different leaf colors: physiological and biochemical mechanisms

L. Zhang1,*, S. Xiao1, Y. J. Chen1, H. Xu2, Y. G. Li2, Y. W. Zhang1, F. S. Luan1
1 College of Horticulture, Northeast Agricultural University, Harbin, China
2 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China

Ozone (O3) is important air pollutant inducing severe losses of horticultural production. Cultivars of the same species, but with different leaf colors, may differ in their ozone sensitivity. However, it has not been clarified yet if different leaf coloration influences such a sensitivity. In this study, two purple-leafed and two green-leafed cultivars of Pakchoi were selected for ozone fumigation (240 ± 20 nmol mol-1, 09:00-16:00 h). Elevated O3 decreased chlorophyll content, increased anthocyanin (Ant) content, damaged cell membrane integrity, enhanced antioxidative enzyme activities, depressed photosynthetic rate (P N) and stomatal conductance (g s), inhibited maximal quantum yield (Fv/Fm) and effective quantum yield [YII] of PSII photochemistry, and caused visible injury. Purple-leafed cultivars with higher Ant contents were more tolerant than green-leafed cultivars as indicated by lower relative enhancement in malondialdehyde content and lower relative losses in P N, g s, Fv/Fm, and YII. The higher ability to synthesize Ant in the purple-leafed cultivars contributed to their higher photoprotective ability.

Keywords: chlorophyll a fluorescence; gas exchange; photoinhibition

Received: February 17, 2016; Accepted: August 23, 2016; Published: September 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhang, L., Xiao, S., Chen, Y.J., Xu, H., Li, Y.G., Zhang, Y.W., & Luan, F.S. (2017). Ozone sensitivity of four Pakchoi cultivars with different leaf colors: physiological and biochemical mechanisms. Photosynthetica55(3), 478-490. doi: 10.1007/s11099-016-0661-4.
Download citation

References

  1. Abassi N.A., Kushad M.M., Endress A.G.: Active oxygen scavenging enzymes activities in developing apple flowers and fruits.-Sci. Hortic.-Amsterdam 74: 183-194, 1998.
  2. Ashmore M.: Assessing the future global impacts of ozone on vegetation.-Plant Cell Environ. 28: 949-964, 2005. Go to original source...
  3. Bender J., Weigel H.J., Wegner U. et al.: Response of cellular antioxidants to ozone in wheat flag leaves at different stages of plant development.-Environ. Pollut. 84: 15-21, 1994. Go to original source...
  4. Biswas D.K., Xu H., Li Y.G. et al.: Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives.-J. Exp. Bot. 59: 951-963, 2008. Go to original source...
  5. Black V.J., Stewart C.A., Roberts J.A. et al.: Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin Fast Plants).-New Phytol. 176: 150-163, 2007. Go to original source...
  6. Booker F., Muntifering R., McGrath M. et al.: The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species.-J. Integr. Plant Biol. 51: 337-351, 2009. Go to original source...
  7. Bortolin R.C., Caregnato F.F., Divan A.M. et al.: Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum.-Ecotox. Environ. Safe. 100:114-121, 2014. Go to original source...
  8. Bussotti F., Schaub M., Cozzi A. et al.: Assessment of ozone visible symptoms in the field: perspectives of quality control.-Environ. Pollut. 125: 81-89, 2003. Go to original source...
  9. Calatayud A., Barreno E.: Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation.-Plant Physiol. Bioch. 42: 549-555, 2004. Go to original source...
  10. Cao X.C., Wu L.H., Yuan L. et al.: Uptake and uptake kinetics of nitrate, ammonium and glycine by pakchoi seedlings (Brassica Campestris L. ssp. Chinensis L. Makino).-Sci. Hortic.-Amsterdam 186: 247-253, 2015.
  11. Castagna A., Ranieri A.: Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment.-Environ. Pollut. 157: 1461-1469, 2009. Go to original source...
  12. Contran N., Poletti E., Manning W.J. et al.: Ozone sensitivity and ethylenediurea protection in ash trees assessed by JIP chlorophyll a fluorescence transient analysis.-Photosynthetica 47: 68-78, 2009. Go to original source...
  13. De Bock M., Ceulemans R., Horemans N. et al.: Photosynthesis and crop growth of spring oilseed rape and broccoli under elevated tropospheric ozone.-Environ. Exp. Bot. 82: 28-36, 2012. Go to original source...
  14. Díaz-Vivancos P., Clemente-Moreno M.J., Rubio M. et al.: Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus.-J. Exp. Bot. 59: 2147-2160, 2008. Go to original source...
  15. Feild T.S., Lee D.W., Holbrook N.M.: Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of redosier dogwood.-Plant Physiol. 127: 566-574, 2001. Go to original source...
  16. Feng Z., Sun J., Wan W. et al.: Evidence of widespread ozoneinduced visible injury on plants in Beijing, China.-Environ. Pollut. 193: 296-301, 2014. Go to original source...
  17. Foyer C.H., Lelandais M., Kunert K.J.: Photooxidative stress in plants.-Physiol. Plantarum 92: 696-717, 1994. Go to original source...
  18. Gould K.S., Neill S.O., Vogelmann T.C.: A unified explanation for anthocyanins in leaves?-Adv. Bot. Res. 37: 167-192, 2002.
  19. Gould K.S.: Nature's Swiss army knife: the diverse protective roles of anthocyanins in leaves.-J. Biomed. Biotechnol. 2004: 314-320, 2004. Go to original source...
  20. Guidi L., Di Cagno R., Soldatini G.F.: Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence.-Environ. Pollut. 107: 349-355, 2000. Go to original source...
  21. Hao Z., Chang J., Xu Z.: [Plant Physiology Experiment.] Pp. 106-108. Harbin Inst. Technol. Press, Harbin 2004 [In Chinese]
  22. Hayes F., Jones M.L.M., Mills G. et al.: Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone.-Environ. Pollut. 146: 754-762, 2007. Go to original source...
  23. Hughes N.M., Smith W.K.: Attenuation of incident light in Galax urceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection.-Am. J. Bot. 94: 784-790, 2007. Go to original source...
  24. Inada H., Kondo T., Akhtar N. et al: Relationship between cultivar difference in the sensitivity of net photosynthesis to ozone and reactive oxygen species scavenging system in Japanese winter wheat (Triticum aestivum).-Physiol. Plantarum 146: 217-227, 2012. Go to original source...
  25. Kefauver S.C., Peñuelas J., Ribas A. et al: Using Pinus uncinata to monitor tropospheric ozone in the Pyrenees.-Ecol. Indic. 36: 262-271, 2014. Go to original source...
  26. Li Y., Li C., Zheng Y. et al.: Cadmium pollution enhanced ozone damage to winter wheat: biochemical and physiological evidences.-J. Environ. Sci. 23: 255-265, 2011. Go to original source...
  27. Li Y., Song Y.P., Shi G.J. et al.: Response of antioxidant activity to excess copper in two cultivars of Brassica campestris ssp. chinensis Makino.-Acta Physiol. Plant. 31: 155-162, 2009.
  28. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.-Methods Enzymol. 148: 350-382, 1987. Go to original source...
  29. Lin Z., Li S., Chang D. et al.: [The changes of pigments, phenolics contents and activities of polyphenol oxidase and phenylalanine ammonia-lyse in pericarp of postharvest litchi fruit.]-Acta Bot. Sin. 30: 40-45, 1988. [In Chinese]
  30. Liu S., Dong Y., Xu L. et al.: Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings.-Plant Growth Regul. 73: 67-78, 2014. Go to original source...
  31. Overmyer K., Brosché M., Kangasjärvi J.: Reactive oxygen species and hormonal control of cell death.-Trends Plant Sci. 8: 335-342, 2003. Go to original source...
  32. Owens TG.: In vivo chlorophyll fluorescence as a probe of photosynthetic physiology.-In: Alscher R.G., Wellburn A.R. (ed.): Plant Responses to the Gaseous Environment. Pp. 195-217. Chapman & Hall, London 1994. Go to original source...
  33. Paoletti E., Schaub M., Matyssek R. et al.: Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.-Environ. Pollut. 158: 1986-1989, 2010. Go to original source...
  34. Pleijel H., Danielsson H.: Growth of 27 herbs and grasses in relation to ozone exposure and plant strategy.-New Phytol. 135: 361-367, 1997. Go to original source...
  35. Royal Society: Ground-level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications.-Science Policy, Report. 1508, 2008.
  36. Rozpadek P., Nosek M., Slesak I. et al.: Ozone fumigation increases the abundance of nutrients in Brassica vegetables: broccoli (Brassica oleracea var. italica) and Chinese cabbage (Brassica pekinensis).-Eur. Food Res. Technol. 240: 459-462, 2015. Go to original source...
  37. Ryang S.Z., Woo S.Y., Kwon S.Y. et al.: Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone.-Photosynthetica 47: 19-25, 2009. Go to original source...
  38. Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview.-In: Papageorgiou G.C., (ed.): Chlorophyll a Fluorescence. A Signature of Photosynthesis. Pp. 279-319. Springer, Dordrecht 2004. Go to original source...
  39. Singh P., Singh S., Agrawal S.B. et al.: Assessment of the interactive effects of ambient O3 and NPK levels on two tropical mustard varieties (Brassica campestris L.) using opentop chambers.-Environ. Monit. Assess. 184: 5863-5874, 2012. Go to original source...
  40. Singh S., Bhatia A., Tomer R. et al.: Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.).-Environ. Monit. Assess. 185: 6517-6529, 2013. Go to original source...
  41. Syeed S., Anjum N.A., Nazar R. et al.: Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance.-Acta Physiol. Plant. 33: 877-886, 2011. Go to original source...
  42. Takahashi M.A., Asada K.: Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids.-Arch. Biochem. Biophys. 226: 558-566, 1983. Go to original source...
  43. Thwe A.A., Vercambre G., Gautier H. et al.: Dynamic shoot and root growth at different developmental stages of tomato (Solanum lycopersicum Mill.) under acute ozone stress.-Sci. Hortic.-Amsterdam 150: 317-325, 2013.
  44. Tripathi R., Agrawal S.B.: Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters.-Ecotox. Environ. Safe. 85: 1-12, 2012. Go to original source...
  45. Vandermeiren K., De Bock M., Horemans N. et al.: Ozone effects on yield quality of spring oilseed rape and broccoli.-Atmos. Environ. 47: 76-83, 2012. Go to original source...
  46. von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.-Planta 153: 376-387, 1981. Go to original source...
  47. Wang X., Zheng Q., Feng Z. et al.: Comparison of a diurnal vs steady-state ozone exposure profile on growth and yield of oilseed rape (Brassica napus L.) in open-top chambers in the Yangtze Delta, China.-Environ. Pollut. 156: 449-453, 2008. Go to original source...
  48. Weber J.A., Clark C.S., Hogsett W.E.: Analysis of the relationships among O3 uptake, conductance, and photosynthesis in needles of Pinus ponderosa.-Tree Physiol. 13: 157-172, 1993. Go to original source...
  49. Whaley A., Sheridan J., Safari S. et al.: RNA-seq analysis reveals genetic response and tolerance mechanisms to ozone exposure in soybean.-BMC Genomics 16: 426, 2015. Go to original source...
  50. Xu H., Chen S.B., Biswas D.K. et al.: Photosynthetic and yield responses of an old and a modern winter wheat cultivars to short-term ozone exposure.-Photosynthetica 47: 247-254, 2009. Go to original source...
  51. Yang Y., Shi R., Wei X. et al.: Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr.-Plant Cell Tiss. Organ Cult. 102: 387-395, 2010. Go to original source...
  52. Zhang L., Xu H., Yang J.C. et al.: Photosynthetic characteristics of diploid honeysuckle (Lonicera japonica Thumb.) and its autotetraploid cultivar subjected to elevated ozone exposure.-Photosynthetica 48: 87-95, 2010. Go to original source...