Photosynthetica 2017, 55(4):698-704 | DOI: 10.1007/s11099-017-0687-2

Photosynthetic apparatus activity in relation to high and low contents of cell wall-bound phenolics in triticale under drought stress

K. Hura1, A. Ostrowska2, K. Dziurka2, T. Hura2,*
1 Faculty of Agriculture and Economics, Department of Plant Physiology, University of Agriculture in Kraków, Kraków, Poland
2 The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland

Cell wall-bound phenolics (CWP) play an important role in the mechanisms of plant acclimation to soil drought. The study involved CWP analyses in 50 strains and 50 doubled haploid (DH) lines of winter triticale exposed to drought at their vegetative and generative stages. CWP in the plants experiencing drought at the generative stage positively correlated with their leaf water contents. The strains and DH lines characterized by high content of CWP showed higher leaf water content and higher activity of photosynthetic apparatus when exposed to drought at the generative stage compared to the strains and DH lines with the low CWP content. Furthermore, when drought subsided at the generative stage, the strains and DH lines richer in CWP demonstrated higher regeneration potential and their grain yield loss was smaller.

Keywords: chlorophyll fluorescence; doubled haploids; leaf water content; strains; × Triticosecale Witt.; yield

Received: July 7, 2016; Accepted: December 13, 2016; Published: December 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hura, K., Ostrowska, A., Dziurka, K., & Hura, T. (2017). Photosynthetic apparatus activity in relation to high and low contents of cell wall-bound phenolics in triticale under drought stress. Photosynthetica55(4), 698-704. doi: 10.1007/s11099-017-0687-2.
Download citation

References

  1. Alexieva V., Sergiev I., Mapelli S., Karanov E.: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. - Plant Cell Environ. 24: 1337-1344, 2001. Go to original source...
  2. Ammar K., Mergoum M., Rajaram S.: The history and evolution of triticale.-In: Mergoum M., Gomez-Macpherson H. (ed.): Triticale Improvement and Production. Plant Production and Protection Paper 179. Pp. 9. FAO, Rome 2004.
  3. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  4. Barnabás B., Jäger K., Fehér A.: The effect of drought and heat stress on reproductive processes in cereals. - Plant Cell Environ. 31: 11-38, 2008.
  5. Barthod S., Cerovic Z., Epron D.: Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? - J. Exp. Bot. 58: 1753-1760, 2007. Go to original source...
  6. Bernards M.A., Susag L.M., Bedgar D.L. et al.: Induced phenylpropanoid metabolism during suberization and lignification: A comparative analysis. - J. Plant Physiol. 157: 601-607, 2000. Go to original source...
  7. Bilger W., Johnsen T., Schreiber U.: UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. - J. Exp. Bot. 52: 2007-2014, 2001.
  8. Bouchereau A., Clossais-Besnard N., Bensaoud A. et al.: Water stress effects on rapeseed quality. - Eur. J. Agron. 5: 19-30, 1996. Go to original source...
  9. Burchard P., Bilger W., Weissenböck G.: Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. - Plant Cell Environ. 23: 1373-1380, 2000. Go to original source...
  10. Close D.C., McArthur C., Hagerman A.E. et al.: Phenolic acclimation to ultraviolet-A irradiation in Eucalyptus nitens seedlings raised across a nutrient environment gradient. - Photosynthetica 45: 36-42, 2007. Go to original source...
  11. Estiarte M., Filella I., Serra J., Peñuelas J.: Effects of nutrient and water stress on leaf phenolic content of peppers and susceptibility to generalist herbivore Helicoverpa armigera (Hubner). - Oecologia 99: 387-391, 1994. Go to original source...
  12. Fry S.C.: Phenolic components of the primary cell wall. - Biochem. J. 203: 493-504, 1982. Go to original source...
  13. Fry S.C.: Phenolic components of the primary cell wall and their possible role in the hormonal regulation of growth. - Planta 146: 343-351, 1979. Go to original source...
  14. García-Plazaola J.I., Becerril J.M.: Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. - Trees 14: 485-490, 2000. Go to original source...
  15. Graça J., Santos S.: Suberin: a biopolyester of plants' skin. - Macromol. Biosci. 7: 128-135, 2007.
  16. Grzesiak S., Grzesiak M., Hura T.: Effects of soil drought during the vegetative phase of seedling growth on the uptake of 14CO2 and the accumulation and translocation of 14C in cultivars of field bean (Vicia faba L. var. minor) and field pea (Pisum sativum L.) of different drought tolerance. - J. Agron. Crop Sci. 183: 183-192, 1999. Go to original source...
  17. Hoagland D.R.: Lectures on the Inorganic Nutrition of Plants. Pp. 136. Chronica Botanica Co., Waltham 1948.
  18. Hura T., Grzesiak S., Hura K. et al.: Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: Accumulation of ferulic acid correlates with drought tolerance. - Ann. Bot.-London 100: 767-775, 2007. Go to original source...
  19. Hura T., Hura K., Grzesiak S.: Possible contribution of cell-wallbound ferulic acid in drought resistance and recovery in triticale seedlings. - J. Plant Physiol. 166: 1720-1733, 2009a. Go to original source...
  20. Hura T., Hura K., Grzesiak S.: Physiological and biochemical parameters for identification of QLs controlling the winter triticale drought tolerance at the seedling stage. - Plant Physiol. Bioch. 47: 210-214, 2009b.
  21. Hura T., Hura K., Grzesiak M.: Soil drought applied during the vegetative growth of triticale modifies the physiological and biochemical adaptation to drought during the generative development. - J. Agron. Crop Sci. 197: 113-123, 2011. Go to original source...
  22. Hura T., Hura K., Dziurka K. et al.: An increase in the content of cell wall-bound phenolics correlates with the productivity of triticale under soil drought. - J. Plant Physiol. 169: 1728-1736, 2012. Go to original source...
  23. Hura T., Hura K., Ostrowska A. et al.: The cell wall-bound phenolics as a biochemical indicator of soil drought resistance in winter triticale. - Plant Soil Environ. 59: 189-195, 2013. Go to original source...
  24. Ji X., Shiran B., Wan J. et al.: Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. - Plant Cell Environ. 33: 926-942, 2010. Go to original source...
  25. Kamisaka S.. Takeda S, Takahashi K., Shibata K.: Diferulic and ferulic acid in the cell wall of Avena coleoptiles: their relationships to mechanical properties of the cell wall. - Physiol. Plantarum 78: 1-7, 1990. Go to original source...
  26. Kolb C.A., Käser M.A., Kopecký J. et al.: Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. - Plant Physiol. 127: 863-875, 2001. Go to original source...
  27. Kolb C.A., Pfündel E.E.: Origins of non-linear and dissimilar relationships between epidermal UV absorbance and UV absorbance of extracted phenolics in leaves of grapevine and barley. - Plant Cell Environ. 28: 580-590, 2005. Go to original source...
  28. Lu C., Zhang J.: Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. - Aust. J. Plant Physiol. 25: 883-892, 1998. Go to original source...
  29. Ma Q.Q., Wang W., Li Y.H. et al.: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. - J. Plant Physiol. 163: 165-175, 2006. Go to original source...
  30. Mergoum M., Pfeiffer W.H., Pena R.J.: Triticale crop improvement: the CIMMYT programme.-In: Mergoum M., Gomez-Macpherson H. (ed.): Triticale Improvement and Production. FAO Plant Production and Protection Paper 179. Pp. 11-26. FAO, Rome 2004.
  31. Quarrie S.A., Stojanović J., Pekić S.: Improving drought resistance in small-grained cereals: A case study, progress and prospects. - Plant Growth Regul. 29: 1-21, 1999. Go to original source...
  32. Rosales M.A., Ocampo E., Rodríguez-Valentín R.: Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. - Plant Physiol. Bioch. 56: 24-34, 2012. Go to original source...
  33. Sánchez-Rodríguez E., Rubio-Wilhelmi M.M., Cervilla L.M.: Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. - Plant Sci. 178: 30-40, 2010. Go to original source...
  34. Semerdjieva S.I., Sheffield E., Phoenix G.K.: Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs. - Plant Cell Environ. 26: 957-964, 2003. Go to original source...
  35. Shen X F., Dong Z.X., Chen Y.: Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize. - Acta Physiol. Plant. 37: 1-8, 2015. Go to original source...
  36. Singleton V.S., Rossi J.A.Jr.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. - Am. J. Enol. Viticult. 16: 144-157, 1965.
  37. Strasser R.J., Tsimilli-Michael M.: Stress in plants, from daily rhythm to global changes, detected and quantified by the JIPtest. - Chim. Nouvelle 75: 3321-3326, 2001.
  38. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  39. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  40. Wakabayashi K., Hoson T., Kamisaka S.: Osmotic stress suppresses cell wall stiffening and the increase in cell wallbound ferulic and diferulic acids in wheat coleoptiles. - Plant Physiol. 113: 967-973, 1997. Go to original source...
  41. Zhou R., Su W.H., Zhang G.F. et al.: Relationship between flavonoids and photoprotection in shade-developed Erigeron breviscapus transferred to sunlight. - Photosynthetica 54: 201-209, 2016. Go to original source...