Photosynthetica 2019, 57(2):680-687 | DOI: 10.32615/ps.2019.044

The mechanism of starch content increase in grain of autotetraploid rice (Oryza sativa L.)

P.M. YANG1, X.R. ZHOU1, Q.C. HUANG2
1 Henan Institute of Science and Technology, 453003 Xinxiang, Henan, China
2 Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, 450052 Zhengzhou, Henan, China

Net photosynthetic rate (PN), photorespiration (PR), chlorophyll (Chl) content, Chl fluorescence parameters, starch accumulation, and related key enzyme activities were determined during the grain-filling stage in two autotetraploid lines and corresponding diploid rice lines. The results showed that autotetraploid rice lines had a higher Chl content, PN, electron transport rate, maximum photochemical efficiency of PSII, actual photochemical efficiency of PSII, and lower PR in leaves than that in corresponding diploid rice lines during the grain-filling stage. It indicated that autotetraploid rice line had a high photosynthetic capacity and high light-utilization efficiency. The activities of ADP-glucose pyrophosphorylase, soluble starch synthase, and starch-branching enzyme in grains of autotetraploid rice lines were higher than those in grains of corresponding diploid rice lines during the grain-filling stage. Therefore, autotetraploid rice lines were more efficient than corresponding diploid rice lines in converting photosynthetic products into starch.

Keywords: 1000-grain mass; breeding; colchicine; photoassimilate; polyploidy.

Received: October 3, 2018; Accepted: February 11, 2019; Prepublished online: May 14, 2019; Published: May 16, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
YANG, P.M., ZHOU, X.R., & HUANG, Q.C. (2019). The mechanism of starch content increase in grain of autotetraploid rice (Oryza sativa L.). Photosynthetica57(2), 680-687. doi: 10.32615/ps.2019.044.
Download citation

References

  1. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphe-noloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  2. Asaoka M., Okuno K., Sugimoto Y., Fuwa H.: Developmental changes in the structure of endosperm starch of rice (Oryza sativa L.). - Agr. Biol. Chem. Tokyo 49: 1973-1978, 1985.
  3. Awika J.M.: Major cereal grains production and use around the world. - In: Awika J.M., Piironen V., Bean S. (ed.): Advances in Cereal Science: Implications to Food Processing and Health Promotion. Pp. 1-13. American Chemical Society, Washington 2011. Go to original source...
  4. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  5. Ball S.G., van de Wal M.H.B.J., Visser R.G.F.: Progress in under-standing the biosynthesis of amylose. - Trends Plant Sci. 3: 462-467, 1998. Go to original source...
  6. Bauwe H., Hagemann M., Fernie A.R.: Photorespiration: players, partners and origin. - Trends Plant Sci. 15: 330-336, 2010. Go to original source...
  7. Birchler J.A., Auger D.L., Riddle N.C.: In search of the molecular basis of heterosis. - Plant Cell 15: 2236-2239, 2003. Go to original source...
  8. Butardo V.M., Fitzgerald M.A., Bird A.R. et al.: Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. - J. Exp. Bot. 62: 4927-4941, 2011. Go to original source...
  9. Chang H., Huang H.E., Cheng C.F. et al.: Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). - Transgenic Res. 26: 279-289, 2017. Go to original source...
  10. Dhawan O.P., Lavania U.C.: Enhancing the productivity of secondary metabolites via induced polyploidy: a review. - Euphytica 87: 81-89, 1996. Go to original source...
  11. Fan G., Wang L., Deng M. et al.: Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing. - Mol. Genet. Genomics 290: 1627-1638, 2015. Go to original source...
  12. Flipse E., Keetels C.J., Jacobsen E., Visser R.G.: The dosage effect of the wild-type GBSS allele is linear for GBSS activity but not for amylose content: absence of amylose has a distinct influence on the physico-chemical properties of starch. - Theor. Appl. Genet. 92: 121-127, 1996. Go to original source...
  13. Fujita N., Kubo A., Suh D.S. et al.: Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. - Plant Cell Physiol. 44: 607-618, 2003. Go to original source...
  14. Ghimire B.K., Seong E.S., Nguyen T.X. et al.: Assessment of morphological and phytochemical attributes in triploid and hexaploid plants of the bioenergy crop Miscanthus × giganteus. - Ind. Crop Prod. 89: 231-243, 2016. Go to original source...
  15. Ghotbi Ravandi E., Rezanejad F., Zolala J., Dehghan E.: The effects of chromosome-doubling on selected morphological and phytochemical characteristics of Cichorium intybus L. - J. Hortic. Sci. Biotech. 88: 701-709, 2013.
  16. Guan X.Q., Zhao S.J., Li D.Q., Shu H.R.: Photoprotective functions of photorespiration in several grapevine cultivars under drought stress. - Photosynthetica 42: 31-36, 2004. Go to original source...
  17. Han X.Z., Hamaker B.R.: Amylopectin fine structure and rice starch paste breakdown. - J. Cereal Sci. 34: 279-284, 2001. Go to original source...
  18. He Y.C., Ge J., Wei Q. et al.: Using a polyploid meiosis stability (PMeS) line as a parent improves embryo development and the seed set rate of a tetraploid rice hybrid. - Can. J. Plant Sci. 91: 325-335, 2011. Go to original source...
  19. Hegarty M.J., Hiscock S.J.: Genomic clues to the evolutionary success of polyploid plants. - Curr. Biol. 18: R435-R444, 2008. Go to original source...
  20. James M.G., Denyer K., Myers A.M.: Starch synthesis in the cereal endosperm. - Curr. Opin. Plant Biol. 6: 215-222, 2003. Go to original source...
  21. Jenner C.F.: Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. I. Immediate response. - Aust. J. Plant Physiol. 18: 165-177, 1991. Go to original source...
  22. Jeon J.S., Ryoo N., Hahn T.R. et al.: Starch biosynthesis in cereal endosperm. - Plant Physiol. Bioch. 48: 383-392, 2010. Go to original source...
  23. Jiang D., Cao W.X., Dai T.B., Jing Q.: Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. -Plant Growth Regul. 41: 247-257, 2003. Go to original source...
  24. Kato T.: Change of sucrose synthase activity in developing endosperm of rice cultivars. - Crop Sci. 35: 827-831, 1995. Go to original source...
  25. Larkin P.D., McClung A.M., Ayres N.M., Park W.D.: The effect of the Waxy locus (Granule Bound Starch Synthase) on pasting curve characteristics in specialty rices (Oryza sativa L.). - Euphytica 131: 243-253, 2003. Go to original source...
  26. Lavania U.: Genomic and ploidy manipulation for enhanced pro-duction of phyto-pharmaceuticals. - Acta Hortic. 3: 170-177, 2005. Go to original source...
  27. Liao T., Cheng S., Zhu X. et al.: Effects of triploid status on growth, photosynthesis, and leaf area in Populus. - Trees 30: 1-11, 2016. Go to original source...
  28. Lin X., Zhou Y., Zhang J. et al.: Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway. - Biotechnol. Appl. Bioc. 58: 50-57, 2011. Go to original source...
  29. MacLeod L.C., Duffus C.M.: Reduced starch content and sucrose synthase activity in developing endosperm of barley plants grown at elevated temperatures. - Aust. J. Plant Physiol. 15: 367-375, 1988. Go to original source...
  30. Madani H., Hosseini B., Dehghan E., Rezaei-Chiyaneh E.: Enhanced production of scopolamine in induced autotetraploid plants of Hyoscyamus reticulatus L. - Acta Physiol. Plant. 37: 55, 2015. Go to original source...
  31. Meng F., Peng M., Pang H., Huang F.: Comparison of photo-synthesis and leaf ultrastructure on two black locust (Robinia pseudoacacia L.). - Biochem. Syst. Ecol. 55: 170-175, 2014. Go to original source...
  32. Miralles D.J., Slafer G.A.: Sink limitations to yield in wheat: how could it be reduced? - J. Agr. Sci.-Cambridge 145: 139-149, 2007.
  33. Myers A.M., Morell M.K., James M.G., Ball S.G.: Recent progress toward understanding biosynthesis of the amylopectin crystal. -Plant Physiol. 122: 989-997, 2000. Go to original source...
  34. Nakamura Y., Utsumi Y., Sawada T. et al.: Characterization of the reactions of starch branching enzymes from rice endosperm. - Plant Cell Physiol. 51: 776-794, 2010. Go to original source...
  35. Nakamura Y., Yuki K., Park S.Y., Ohya T.: Carbohydrate meta-bolism in the developing endosperm of rice grain quality. - Plant Cell Physiol. 30: 833-839, 1989. Go to original source...
  36. Nakamura Y., Yuki K.: Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. - Plant Sci. 82: 15-20, 1992. Go to original source...
  37. Otto S.P., Whitton J.: Polyploid incidence and evolution. - Annu. Rev. Genet. 34: 401-437, 2000. Go to original source...
  38. Pandey M.K., Rani N.S., Madhav M.S. et al.: Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). - Biotechnol. Adv. 30: 1697-1706, 2012. Go to original source...
  39. Reddy K.R., Subramanian R., Zakiuddin S.A., Bhattacharya K.R.: Viscoelastic properties of rice flour pastes and their relation-ship to amylose content and rice quality. - Cereal Chem. 71: 548-552, 1994.
  40. Reynolds M., Foulkes J., Furbank R. et al.: Achieving yield gains in wheat. - Plant Cell Environ. 35: 1799-1823, 2012.
  41. Rieseberg L.H., Willis J.H.: Plant speciation. - Science 317: 910-914, 2007. Go to original source...
  42. Swaminathan M.S.: Can science and technology feed the world in 2025? - Field Crop. Res. 104: 3-9, 2007. Go to original source...
  43. Tu S.B., Luan L., Liu Y.H. et al.: Production and heterosis ana-lysis of rice autotetraploid hybrids. - Crop Sci. 47: 2356-2363, 2007. Go to original source...
  44. Tuncel A., Okita T.W.: Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. - Plant Sci. 211: 52-60, 2013. Go to original source...
  45. Vandepoele K., Simillion C. and Peer Y.V.D.: Evidence that rice and other cereals are ancient aneuploids. - Plant Cell 15: 2192-2202, 2003. Go to original source...
  46. Wang B.S., Ma M.Y., Lu H.G. et al.: Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. - Photosynth. Res. 126: 363-373, 2015. Go to original source...
  47. Wang S., Chen W., Yang C. et al.: Comparative proteomic analysis reveals alterations in development and photosynthesis-related proteins in diploid and triploid rice. - BMC Plant Biol. 16: 199, 2016. Go to original source...
  48. Wendel J.F.: Genome evolution in polyploids. - Plant Mol. Biol. 42: 225-249, 2000. Go to original source...
  49. Xie L.Y., Lin E.D., Zhao H.L., Feng Y.X.: Changes in the activi-ties of starch metabolism enzymes in rice grains in response to elevated CO2 concentration. - Int. J. Biometeorol. 60: 727-736, 2016. Go to original source...
  50. Yang P.M., Huang Q.C., Qin G.Y. et al.: Different drought stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. - Photosynthetica 52: 193-202, 2014. Go to original source...
  51. Yang P.M., Huang Q.C., Qin G.Y., Zhao S.P.: Different responses to N+ beam implantation between diploid and autotetraploid rice. - Appl. Biochem. Biotech. 170: 552-561, 2013. Go to original source...