Photosynthetica 2016, 54(2):210-218 | DOI: 10.1007/s11099-015-0169-3

Effects of hypo- and hypersalinity on photosynthetic performance of Sargassum fusiforme (Fucales, Heterokontophyta)

X. J. Xie1,3, X. L. Wang1,3,4, L. D. Lin2, L. W. He1,3, W. H. Gu1,3, S. Gao1,3, X. F. Yan2, G. H. Pan5, M. J. Wu2,*, G. C. Wang1,3,*
1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
2 Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, College of Life and Environment Science, Wenzhou University, Wenzhou, China
3 Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
4 University of Chinese Academy of Sciences, Beijing, China
5 Tianjin Key Laboratory of Marine Sources and Chemistry, College of Marine Science & Engineering, Tianjin University of Science & Technology, Tianjin, China

Photoprotection mechanisms protect photosynthetic organisms, especially under stress conditions, against photodamage that may inhibit photosynthesis. We investigated the effects of short-term immersion in hypo- and hypersalinity sea water on the photosynthesis and xanthophyll cycle in Sargassum fusiforme (Harvey) Setchell. The results indicated that under moderate light [110 μmol(photon) m-2 s-1], the effective quantum yield of PSII was not reduced in S. fusiforme fronds after 1 h in hyposalinity conditions, even in fresh water, but it was significantly affected by extreme hypersalinity treatment (90‰ sea water). Under high light [HL, 800 μmol(photon) m-2 s-1], photoprotective mechanisms operated efficiently in fronds immersed in fresh water as indicated by high reversible nonphotochemical quenching of chlorophyll fluorescence (NPQ) and de-epoxidation state; the quantum yield of PSII recovered during the subsequent relaxation period. In contrast, fronds immersed in 90‰ sea water did not withstand HL, barely developed reversible NPQ, and accumulated little antheraxanthin and zeaxanthin during HL, while recovery of the quantum yield of PSII was severely inhibited during the subsequent relaxation period. The data provided concrete evidence supporting the short-term tolerance of S. fusiforme to immersion in fresh water compared to hypersalinity conditions. The potential practical implications of these results were also discussed.

Keywords: aquaculture; chlorophyll a fluorescence; dithiothreitol; rapid light curve; violaxanthin

Received: March 19, 2015; Accepted: June 29, 2015; Published: June 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Xie, X.J., Wang, X.L., Lin, L.D., He, L.W., Gu, W.H., Gao, S., ... Wang, G.C. (2016). Effects of hypo- and hypersalinity on photosynthetic performance of Sargassum fusiforme (Fucales, Heterokontophyta). Photosynthetica54(2), 210-218. doi: 10.1007/s11099-015-0169-3.
Download citation

References

  1. Allakhverdiev S.I., Murata N.: Salt stress inhibits photosystems II and I in cyanobacteria. - Photosynth. Res. 98: 529-539, 2008. Go to original source...
  2. Asaeda T., Sultana M., Manatunge J., Fujino T.: The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. - Environ. Exp. Bot. 52: 225-238, 2004. Go to original source...
  3. Colombo-Pallotta M.F., García-Mendoza E., Ladah L.B.: Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. - J. Phycol. 42: 1225-1234, 2006. Go to original source...
  4. Dawczynski C., Schubert R., Jahreis G.: Amino acids, fatty acids, and dietary fibre in edible seaweed products. - Food Chem. 103: 891-899, 2007. Go to original source...
  5. Demmig-Adams B., Adams III W.W.: Photoprotection and other responses of plants to high light stress. - Annu. Rev. Plant Biol. 43: 599-626, 1992. Go to original source...
  6. Enriquez M.M., LaFountain A.M., Budarz J. et al.: Direct determination of the excited state energies of the xanthophylls diadinoxanthin and diatoxanthin from Phaeodactylum tricornutum. - Chem. Phys. Lett. 493: 353-357, 2010. Go to original source...
  7. Fernández-Marín B., Balaguer L., Esteban R. et al.: Dark induction of the photoprotective xanthophyll cycle in response to dehydration. - J. Plant. Physiol. 166: 1734-1744, 2009. Go to original source...
  8. Fernández-Marín B., Míguez F., Becerril J.M., García-Plazaola J.I.: Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata. - BMC Plant Biol. 11: 181, 2011a. Go to original source...
  9. Fernández-Marín B., Míguez F., Becerril J.M., García-Plazaola J.I.: Dehydration-mediated activation of the xanthophyll cycle in darkness: is it related to desiccation tolerance? - Planta 234: 579-588, 2011b. Go to original source...
  10. Gao S., Shen S., Wang G. et al.: PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions. - Plant Cell Physiol. 52: 885-893, 2011. Go to original source...
  11. García-Mendoza E., Colombo-Pallotta M.F.: The giant kelp Macrocystis pyrifera presents a different nonphotochemical quenching control than higher plants. - New Phytol. 173: 526-536, 2007. Go to original source...
  12. García-Plazaola J., Esteban R., Fernández-Marín B. et al.: Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. - Photosynth. Res. 113: 89-103, 2012. Go to original source...
  13. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  14. Gévaert F., Créach A., Davoult D. et al.: Laminaria saccharina photosynthesis measured in situ: photoinhibition and xanthophyll cycle during a tidal cycle. - Mar. Ecol-Prog. Ser. 247: 43-50, 2003. Go to original source...
  15. Gévaert F., Creach A., Davoult D. et al.: Photo-inhibition and seasonal photosynthetic performance of the seaweed Laminaria saccharina during a simulated tidal cycle: chlorophyll fluorescence measurements and pigment analysis. - Plant Cell Environ. 25: 859-872, 2002. Go to original source...
  16. Goss R., Jakob T.: Regulation and function of xanthophyll cycledependent photoprotection in algae. - Photosynth. Res. 106: 103-122, 2010. Go to original source...
  17. Harker M., Berkaloff C., Lemoine Y. et al.: Effects of high light and desiccation on the operation of the xanthophyll cycle in two marine brown algae. - Eur. J. Phycol. 34: 35-42, 1999. Go to original source...
  18. Jahns P., Holzwarth A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. - BBA-Bioenergetics 1817: 182-193, 2012.
  19. Jung K., Ha E., Uhm Y. et al.: Suppressive effect by Hizikia fusiforme on the production of tumor necrosis factor in BV2 murine microglial cells. - Neurol. Res. 29: S88-S92, 2007. Go to original source...
  20. Karsten U.: Research note: salinity tolerance of Arctic kelps from Spitsbergen. - Phycol. Res. 55: 257-262, 2007. Go to original source...
  21. Karsten U.: Seaweed acclimation to salinity and desiccation stress. - In: Wiencke C., Bischof K. (ed.): Seaweed Biology. Pp. 87-107. Springer, Berlin - Heidelberg 2012. Go to original source...
  22. Kirst G.O.: Salinity tolerance of eukaryotic marine algae. - Annu. Rev. Plant Phys. 41: 21-53, 1990. Go to original source...
  23. Kolb N., Vallorani L., Stocchi V.: Chemical composition and evaluation of protein quality by amino acid score method of edible brown marine algae Arame (Eisenia bicyclis) and Hijiki (Hijikia fusiforme). - Acta Aliment. Hung. 28: 213-222, 1999. Go to original source...
  24. Lavaud J.B., Rousseau B., van Gorkom H. J., Etienne A.: Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. - Plant Physiol. 129: 1398-1406, 2002. Go to original source...
  25. Lin A.P., Wang G.C., Yang F., Pan G.H.: Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration. - Planta 229: 803-810, 2009. Go to original source...
  26. Liu W., Ming Y., Li P., Huang Z.: Inhibitory effects of hypoosmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. - Plant Physiol. Bioch. 54: 43-48, 2012.
  27. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  28. Nitschke U., Connan S., Stengel D.B.: Chlorophyll a fluorescence responses of temperate Phaeophyceae under submersion and emersion regimes: a comparison of rapid and steady-state light curves. - Photosynth. Res. 114: 29-42, 2012. Go to original source...
  29. Nitschke U., Stengel D.B.: Iodine contributes to osmotic acclimatisation in the kelp Laminaria digitata (Phaeophyceae). - Planta 239: 521-530, 2014. Go to original source...
  30. Niyogi K.K., Björkman O., Grossman A.R.: The roles of specific xanthophylls in photoprotection. - P. Natl. Acad. Sci. USA 94: 14162-14167, 1997. Go to original source...
  31. Niyogi K.K., Grossman A.R., Björkman O.: Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. - Plant Cell 10: 1121-1134, 1998. Go to original source...
  32. Niyogi K.K.: Photoprotection revisited: genetic and molecular approaches. - Annu. Rev. Plant Phys. 50: 333-359, 1999. Go to original source...
  33. Niyogi K.K.: Safety valves for photosynthesis. - Curr. Opin. Plant Biol. 3: 455-460, 2000. Go to original source...
  34. Pang S., Zhang Z., Zhao H., Sun J.: Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement. - J. Appl. Phycol. 19: 557-565, 2007. Go to original source...
  35. Reed R.H., Davison I.R., Chudek J.A., Foster R.: The osmotic role of mannitol in the Phaeophyta: an appraisal. - Phycologia 24: 35-47, 1985. Go to original source...
  36. Reed R.H.: The effects of extreme hyposaline stress upon Polysiphonia lanosa (L.) Tandy from marine and estuarine sites. - J. Exp. Mar. Biol. Ecol. 76: 131-144, 1984. Go to original source...
  37. Rousvoal S., Groisillier A., Dittami S.M. et al.: Mannitol-1-phosphate dehydrogenase activity in Ectocarpus siliculosus, a key role for mannitol synthesis in brown algae. - Planta 233: 261-273, 2011. Go to original source...
  38. Ruban A.V., Johnson M.P., Duffy C.D.P.: The photoprotective molecular switch in the photosystem II antenna. - BBABioenergetics 1817: 167-181, 2012.
  39. Shikanai T.: Cyclic electron transport around photosystem I: genetic approaches. - Annu. Rev. Plant Biol. 58: 199-217, 2007. Go to original source...
  40. Schreiber U.: Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method; an overview. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279-319. Springer, Dordrecht 2004. Go to original source...
  41. Thayer S.S., Björkman O.: Leaf xanthophyll content and composition in sun and shade determined by HPLC. - Photosynth. Res. 23: 331-343, 1990. Go to original source...
  42. Tseng C.: The theory and practice of phycoculture in China. - In: Rajarao V.N. (ed.): Perspectives in Phycology. Pp. 227-246. Today Tomorr. Print. Publ., New Delhi 1990.
  43. Walsby A.: Modelling the daily integral of photosynthesis by phytoplankton: its dependence on the mean depth of the population. - Hydrobiologia 349: 65-74, 1997. Go to original source...
  44. White A. J., Critchley C.: Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. - Photosynth. Res. 59: 63-72, 1999. Go to original source...
  45. Xie X., Gao S., Gu W. et al.: Desiccation induces accumulations of antheraxanthin and zeaxanthin in intertidal macro-alga Ulva pertusa (Chlorophyta). - PLoS ONE 8: e72929, 2013. Go to original source...
  46. Yokoi K., Konomi A.: Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. - Regul. Toxicol. Pharmacol. 63: 291-297, 2012. Go to original source...
  47. Yoon Y.D., Lee E.S., Park J.P. et al.: Immunostimulatory effect by aqueous extract of Hizikia fusiforme in RAW 264.7 macrophage and whole spleen cells. - Biotechnol. Bioproc. E. 16: 1099-1105, 2011. Go to original source...
  48. Zou H.X., Pang Q.Y., Lin L.D. et al.: Behavior of the edible seaweed Sargassum fusiforme to copper pollution: short-term acclimation and long-term adaptation. - PLoS ONE 9: e101960, 2014. Go to original source...