Photosynthetica 2019, 57(3):772-779 | DOI: 10.32615/ps.2019.087

Differential response of growth and photosynthesis in diverse cotton genotypes under hypoxia stress

R. PAN1, W. JIANG1, Q. WANG1, L. XU1, S. SHABALA2, W.Y. ZHANG1
1 Research Center of Crop Stresses Resistance Technologies/School of Agriculture, Yangtze University, 434025 Jingzhou, China
2 Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, 7001 Hobart, Tasmania, Australia

The objectives of the present study were to compare the dynamic of the growth and photosynthetic characteristics of cotton varieties contrasting in waterlogging (WL) tolerance when subjected to hypoxia stress. The growth of the WL-sensitive genotypes was notably inhibited by WL, mainly as a result of a significant reduction in the net photosynthesis (PN) after two days of hypoxia treatment; in the tolerant varieties, no significant changes in PN were observed until 8 d after hypoxia onset. The intercellular CO2 concentration and maximal photochemical efficiency of PSII significantly declined, and the nonphotochemical quenching increased in the sensitive varieties. Infrared thermography showed that a low stomatal conductance resulted in an increased leaf temperature under hypoxia stress. Spectral image analysis suggested that the pigment content and water content rapidly decreased in the leaves of the sensitive varieties. It is concluded that maintaining stomatal opening through the interaction of ethylene and abscisic acid may be an important strategy to improve waterlogging tolerance in cotton.

Keywords: chlorophyll fluorescence; Gossypium hirsutum; hyperspectral image; infrared thermal image.

Received: January 26, 2019; Accepted: May 15, 2019; Prepublished online: June 14, 2019; Published: July 23, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
PAN, R., JIANG, W., WANG, Q., XU, L., SHABALA, S., & ZHANG, W.Y. (2019). Differential response of growth and photosynthesis in diverse cotton genotypes under hypoxia stress. Photosynthetica57(3), 772-779. doi: 10.32615/ps.2019.087.
Download citation

References

  1. Ahmed F., Rafii M.Y., Ismail M.R. et al.: Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. - Biomed Res. Int. 2013: 963525, 2013. Go to original source...
  2. Ahmed S., Nawata E., Sakuratani T.: Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging. - Environ. Exp. Bot. 57: 278-284, 2006. Go to original source...
  3. Alamin M., Zeng D.D., Sultana M.H. et al.: Photosynthesis, cellulose contents and ultrastructure changes of mutant rice leading to screw flag leaf. - Plant Growth Regul. 85: 1-13, 2018. Go to original source...
  4. Ali S., Kim W.C.: Plant growth promotion under water: decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. - Front. Microbiol. 9: 1096, 2018. Go to original source...
  5. Anandan A., Pradhan S.K., Das S.K. et al.: Differential responses of rice genotypes and physiological mechanism under pro-longed deepwater flooding. - Field Crop Res. 172: 153-163, 2015. Go to original source...
  6. Araki H., Hossain M.A., Takahashi T.: Waterlogging and hypoxia have permanent effects on wheat root growth and respiration. -J. Agron. Crop Sci. 198: 264-275, 2012. Go to original source...
  7. Armstrong W., Webb T., Darwent M., Beckett P.M.: Measuring and interpreting respiratory critical oxygen pressures in roots. - Ann. Bot.-London 103: 281-293, 2009. Go to original source...
  8. Bange M.P., Milroy S.P., Thongbai P.: Growth and yield of cotton in response to waterlogging. - Field Crop Res. 88: 129-142, 2004. Go to original source...
  9. Bansal R., Srivastava J.P.: Antioxidative defense system in pigeonpea roots under waterlogging stress. - Acta Physiol. Plant. 34: 515-522, 2012. Go to original source...
  10. Bansal R., Srivastava J.P.: Effect of waterlogging on photosyn-thetic and biochemical parameters in pigeonpea. - Russ. J. Plant Physl+ 62: 322-327, 2015.
  11. Basu P., Brown K.M., Pal A.: Detail quantitative analysis of architectural traits of basal roots of young seedlings of bean in response to auxin and ethylene. - Plant Physiol. 155: 2056-2065, 2011. Go to original source...
  12. Biju S., Fuentes S., Gupta D.: The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. - Plant Physiol. Bioch. 127: 11-24, 2018. Go to original source...
  13. Brodribb T.J., McAdam S.A.M.: Evolution of the stomatal regulation of plant water content. - Plant Physiol. 174: 639-649, 2017. Go to original source...
  14. Chen L., Dodd I.C., Davies W.J., Wilkinson S.: Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. - Plant Cell Environ. 36: 1850-1859, 2013.
  15. Cherif J., Derbel N., Nakkach M. et al.: Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. - J. Photoch. Photobio. B. 101: 332-339, 2010. Go to original source...
  16. Corti M., Gallina P.M., Cavalli D., Cabassi G.: Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content. - Biosyst. Eng. 158: 38-50, 2017. Go to original source...
  17. Dias M.C., Correia S., Serôdio J. et al.: Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. - Sci. Hortic.-Amsterdam 231: 31-35, 2018.
  18. Galvão L.S., Formaggio A.R., Tisot D.A.: Discrimination of sugarcane varieties in southeastern Brazil with EO-1 Hyperion data. - Remote Sens. Environ. 94: 523-534, 2005. Go to original source...
  19. Gill M.B., Zeng F., Shabala L. et al.: The ability to regulate voltage-gated K+-permeable channels in the mature root epidermis is essential for waterlogging tolerance in barley. - J. Exp. Bot. 69: 667-680, 2018. Go to original source...
  20. Ha Y., Shang Y., Nam K.H.: Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. - J. Exp. Bot. 67: 6297-6308, 2016. Go to original source...
  21. Irfan M., Hayat S., Hayat Q. et al.: Physiological and biochemical changes in plants under waterlogging. - Protoplasma 241: 3-17, 2010. Go to original source...
  22. Issarakraisila M., Ma Q., Turner D.W.: Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. para-chinensis) to waterlogging and water deficit. - Sci. Hortic.-Amsterdam 111: 107-113, 2007.
  23. Jiang Y., Wu K., Lin F. et al.: Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. - Planta 239: 565-575, 2014. Go to original source...
  24. Jitsuyama Y.: Morphological root responses of soybean to rhizosphere hypoxia reflect waterlogging tolerance. - Can. J. Plant Sci. 95: 999-1005, 2015. Go to original source...
  25. Keller B., Vass I., Matsubara S. et al.: Maximum fluorescence and electron transport kinetics determined by light-induced fluorescence transients (LIFT) for photosynthesis pheno-typing. - Photosynth. Res. 140: 221-233, 2019. Go to original source...
  26. Kurepin L.V., Ivanov A.G., Zaman M. et al.: Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. - Photosynth. Res. 126: 221-235, 2015. Go to original source...
  27. le Maire G.L., François C., Dufrêne E.: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. - Remote Sens. Environ. 89: 1-28, 2004. Go to original source...
  28. Li C., Jiang D., Wollenweber B. et al.: Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. - Plant Sci. 180: 672-678, 2011. Go to original source...
  29. Lowe A., Harrison N., French A.P.: Hyperspectral imag4e analysis techniques for the detection and classification of the early onset of plant disease and stress. - Plant Methods 13: 80-92, 2017. Go to original source...
  30. Luan H., Guo B., Pan Y. et al.: Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. - Plant Growth Regul. 85: 399-409, 2018. Go to original source...
  31. Najeeb U., Bange M.P., Tan D.K.Y., Atwell B.J.: Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. - AoB Plants 7: plv080, 2015.
  32. Najeeb U., Tan D.K.Y., Bange M.P., Atwell B.J.: Protecting cotton crops under elevated CO2 from waterlogging by managing ethylene. - Funct. Plant Biol. 45: 340-349, 2018. Go to original source...
  33. Pandey D.M., Goswami C.L., Kumar B., Jain S.: Hormonal regulation of photosynthetic enzymes in cotton under water stress. - Photosynthetica 38: 403-407, 2000.
  34. Pedersen O., Perata P., Voesenek L.A.C.J.: Flooding and low oxygen responses in plants. - Funct. Plant Biol. 44: 3-6, 2017. Go to original source...
  35. Prashar A., Jones H.G.: Assessing drought responses using thermal infrared imaging. - In: Duque P. (ed.): Environmental Responses in Plants. Methods in Molecular Biology. Vol. 1398. Pp. 209-219. Humana Press, New York 2016.
  36. Qin Q., Zhu J., Jia C. et al.: Influence of surface waterlogging on cotton seedlings under high temperature synoptic conditions. -Adv. J. Food Sci. Technol. 4: 362-365, 2012.
  37. Ren B., Zhang J., Dong S. et al.: Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. - PLoS ONE 11: e0161424, 2016. Go to original source...
  38. Ren B., Zhu Y., Zhang J. et al.: Effects of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging on grain yield and growth of summer maize. - Field Crop. Res. 188: 96-104, 2016. Go to original source...
  39. Setter T.L., Waters I.: Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. - Plant Soil 253: 1-34, 2003. Go to original source...
  40. Shabala S.: Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. - New Phytol. 190: 289-298, 2011. Go to original source...
  41. Shao G.C., Lan J.J., Yu S.E. et al.: Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages. - Photosynthetica 51: 429-437, 2013. Go to original source...
  42. She X.P., Song X.G.: Ethylene inhibits abscisic acid-induced stomatal closure in Vicia faba via reducing nitric oxide levels in guard cells. - New Zeal. J. Bot. 50: 203-216, 2012.
  43. Siddiqui M.H., Al-Khaishany M.Y., Al-Qutami M.A. et al.: Response of different genotypes of faba bean plant to drought stress. - Int. J. Mol. Sci. 16: 10214-10227, 2015. Go to original source...
  44. Siddiqui Z.S., Cho J.I., Park S.H. et al.: Phenotyping of rice in salt stress environment using high-throughput infrared imaging. - Acta Bot. Croat. 73: 312-321, 2014. Go to original source...
  45. Sytar O., Brestič M., Živčák M. et al.: Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. - Sci. Total Environ. 578: 90-99, 2017. Go to original source...
  46. Urban J., Ingwers M.W., McGuire M.A., Teskey R.O.: Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra. - J. Exp. Bot. 68: 1757-1767, 2017. Go to original source...
  47. Winkel A., Pedersen O., Ella E. et al.: Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes. - J. Exp. Bot. 65: 3225-33, 2014. Go to original source...
  48. Wu X.L., Tang Y.L., Li C.S. et al.: Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. - Plant Prod. Sci. 18: 284-294, 2015. Go to original source...
  49. Xu J., Lv Y., Liu X. et al.: Diagnosing crop water stress of rice using infrared thermal imager under water deficit condition. - Int. J. Agric. Biol. 18: 565-572, 2015.
  50. Yamauchi T., Tanaka A., Mori H. et al.: Ethylene-dependent aerenchyma formation in adventitious roots is regulated dif-ferently in rice and maize. - Plant Cell Environ. 39: 2145-2157, 2016. Go to original source...
  51. Yamauchi T., Watanabe K., Fukazawa A. et al.: Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. - J. Exp. Bot. 65: 261-273, 2014. Go to original source...
  52. Zeng F., Shabala L., Zhou M. et al.: Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. - Front. Plant Sci. 4: 313, 2013. Go to original source...
  53. Zhang Y., Kong X., Dai J. et al.: Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. - PLoS ONE 12: e0185075, 2017. Go to original source...
  54. Zhu M., Li F.H., Shi Z.S.: Morphological and photosynthetic response of waxy corn inbred line to waterlogging. - Photosynthetica 54: 636-640, 2016. Go to original source...
  55. Živčák M., Brestič M., Sytar O.: Osmotic adjustment and plant adaptation to drought stress. - In: Hossain M., Wani S., Bhattacharjee S. et al. (ed.): Drought Stress Tolerance in Plants. Vol. 1. Pp. 105-143. Springer, Cham 2016. Go to original source...