Photosynthetica 2014, 52(4):614-626 | DOI: 10.1007/s11099-014-0069-y

A portable reflectance-absorptance-transmittance meter for photosynthetic work on vascular plant leaves

R. J. Ritchie1,*, J. W. Runcie2,3
1 Tropical Environmental Plant Biology Unit, Faculty of Technology and Environment, Prince of Songkla University, Phuket, Thailand
2 School of Biological Sciences, University of Sydney, Sydney, Australia
3 Aquation Pty Ltd, Umina Beach, Australia

PAM (pulse amplitude modulation) fluorometers can be used to estimate the electron transport rate (ETR) [μmol(e-) m-2 s-1] from photosynthetic yield determinations, provided the absorptance (Abtλ) of the photoorganism is known. The standard assumed value used for absorptance is 0.84 (leaf absorptance factor, AbtF). We described a reflectance-absorptancetransmittance (RAT) meter for routine experimental measurements of the actual absorptance of leaves. The RAT uses a red-green-blue (RGB) LED diode light source to measure absorptances at wavelengths suitable for use with PAM fluorometers and infrared gas analysers. Results using the RAT were compared to Abtλ spectra using a Taylor integrating sphere on bird's nest fern (Asplenium nidus), banana, Doryanthes excelsa, Kalanchoe daigremontiana, and sugarcane. Parallel venation had no significant effect upon Abt465 in banana, Doryanthes, a Dendrobium orchid, pineapple, and sugarcane, but there was a slight difference in the case of the fern A. nidus. The average Abt465 (≈ 0.96) and Abt625 (≈ 0.89) were ≈14% and 6% higher than the standard value (AbtF = 0.84). The PAR-range Abt400-700 was only ≈ 5% higher than the standard value (≈ 0.88) based on averaged absorptance from the blue, green, and red light data and from where the RGB-diode was used as a 'white' light source. In some species, absorptances at blue and red wavelengths are quite different (e.g. water lily). Reflectance measurements of leaves using the RAT would also be useful for remote sensing studies.

Keywords: absorptance; electron transport rate; integrating sphere; leaf absorptance factor; PAM fluorometry; reflectance

Received: September 10, 2013; Accepted: May 2, 2014; Published: December 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ritchie, R.J., & Runcie, J.W. (2014). A portable reflectance-absorptance-transmittance meter for photosynthetic work on vascular plant leaves. Photosynthetica52(4), 614-626. doi: 10.1007/s11099-014-0069-y.
Download citation

References

  1. Anthony, P.A., Holtum, J.A.M., Jackes, B.R.: Shade acclimation of rainforest leaves to colonization by lichens. - Funct. Ecol. 16: 808-816, 2002. Go to original source...
  2. Bauerle, W.L., Weston, D.J., Bowdena, J.D. et al.: Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. - Sci. Hortic.-Amsterdam 101: 169-178, 2004.
  3. Beach, K.S., Borgeas, H.B., Smith, C.M.: Ecophysiological implications of the measurement of transmittance and reflectance of tropical macroalgae. - Phycologia 45: 450-457, 2006. Go to original source...
  4. Beer, S., Ilan, M., Eshel, A. et al.: Use of pulse amplitude modulated (PAM) fluorometry for in situ measurements of photosynthesis in two Red Sea faviid corals. - Mar. Biol. 131: 607-612, 1998. Go to original source...
  5. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  6. Burger, J., Edwards, G.E.: Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf Coleus varieties. - Plant Cell Physiol. 37: 395-399, 1996. Go to original source...
  7. Carter, G.A., Knapp, A.K.: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. - Am. J. Bot. 88: 677-684, 2001. Go to original source...
  8. Cheng, L.L., Fuchigami, L.H., Breen, P.J.: Light absorption and partitioning in relation to nitrogen content in 'Fuji' apple leaves. - J. Am. Soc. Hortic. Sci. 125: 581-587, 2000. Go to original source...
  9. Conde-Álvarez, R.M., Pérez-Rodríguez, E., Altamirano, M. et al.: Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light. - Aquat. Bot. 73: 47-61, 2002. Go to original source...
  10. Cope, K.R., Bugbee, B.: Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. - Hortscience 48: 504-509, 2013. Go to original source...
  11. Cummings, M.E., Zimmerman, R.C.: Light harvesting and the package effect in the seagrasses Thalassia testudinum Banks ex Königand Zostera marina L.: optical constraints on photoacclimation. - Aquat. Bot. 75: 261-274, 2003. Go to original source...
  12. Davis, P.A., Hangarter, R.P.: Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves. - Photosynth. Res. 112: 153-161, 2012. Go to original source...
  13. Delfine, S., Alvino, A., Villani, M.C., Loreto, F.: Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. - Plant Physiol. 119: 1101-1106, 1999. Go to original source...
  14. Durako, M.J.: Leaf optical properties and photosynthetic leaf absorptances in several Australian seagrasses. - Aquat. Bot. 87: 83-89, 2007. Go to original source...
  15. Ehleringer, J.: Leaf absorptances of Mohave and Sonoran Desert plants. - Oecologia 49: 366-370, 1981. Go to original source...
  16. Ehleringer, J., Björkman, O., Mooney, H.A.: Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. - Science 192: 376-377, 1976. Go to original source...
  17. Enríquez, S.: Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. - Mar. Ecol. Prog. Ser. 289: 141-150, 2005. Go to original source...
  18. Enríquez, S., Méndez, E.R., Iglesias-Prieto, R.: Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. - Limnol. Oceanogr. 50: 1025-1032, 2005. Go to original source...
  19. Evans, J.R., Poorter, H.: Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. - Plant Cell Environ. 24: 755-767, 2001. Go to original source...
  20. Frost-Christensen, H., Sand-Jensen, K.: The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. - Oecologia 91: 377-384, 1992. Go to original source...
  21. Frost-Christensen, H., Sand-Jensen, K.: Comparative kinetics of photosynthesis in floating and submerged Potamogeton leaves. - Aquat. Bot. 51: 121-134, 1995. Go to original source...
  22. Gates, D.M., Keegan, H.J., Schleter, J.C., Weidner, V.R.: Spectral properties of plants. - Appl. Optics 4: 11-20, 1965. Go to original source...
  23. Gauslaa, Y., Ustvedt, E.M.: Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? - Photoch. Photobio. Sci. 2: 424-432, 2003. Go to original source...
  24. Gausman, H.W., Allen, W.A.: Optical parameters of leaves of 30 plant species. - Plant Physiol. 52: 57-62, 1973. Go to original source...
  25. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  26. Gorton, H.L., Brodersen, C.R., Williams, W.E., Vogelmann, T.C.: Measurement of the optical properties of leaves under diffuse light. - Photochem. Photobiol. 86: 1076-1083, 2010. Go to original source...
  27. Hennige, S.J., Suggett, D.J., Warner, M.E. et al.: Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. - Coral Reefs 28: 179-195, 2009. Go to original source...
  28. Johkan, M., Shoji, K., Goto, F. et al.: Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. - Environ. Exp. Bot. 75: 128-133, 2012. Go to original source...
  29. Jones, H.G., Vaughan, R.A.: Remote Sensing of Vegetation: Principles, Techniques, and Applications. Pp. 37-45, 47-58, 273-275. Oxford University Press, Oxford 2010.
  30. Knapp, A.K., Carter, G.A.: Variability in leaf optical properties among 26 species from a broad range of habitats. - Am. J. Bot. 85: 940-946, 1998. Go to original source...
  31. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. - Annu. Rev. Plant Phys. 42: 313-349, 1991. Go to original source...
  32. Lee, D.W., Graham, R.: Leaf optical properties of rainforest sun and extreme shade plants. - Am. J. Bot. 73: 1100-1108, 1986. Go to original source...
  33. Lee, D.W., Bone, R.A., Tarsis, S.L., Storch, D.: Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. - Am. J. Bot. 77: 370-380, 1990. Go to original source...
  34. McCree, K.J.: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. - Agr. Meteorol. 9: 191-216, 1972.
  35. Melis, A.: Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. - Philos. T. Roy. Soc. B 323: 397-409, 1989. Go to original source...
  36. Merzlyak, M.N., Chivkunova, O.B., Solovchenko, A.E., Naqvi, K.R.: Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. - J. Exp. Bot. 59: 3903-3911, 2008. Go to original source...
  37. Ralph, P.J., Durako, M.J., Enríquez, S., Collier, C.J., Doblin, M.A.: Impact of light limitation on seagrasses. - J. Exp. Mar. Biol. Ecol. 350: 176-193, 2007. Go to original source...
  38. Ritchie, R.J.: Photosynthesis in the Blue Water Lily (Nymphaea caerulea Saligny) using PAM fluorometry. - Int. J. Plant Sci. 173: 124-136, 2012. Go to original source...
  39. Ritchie, R.J.: The use of solar radiation by a photosynthetic bacterium living as a mat or in a shallow pond or flatbed reactor. - Photochem. Photobiol. 89: 1143-1162, 2013. Go to original source...
  40. Ritchie, R.J.: Photosynthesis in an encrusting lichen [Dirinaria picta (Sw.) Schaer.ex Clem., Physiaceae] and its symbiont, Trebouxia sp, using PAM fluorometry. - Int. J. Plant Sci. 175: 450-466, 2014. Go to original source...
  41. Ritchie, R.J., Bunthawin, S.: The Use of PAM (Pulse Amplitude Modulation) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium spp. (D. cv. Viravuth Pink). - Int. J. Plant Sci. 171: 575-585, 2010a. Go to original source...
  42. Ritchie, R.J., Bunthawin, S.: Photosynthesis in Pineapple [Ananas comosus comosus (L.) Merr] Measured Using PAM (Pulse Amplitude Modulation) Fluorometry. - Trop. Plant Biol. 3: 193-203, 2010b. Go to original source...
  43. Ritchie, R.J., Runcie, J.W.: Photosynthetic electron transport in an anoxygenic photosynthetic bacterium afifella (Rhodopseudomonas) marina measured using PAM fluorometry. - Photochem. Photobiol. 89: 370-383, 2013. Go to original source...
  44. Rodríguez-Román, A., Hernández-Pech, X., Thomé, P.E. et al.: Photosynthesis and light utilization in the Caribbean Coral Montastraea faveolata recovering from a bleaching event. - Limnol. Oceanogr. 51: 2702-2710, 2006. Go to original source...
  45. Runcie, J.W., Durako, M.J.: Among-shoot variability and leafspecific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. - Aquat. Bot. 80: 209-220, 2004. Go to original source...
  46. Schreiber, U., Bilger, W.; Neubauer, C.: Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis: Ecological Studies, 100. Pp. 49-70. Springer, Berlin, 1995.
  47. Schultz, H.R.: Leaf absorptance of visible radiation in Vitis vinifera L. estimates of age and shade effects with a simple field method. - Sci. Hortic.-Amsterdam 66: 93-102, 1996. Go to original source...
  48. Solhaug, K.A., Larsson, P., Gauslaa, Y.: Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments. - Planta 231:1003-1011, 2010. Go to original source...
  49. Solhaug, K.A., Gauslaa, Y., Nybakken, L., Bilger, W.: UV-induction of sun-screening pigments in lichens. - New Phytol. 158: 91-100, 2003. Go to original source...
  50. Stambler, N., Dubinsky, Z.: Corals as light collectors: an integrating sphere approach. - Coral Reefs 24: 1-9, 2005. Go to original source...
  51. Stemke, J.A., Santiago, L.S.: Consequences of light absorptance in calculating electron transport rate of desert and succulent plants. - Photosynthetica 49: 195-200, 2011. Go to original source...
  52. Terashima, I., Fujita, T., Inoue T, Chow, W.S., Oguchi. R.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. - Plant Cell Physiol. 50: 684-697, 2009. Go to original source...
  53. Valladares, F., Skillman, J.B., Pearcy, R.W.: Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: a case of morphological compensation. - Am. J. Bot. 89: 1275-1284, 2002. Go to original source...