Photosynthetica 2013, 51(3):457-464 | DOI: 10.1007/s11099-013-0046-x

Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia

H. C. S. Nascimento1, R. A. Marenco2,*
1 National Institute for Research in the Amazon, Botany Graduate Program, Manaus, AM, Brazil
2 Coordination of Environment Dynamic, Tree Ecophysiology Laboratory, Manaus, AM, Brazil

Mesophyll conductance (g m) is essential to determine accurate physiological parameters used to model photosynthesis in forest ecosystems. This study aimed to determine the effects of time of day on photosynthetic parameters, and to assess the effect of using either intercellular CO2 concentration (C i) or chloroplast CO2 concentration (C c), on maximum carboxylation velocity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), V cmax. We used Amazonian saplings of Myrcia paivae and Minquartia guianensis. Photosynthetic parameters were measured using an infrared gas analyzer (IRGA); g m was determined using both gas exchange and chlorophyll (Chl) a fluorescence and gas-exchange data alone. Leaf thickness (L T) and specific leaf area (SLA) were also measured. Air temperature, relative humidity or understory light did not correlate with g m and on average daily IRGA-fluorometer-determined g m was 0.04 mol(CO2) m-2 s-1 for M. paivae and 0.05 mol(CO2) m-2 s-1 for M. guianensis. Stomatal conductance (g s), g m, electron transport rate (J F), and light-saturated net photosynthetic rate (P Nmax) were lower in the afternoon than in the morning. However, no effect of time of day was observed on V cmax. L T and SLA did not affect any of the examined parameters. IRGA-determined g m was almost the double of the value obtained using the IRGA-fluorescence method. V cmax values determined using C c were about 25% higher than those obtained using C i, which highlighted the importance of using C c in V cmax calculation. Decline in P Nmax at the end of the afternoon reflected variations in g s and g m rather than changes in V cmax. Diurnal variation in g m appeared to be associated more with endogenous than with atmospheric factors.

Keywords: chloroplast carbon dioxide concentration; electron transport rate; maximum carboxylation velocity of Rubisco; stomatal conductance

Received: October 26, 2012; Accepted: February 21, 2013; Published: September 1, 2013Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Nascimento, H.C.S., & Marenco, R.A. (2013). Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. Photosynthetica51(3), 457-464. doi: 10.1007/s11099-013-0046-x.
Download citation

References

  1. Azevedo, G.F.C., Marenco, R.A.: Growth and physiological changes in saplings of Minquartia guianensis and Swietenia macrophylla during acclimation to full sunlight. - Photosynthetica 50: 86-94, 2012. Go to original source...
  2. Camargo, M.A., Marenco, R.A.: Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. - Acta Amaz. 41: 205-212, 2011. Go to original source...
  3. Carswell, F.E., Meir, P., Wandelli, E.V. et al.: Photosynthetic capacity in a central Amazonian rain forest. - Tree Physiol. 20: 179-186, 2000. Go to original source...
  4. Cursino, L.M.D., Nunez, C., Paula, R.C. et al.: Triterpenes from Minquartia guianensis (Olacaceae) and in vitro antimalarial activity. - Química Nova 35: 2165-2168, 2012. Go to original source...
  5. Dias, D.P.: [Photosynthesis and diameter increment of trees as a function of temperature and precipitation in a terra-firme rain forest in central Amazonia.] - PhD. Thesis. Forest Science Graduate Program. Instituto Nacional de Pesquisas da Amazônia, Manaus 2009. [In Portuguese]
  6. Dodd, A.N., Salathia, N., Hall, A., et al.: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. - Science 309: 630-633, 2005. Go to original source...
  7. Domingues, T.F., Martinelli, L.A., Ehleringer, J.R.: Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. - Plant Ecol. 193: 101-112, 2007. Go to original source...
  8. Doughty, C.E., Goulden, M.L., Miller, S.D., Da Rocha, H.R.: Circadian rhythms constrain leaf and canopy gas exchange in an Amazonian Forest. - Geophys. Res. Lett. 33: 1-5, 2006. doi: 10.1029/2006GL026750 Go to original source...
  9. Epron, D., Godard, D., Cornic, G., Genty, B.: Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). - Plant Cell Environ. 18: 43-51, 1995. Go to original source...
  10. Evans, J.R., Loreto, F.: Acquisition and diffusion of CO2 in higher plant leaves. - In: Leegood R.C, Sharkey, TD, von Caemmerer, S (ed.): Photosynthesis: Physiology and Metabolism. Dordrecht: Kluwer Academic Publishers, Pp. 321-351, 2000.
  11. Evans, J.R., von Caemmerer, S., Setchell, B.A., Hudson, G.S.: The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. - Aust. J. Plant Physiol. 21: 475-495, 1994. Go to original source...
  12. Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  13. Flexas, J., Escalona, J.M., Medrano, H.: Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. - Plant Cell Environ. 22: 39-48, 1999. Go to original source...
  14. Flexas, J., Diaz-Espejo, A., Galmes, J. et al.: Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. - Plant Cell Environ. 30: 1284-1298, 2007. Go to original source...
  15. Flexas, J., Ribas-Carbo, M., Diaz-Espejo, A., Galmes, J., Medrano, H.: Mesophyll conductance to CO2: current knowledge and future prospects. - Plant Cell Environ. 31: 602-621, 2008. Go to original source...
  16. Flexas, J., Barbour, M.M., Brendel, O. et al.: Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. - Plant Sci. 193: 70-84, 2012. Go to original source...
  17. Gaastra, P.: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. - Meded. Landbouwhogesch. 58: 1-68, 1959.
  18. Grassi, G., Ripullone, F., Borghetti, M., Raddi, S., Magnani, F.: Contribution of diffusional and non-diffusional limitations to midday depression of photosynthesis in Arbutus unedo L. - Trees 23: 1149-1161, 2009. Go to original source...
  19. Gilbert, M.E., Pou, A., Zwieniecki, M.A., Holbrook, N.M.: On measuring the response of mesophyll conductance to carbon dioxide with the variable J method. - J. Exp. Bot. 63: 413-425, 2012. Go to original source...
  20. Harley, P.C., Loreto, F., Di Marco, G., Sharkey, T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. - Plant Physiol. 98: 1429-1436, 1992. Go to original source...
  21. Hrstka, M., Urban, O., Petru, E., Babák, L.: Diurnal regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and its content in Norway spruce needles. - Photosynthetica 45: 334-339, 2007. Go to original source...
  22. Ishida, A., Toma, T., Marjenah.: Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree. - Tree Physiol. 19: 467-473, 1999. Go to original source...
  23. Kaiser, H., Kappen, L.: In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey. - J. Exp. Bot. 51: 1741-1749, 2000. Go to original source...
  24. Keenan, T., Sabate, S., Gracia, C.: The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods. - Glob. Change Biol. 16: 1019-1034, 2010. Go to original source...
  25. Kumar, A., Turner, N.C., Singh, D.P. et al.: Diurnal and seasonal patterns of water potential, photosynthesis, evapotranspiration and water use efficiency of clusterbean. - Photosynthetica 37: 601-607, 1999. Go to original source...
  26. Long, S.P., Bernacchi, C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Proceduces and sources of error. - J. Exp. Bot. 54: 2393-2401, 2003. Go to original source...
  27. Lopez, M., Bousser, A.S., Sissoeff, I., Gaspar, M., Lachaise, B., Hoarau, J., Mahe, A.: Diurnal regulation of water transport and aquaporin gene expression in maize roots: Contribution of PIP2 proteins. - Plant Cell Environ. 44: 1384-1395, 2003. Go to original source...
  28. Magalhães, N.S.: [Growth and diurnal variation in photosynthesis and stomatal conductance in five Amazonian tree species]. - MSc. Dissertation. Botany Graduate Program. Instituto Nacional de Pesquisas da Amazônia, Manaus 2010. [In Portuguese]
  29. Magalhães Filho, J.R., Machado, E.C., Machado, D.F.S.P. et al.: [Root temperature variation and photosynthesis of 'Valencia' sweet orange nursery]. - Pesqui. Agropecu. Bras. 44: 1118-1126, 2009. [In Portuguese] Go to original source...
  30. Manter, D.K., Kerrigan, J.: A/C i curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. - J. Exp. Bot. 55: 2581-2588, 2004. Go to original source...
  31. Marles, R.J., Farnsworth, N.R., Neill, D.A.: Isolation of a novel cyto-toxic polyacetylene from a traditional anthelmintic medicinal plant, Minquartia guianensis. - J. Nat. Prod. 52: 261-266, 1989. Go to original source...
  32. Massacci, A., Nabiev, S.M., Pietrosanti, L. et al.: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. - Plant Physiol. Biochem. 46: 189-195, 2008. Go to original source...
  33. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  34. McClung, C.R.: Circadian rhythms in plants: a millennial view. - Physiol. Plant. 109: 359-371, 2000. Go to original source...
  35. Medrano, H., Escalona, J.M., Bota, J., Gulias, J., Flexas, J.: Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. - Ann. Bot. 89: 895-905, 2002. Go to original source...
  36. Medlyn, B.E., Badeck, F.W., De Pury, D.G.G. et al.: Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. - Plant Cell Environ. 22: 1475-1495, 1999. Go to original source...
  37. Mendes, K.R.: [Influence of circadian rhythms on stomatal conductance and photosynthesis in saplings of forest tree species in Central Amazonia]. - PhD. Thesis. Botany Graduate Program. Instituto Nacional de Pesquisas da Amazônia, Manaus 2012. [In Portuguese]
  38. Mendes, K.R., Marenco, R.A.: Leaf traits and gas exchange in saplings of native tree species in the Central Amazon. - Sci. Agr. 67: 624-632, 2010. Go to original source...
  39. Nebel, G.: Minquartia guianensis Aubl.: use, ecology and management in forestry and agroforestry. - Forest Ecol. Manag. 150: 115-124, 2001. Go to original source...
  40. Oliveira, A.A., Mori, S.A.: A central Amazonian terra firme forest. I. High tree species richness on poor soils. - Biodivers. Conserv. 8: 1219-1244, 1999. Go to original source...
  41. Park, S.Y, Furukawa, A.: Photosynthetic and stomatal responses of two tropical and two temperate trees to atmospheric humidity. - Photosynthetica 36: 181-186, 1999. Go to original source...
  42. Parry, M.A.J., Delgado, E., Vadell, J. et al.: Water stress and the diurnal activity of ribulose-1,5-bisphosphate carboxylase in field Nicotina tabacum genotypes selected for survival at low CO2 concentrations. - Plant Physiol. Biochem. 31: 113-120, 1993.
  43. Pons, T.L., Flexas, J., von Caemmerer, S. et al.: Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. - J. Exp. Bot. 60: 2217-2234, 2009. Go to original source...
  44. Sarda, X., Tousch, D., Ferrare, K. et al.: Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. - Plant J. 12: 1103-1111, 1997. Go to original source...
  45. Schultes, R.E., Raffauf, R.F.: Sundry notes on medicinal or toxic plants of northwest Amazon. - Harv. Pap. Bot. 4: 31-42, 1993.
  46. Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaas, E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. - Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  47. Simon, E., Meixner, F.X., Ganzeveld, L., Kesselmeier, J.: Coupled carbon-water exchange of the Amazon rain forest, I. Model description, parameterization and sensitivity analysis. Biogeosciences 2: 231-253, 2005. Go to original source...
  48. Steege, H.T., Pitman, N., Sabatier, D., et al.: A spatial model of tree α-diversity and tree density for the Amazon. - Biodivers. Conserv. 12: 2255-2277, 2003. Go to original source...
  49. Syvertsen, J.P., Lloyd, J., McConchie, C. et al.: On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. - Plant Cell Environ. 18: 149-157, 1995. Go to original source...
  50. Villar, R., Held, A.A., Merino, J.: Comparison of methods to estimate dark respiration in the light in leaves of two woody species. - Plant Physiol. 105: 167-172, 1994. Go to original source...
  51. Warren, C.R.: The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. - J. Exp. Bot. 55: 2313-2321, 2004. Go to original source...
  52. Warren, C.R.: Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. - J. Exp. Bot. 59: 1475-1487, 2008.