Photosynthetica 2018, 56(4):1370-1377 | DOI: 10.1007/s11099-018-0850-4

Salicylic acid-induced photosynthetic adaptability of Zea mays L. to polyethylene glycol-simulated water deficit is associated with nitric oxide signaling

R. X. Shao1,*, L. F. Xin1, J. M. Guo1, H. F. Zheng1, J. Mao1, X.P. Han1, L. Jia1, S. J. Jia1, C. G. Du1,2, R. Song1, Q. H. Yang1,*, R. W. Elmore3
1 Collaborative Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou, China
2 Department of Biology, Montclair State University, Montclair, USA
3 Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA

Salicylic acid (SA) and nitric oxide (NO) form a new group of plant growth substances that cooperatively interact to promote plant growth and productivity. Water deficit (WD) stress is a major limiting factor for photosynthesis, which in turn limits crop yield. However, the mechanism of SA and NO in stimulating photosynthesis has not yet been elucidated. Therefore, in this study, we investigated the SA- and NO-mediated photosynthetic adaptability of maize seedlings to WD in terms of photosynthetic parameters, activities and mRNA levels of CO2 assimilation enzymes. Our results showed that SA alleviated the WD-induced reduction of photosynthetic performance. The activities of Rubisco and Rubisco activase enzymes increased significantly due to SA pretreatment. Moreover, higher transcription rates of Rbc L, ZmRCAα and ZmRCAβ mRNA further confirmed the effects of SA on CO2 assimilation. WD or SA-induced decreases or increases of CO2 assimilation ability were further decreased after c-PTIO addition.

Keywords: chlorophyll fluorescence transients; gene expression; nitric oxide scavenger; photosynthetic characteristics

Received: May 23, 2017; Accepted: February 14, 2018; Prepublished online: December 1, 2018; Published: November 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Shao, R.X., Xin, L.F., Guo, J.M., Zheng, H.F., Mao, J., Han, X.P., ... Elmore, R.W. (2018). Salicylic acid-induced photosynthetic adaptability of Zea mays L. to polyethylene glycol-simulated water deficit is associated with nitric oxide signaling. Photosynthetica56(4), 1370-1377. doi: 10.1007/s11099-018-0850-4.
Download citation

References

  1. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: an overview.-Photosynthetica 51: 163-190, 2013. Go to original source...
  2. Bajguz A.: Nitric oxide: role in plants under abiotic stress.-In: Parvaiz A., Mohd R.W. (ed.): Biomedical and Life Sciences: Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment. Pp. 137-159. Springer, New York 2013. Go to original source...
  3. Boex-Fontvieille E., Daventure M., Jossier M. et al.: Phosphorylation pattern of Rubisco activase in Arabidopsis leaves.-Plant Biol. 16: 550-557, 2014. Go to original source...
  4. Carmo-Silva A.E., Salvucci M.E.: The regulatory properties of rubisco activase differ among species and affect photosynthetic induction during light transitions.-Plant Physiol. 161: 1645-1655, 2013. Go to original source...
  5. Chen P., Li X., Huo K. et al.: Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors.-J. Plant Physiol. 171: 458-466, 2014a. Go to original source...
  6. Chen Y., Jin J.H., Jiang Q.S. et al.: Sodium bisulfite enhances photosynthesis in rice by inducing Rubisco activase gene expression.-Photosynthetica 52: 475-478, 2014b. Go to original source...
  7. Cheng T., Chen J., Ef A.A. et al.: Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress.-Planta 242: 1361-1390, 2015. Go to original source...
  8. Corpas F.J., Leterrier M., Valderrama R. et al.: Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress.-Plant Sci. 181: 604-611, 2011. Go to original source...
  9. Cui J.X., Zhou Y.H., Ding J.G. et al.: Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumberpce.-Plant Cell Environ. 34: 347-358, 2011. Go to original source...
  10. Dias M.C., Brüggemann W.: Limitations of photosynthesis in phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes.-Photosynthetica 48: 96-102, 2010. Go to original source...
  11. Elings A.: Estimation of leaf area in tropical maize.-Agron. J. 92: 436-444, 2000. Go to original source...
  12. FAOSTAT: Food and agricultural commodities production. https://doi.org/faostat.fao.org/site/339/default.aspx, 2010.
  13. Gondor O. K., Janda T., Soós V. et al.: Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment.-Front. Plant Sci. 7: 1447, 2016.
  14. Hancock J.T.: NO synthase? Generation of nitric oxide in plants.-Period. Biol. 114: 19-24, 2012.
  15. Iqbal N., Umar S., Khan N.A. et al.: A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism.-Environ. Exp. Bot. 100: 34-42, 2014. Go to original source...
  16. Jasid S., Simontacchi M., Bartoli C.G. et al.: Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins.-Plant Physiol. 142: 1246-1255, 2006. Go to original source...
  17. Jiang Y.P., Cheng F., Zhou Y.H. et al.: Cellular glutathione redox homeostasis plays an important role in the brassinosteroidinduced increase in CO2 assimilation in Cucumis sativus.-New Phytol. 194: 932-943, 2012. Go to original source...
  18. Kausar F., Shahbaz M.: Interactive effect of foliar application of nitric oxide (NO) and salinity on wheat (Triticum aestivum L.).-Pak. J. Bot. 45: 67-73, 2013.
  19. Kovacs I., Lindermayr C.: Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation.-Front. Plant Sci. 4: 137, 2013. Go to original source...
  20. Liao W.B., Huang G.B., Yu J.H. et al.: Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development.-Plant Physiol. Bioch. 58: 6-15, 2012. Go to original source...
  21. Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. -Methods 25: 402-408, 2001. Go to original source...
  22. Liu S., Dong Y., Xu L. et al.: Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings.-Plant Growth Regul. 73: 67-78, 2014. Go to original source...
  23. Mostofa M.G., Fujita M., Tran L.S.P.: Nitric oxide mediates hydrogen peroxide-and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings.-Plant Growth Regul. 77: 265-277, 2015. Go to original source...
  24. Parry M.A.J., Andralojc P.J., Scales J.C.: Rubisco activity and regulation as targets for crop improvement.-J. Exp. Bot. 64: 717-730, 2013. Go to original source...
  25. Procházková D., Haisel D., Wilhelmová N. et al.: Effects of exogenous nitric oxide on photosynthesis.-Photosynthetica 51: 483-489, 2013. Go to original source...
  26. Qiao W., Li C., Fan L.M.: Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses.-Environ. Exp. Bot. 100: 84-93, 2014. Go to original source...
  27. Serraj R., McNally K.L., Slamet-Loedin I. et al.: Drought resistance improvement in rice: an integrated genetic and resource management strategy.-Plant Prod. Sci. 14: 1-14, 2011. Go to original source...
  28. Shao R., Wang K., Shangguan Z.P.: Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise.-J. Plant Physiol. 167: 472-479, 2010. Go to original source...
  29. Shao R.X., Chen J.H., Miao F. et al.: Photosynthetic performance of Triticum aestivum L. in response to water and nitrogen deficit.-J. Food Agric. Environ. 11: 1252-1256, 2013.
  30. Siddiqui M.H., Al-Whaibi M.H., Ali H.M. et al.: Mitigation of nickel stress by the exogenous application of salicylic acid and nitric oxide in wheat.-Aust. J. Crop Sci. 7: 1780-1788, 2013.
  31. Sikder S., Foulkes J., West H. et al.: Evaluation of photosynthetic potential of wheat genotypes under drought condition.-Photosynthetica 53: 47-54, 2015. Go to original source...
  32. Simaei M., Khavarinejad R.A., Saadatmand S. et al.: Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity.-Russ. J. Plant Physl+ 58: 783-790, 2011.
  33. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples.-In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor and Francis, London 2000.
  34. Suzuki Y., Makino A.: Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice.-J. Exp. Bot. 64: 1145-1152, 2013. Go to original source...
  35. Tatar O., Brück H., Asch F.: Photosynthesis and remobilization of dry matter in wheat as affected by progressive drought stress at stem elongation stage.-J. Agro. Crop Sci. 202: 292-299, 2016. Go to original source...
  36. Tossi V., Cassia R., Bruzzone S. et al.: ABA says NO to UV-B: a universal response?-Trends Plant Sci. 17: 510-517, 2012. Go to original source...
  37. Vanlerberghe G.C., Martyn G.D., Dahal K.: Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress.-Physiol. Plantarum 157: 322-337, 2016. Go to original source...
  38. Wang G.P., Hui Z., Li F. et al.: Improvement of heat and drought photosynthetic tolerance in wheat by over accumulation of glycinebetaine.-Plant Biotechnol. Rep. 4: 213-222, 2010. Go to original source...
  39. Wang Y., Suo B., Zhao T. et al.: Effect of nitric oxide treatment on antioxidant responses and psbA gene expression in two wheat cultivars during grain filling stage under drought stress and rewatering.-Acta Physiol. Plant. 33: 1923, 2011.
  40. Wang Q., Liang X., Dong Y. et al.: Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress.-J. Plant Growth Regul. 32: 721-731, 2013. Go to original source...
  41. Wu Q.S., Xia R.X.: Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions.-J. Plant Physiol. 163: 417-425, 2006. Go to original source...
  42. Xu L., Yu J., Han L. et al.: Photosynthetic enzyme activities and gene expression associated with drought tolerance and postdrought recovery in Kentucky bluegrass.-Environ. Exp. Bot. 89: 28-35, 2013. Go to original source...
  43. Xu L.L., Fan Z.Y., Dong Y.J. et al.: Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress.-Biol. Plantarum 59: 171-182, 2015 Go to original source...
  44. Yin Z.T., Zhang Z.L., Deng D.X. et al.: Characterization of rubisco activase genes in maize: an a-isoform gene functions alongside a β-isoform gene.-Plant Physiol. 164: 2096-2106, 2014. Go to original source...
  45. Zhao G.W., Xu H.L., Zhang P.J. et al.: Effects of 2,4-epibrassinolide on photosynthesis and Rubisco activase gene expression in Triticum aestivum L. seedlings under a combination of drought and heat stress.-Plant Growth Regul. 81: 377-384, 2017. Go to original source...