Photosynthetica 2018, 56(2):616-622 | DOI: 10.1007/s11099-017-0702-7

Effects of exogenous phenolic acids on photosystem functions and photosynthetic electron transport rate in strawberry leaves

X. F. Lu1, H. Zhang1, S. S. Lyu1, G. D. Du1,2,*, X. Q. Wang1,2, C. H. Wu1, D. G. Lyu1,2
1 College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning Province, China
2 Research Laboratory for Breeding and Physiology-Ecology of Northern Fruit Tree, Shenyang Agricultural University, Liaoning Province, Shenyang, China

Our study investigated the physiological and biochemical basis for the effects of exogenous phenolic acids on the function of the photosynthetic apparatus and photosynthetic electron transport rate in strawberry seedlings. Potted seedlings of the strawberry (Fragaria × ananassa Duch.) were used. Syringic acid inhibited net photosynthetic rate and water-use efficiency decreased. Additionally, primary quinone electron acceptor of the PSII reaction centre, the PSII reaction centre and the oxygen evolving complex were also impaired. Both the maximum quantum yield of the PSII primary photochemistry and the performance index on absorption basis were depressed, resulting in reduced function of the photosynthetic electron transport chain. Otherwise, low phthalic acid concentrations enhanced photosynthetic capacity, while high concentrations showed opposite effects. Syringic acid exhibited a higher toxic effect than that of phthalic acid which was more evident at higher concentrations.

Keywords: chlorophyll fluorescence; gas exchange; phenolic acid

Received: July 24, 2016; Accepted: January 7, 2017; Published: June 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lu, X.F., Zhang, H., Lyu, S.S., Du, G.D., Wang, X.Q., Wu, C.H., & Lyu, D.G. (2018). Effects of exogenous phenolic acids on photosystem functions and photosynthetic electron transport rate in strawberry leaves. Photosynthetica56(2), 616-622. doi: 10.1007/s11099-017-0702-7.
Download citation

References

  1. Asaduzzaman M., Asao T.: Autotoxicity in beans and their allelochemicals. - Sci. Hortic.-Amsterdam 134: 26-31, 2012.
  2. Asao T., Kitazawa H., Ban T.: Electrodegradation of root exudates to mitigate autotoxicity in hydroponically grown strawberry (Fragaria × ananassa Duch.) plants. - HortSci. 43: 2034-2038, 2008. Go to original source...
  3. Blum A.: Drought resistance, water-use efficiency, and yield potential: are they compatible, dissonant, or mutually exclusive? - Aust. J. Agr. Res. 56: 1159-1168, 2005. Go to original source...
  4. Cao K.Q., Wang S.T.: Autotoxicity and soil sickness of strawberry (Fragaria × ananassa Duch.). - Allelopathy J. 20: 103-113, 2007.
  5. Einhelling F.A.: Allelopathy: Current Status and Future Goals. Pp. 1-24. Am. Chem. Soc. Press, Washington, D. C. 1995. Go to original source...
  6. Einhelling F.A., Rasmussen J.A., Schon M.K.: Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. - J. Chem. Ecol. 5: 815-824, 1979. Go to original source...
  7. Han C.M., Pan W.N., Wu N. et al.: Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. - Sci. Hortic.-Amsterdam 116: 330-336, 2008.
  8. Hiradate S., Morita S., Furubayashi A. et al.: Plant growth inhibition by Cis-cinnamoyl glucosides and Cis-cinnamic acid. - J. Chem. Ecol. 31: 591-601, 2005. Go to original source...
  9. Hu J.W., Zhu W.X., Xu N. et al.: [Effects of exogenous phenolic acids on growth and photosynthetic characteristics of mulberry seedlings.]. - Prat. Sci. 30: 1394-1400, 2013. [In Chinese]
  10. Huang X.X., Bie Z.L., Huang Y.: Identification of autotoxins in rhizosphere soils under the continuous cropping of cowpea. - Allelopathy J. 25: 383-392, 2010.
  11. Inderjit K.M., Duke S.O.: Ecophysiological aspects of allelopathy. - Planta 217: 529-539, 2003.
  12. Li H.S.: [Principles and Techniques of Plant Physiology and Biochemistry Experiment.] Pp. 118-119. Higher Educ. Press, Beijing 2006. [In Chinese]
  13. Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis. - Nature 429: 579-582, 2004. Go to original source...
  14. Schansker G., Srivastava A., Govindjee et al.: Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. - Funct. Plant Biol. 30: 785-796, 2003. Go to original source...
  15. Schutter M.E., Sandeno J.M., Dick R.P.: Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. - Biol. Fert. Soils. 34: 397-410, 2001.
  16. Sun H.Z., Lin C.B., Sun W.H. et al.: [Research progress of effect of light quality on crop photosynthesis.]. - J. Anhui Agri. Sci. 43: 14-16, 2015. [In Chinese]
  17. Tan C.H., Dai H.P., Lei J.J.: [Current situation and development trend of strawberry production and trade in the world.]. - World Agr. 3: 10-12, 2003. [In Chinese]
  18. Wang Y.F., Pan F.B., Zhang X.F. et al.: [Effects of phenolic acids on growth and photosynthetic characteristics of seedlings of Malus hupehensis.]. - Sci. Silvae Sin. 2: 53-59, 2015. [In Chinese]
  19. Yang C.M., Lee C.N., Chou C.H.: Effect of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: Inhibition of supply orientation. - Bot. Bull. Acad. Sin. 43: 299-304, 2002
  20. Yu J.H., Zhang Y., Niu C.X. et al.: [Effects of two kinds of allelochemicals on photosynthesis and chlorophyll fluorescence parameters of Solanum melongena L. seedlings.]. - Chin. J. Appl. Ecol. 17: 1629-1632, 2006. [In Chinese]
  21. Zhang K.M., Shen Y., Zhou X.Q. et al.: Photosynthetic electrontransfer reactions in the gametophyte of Pteris multifida reveal the presence of allelopathic interference from the invasive plant species Bidens pilosa. - J. Photoch. Photobio. B. 158: 81-88, 2016. Go to original source...
  22. Zhang Z.S., Jia Y.J., Gao H.Y. et al.: Characterization of PSI recovery after chilling. - induced photoinhibition in cucumber (Cucumis sativus L.) leaves. - Planta 234: 883-889, 2011. Go to original source...
  23. Zhen W.C.: [Study on the mechanism and control measures of strawberry replant disease]. - J. Hebei Agr. Univ., Baoding, 003. [In Chinese]