Photosynthetica 2016, 54(2):295-306 | DOI: 10.1007/s11099-016-0193-y

Chilling tolerance and early vigour-related characteristics evaluated in two Miscanthus genotypes

S. Fonteyne1,2, P. Lootens1,*, H. Muylle1, W. van den Ende3, T. de Swaef1, D. Reheul2, I. Roldan-Ruiz1
1 Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
2 Department of Plant Production, Ghent University, Ghent, Belgium
3 Laboratory of Molecular Plant Biology, Katholic University Leuven, Leuven, Belgium

A long growing season, mediated by the ability to grow at low temperatures early in the season, can result in higher yields in biomass of crop Miscanthus. In this paper, the chilling tolerance of two highly productive Miscanthus genotypes, the widely planted Miscanthus × giganteus and the Miscanthus sinensis genotype 'Goliath', was studied. Measurements in the field as well as under controlled conditions were combined with the main purpose to create basic comparison tools in order to investigate chilling tolerance in Miscanthus in relation to its field performance. Under field conditions, M. × giganteus was higher yielding and had a faster growth rate early in the growing season. Correspondingly, M. × giganteus displayed a less drastic reduction of the leaf elongation rate and of net photosynthesis under continuous chilling stress conditions in the growth chamber. This was accompanied by higher photochemical quenching and lower nonphotochemical quenching in M. × giganteus than that in M. sinensis 'Goliath' when exposed to chilling temperatures. No evidence of impaired stomatal conductance or increased use of alternative electron sinks was observed under chilling stress. Soluble sugar content markedly increased in both genotypes when grown at 12°C compared to 20°C. The concentration of raffinose showed the largest relative increase at 12°C, possibly serving as a protection against chilling stress. Overall, both genotypes showed high chilling tolerance for C4 plants, but M. × giganteus performed better than M. sinensis 'Goliath'. This was not due to its capacity to resume growth earlier in the season but rather due to a higher growth rate and higher photosynthetic efficiency at low temperatures.

Keywords: bioenergy crop; chlorophyll fluorescence; cold tolerance; leaf growth analysis; low temperature stress

Received: June 23, 2015; Accepted: December 3, 2015; Published: June 1, 2016Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Fonteyne, S., Lootens, P., Muylle, H., van den Ende, W., de Swaef, T., Reheul, D., & Roldan-Ruiz, I. (2016). Chilling tolerance and early vigour-related characteristics evaluated in two Miscanthus genotypes. Photosynthetica54(2), 295-306. doi: 10.1007/s11099-016-0193-y.
Download citation

References

  1. Anderson E., Arundale R., Maughan M. et al.: Growth and agronomy of Miscanthus × giganteus for biomass production. - Biofuels 2: 167-183, 2011. Go to original source...
  2. Arnoult S., Obeuf A., Béthencourt L. et al.: Miscanthus clones for cellulosic bioethanol production: Relationships between biomass production, biomass production components, and biomass chemical composition. - Ind. Crops Prod. 63: 316-328, 2015. Go to original source...
  3. Arredondo J.T., Schnyder H.: Components of leaf elongation rate and their relationship to specific leaf area in contrasting grasses. - New Phytol. 158: 305-314, 2003. Go to original source...
  4. Bhosale S.U., Rymen B., Beemster G.T.S. et al.: Chilling tolerance of Central European maize lines and their factorial crosses. - Ann. Bot. 100: 1315-1321, 2007. Go to original source...
  5. Bultynck L., Ter Steege M.W., Schortemeyer M. et al.: From individual leaf elongation to whole shoot leaf area expansion: a comparison of three Aegilops and two Triticum species. - Ann. Bot. 94: 99-108, 2004. Go to original source...
  6. Chenu K., Chapman S.C., Hammer G.L. et al.: Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. - Plant Cell Environ. 31: 378-391, 2008. Go to original source...
  7. Clifton-Brown J.C., Jones M.B.: The thermal response of leaf extension rate in genotypes of the C4-grass Miscanthus: an important factor in determining the potential productivity of different genotypes. - J. Exp. Bot. 48: 1573-1581, 1997. Go to original source...
  8. Dohleman F.G., Long S.P.: More productive than maize in the Midwest: How does Miscanthus do it? - Plant Physiol. 150: 2104-2115, 2009. Go to original source...
  9. Domon J-M., Baldwin L., Acket S. et al.: Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. - Phytochemistry 85: 51-61, 2013. Go to original source...
  10. Du Y., Nose A.: Effects of chilling temperature on the activity of enzymes of sucrose synthesis and the accumulation of saccharides in leaves of three sugarcane cultivars differing in cold sensitivity. - Photosynthetica 40: 389-395, 2002. Go to original source...
  11. Equiza M., Mirave J., Tognetti J.: Differential inhibition of shoot vs. root growth at low temperature and its relationship with carbohydrate accumulation in different wheat cultivars. - Ann. Bot. 80: 657-663, 1997. Go to original source...
  12. Farage P.K., Blowers D., Long S.P. et al.: Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus. - Plant Cell Environ. 29: 720-728, 2006. Go to original source...
  13. Farrell A.D., Clifton-Brown J.C., Lewandowski I. et al.: Genotypic variation in cold tolerance influences the yield of Miscanthus. - Ann. Appl. Biol. 149: 337-345, 2006. Go to original source...
  14. Fracheboud Y., Haldimann P., Leipner J. et al.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). - J. Exp. Bot. 50: 1533-1540, 1999. Go to original source...
  15. Friesen P.C., Peixoto M.M., Busch F. et al.: Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates. - J. Exp. Bot. 63: 3749-3758, 2014. Go to original source...
  16. Fryer M., Andrews J., Oxborough K. et al: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. - Plant Physiol. 116: 571-580, 1998. Go to original source...
  17. Genty B., Briantais J.-M., Baker N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim Biophys Acta 990: 87-92, 1989. Go to original source...
  18. Glowacka K., Adhikari S., Peng J. et al.: Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus × giganteus. - J. Exp. Bot. 65: 5267-5278, 2014. Go to original source...
  19. Glowacka K., Jorgensen U., Kjeldsen J.B. et al.: Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection. - Ann. Bot. 115: 981-990, 2015. Go to original source...
  20. Greef J., Deuter M.: Syntaxonomy of Miscanthus × giganteus Greef et Deu. - Angew. Bot. 67: 87-90, 1993.
  21. Heaton E., Voigt T., Long S.P.: A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. - Biomass Bioenerg. 27: 21-30, 2004. Go to original source...
  22. Hodges D., Andrews C.: Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. - J. Exp. Bot. 48: 1105-1113, 1997. Go to original source...
  23. Janská A., Marsík P., Zelenková S. et al.: Cold stress and acclimation - what is important for metabolic adjustment? - Plant Biol. 12: 395-405, 2010. Go to original source...
  24. Kao W., Tsai T., Chen W.: A comparative study of Miscanthus floridulus (Labill) Warb and M. transmorrisonensis Hayata: photosynthetic gas exchange, leaf characteristics and growth in controlled environments. - Ann. Bot. 81: 295-299, 1998. Go to original source...
  25. Keunen E., Peshev D., Vangronsveld J. et al.: Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept. - Plant Cell Environ. 36: 1242-1255, 2013. Go to original source...
  26. Koster K.L., Lynch D.V.: Solute accumulation and compartmentation during the cold acclimation of Puma Rye. - Plant Physiol. 98: 108-113, 1992. Go to original source...
  27. Larsen S.U., Jørgensen U., Kjeldsen J.B. et al.: Long-term Miscanthus yields influenced by location, genotype, row distance, fertilization and harvest season. - BioEnergy Res. 7: 620-635, 2013.
  28. Leipner J., Fracheboud Y., Stamp P.: Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. - Environ. Exp. Bot. 42: 129-139, 1999. Go to original source...
  29. Lesur C., Jeuffroy M-H., Makowski D. et al.: Modeling longterm yield trends of Miscanthus × giganteus using experimental data from across Europe. - F. Crop Res. 149: 252-260, 2013. Go to original source...
  30. Lewandowski I., Clifton-Brown J.C., Scurlock J.M. et al.: Miscanthus: European experience with a novel energy crop. - Biomass Bioenerg. 19: 209-227, 2000. Go to original source...
  31. Lewandowski I., Scurlock J., Lindvall E. et al.: The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. - Biomass Bioenerg. 25: 335-361, 2003. Go to original source...
  32. Long S.P., Spence A.K.: Toward cool C(4) crops. - Annu. Rev. Plant Biol. 64: 701-722, 2013. Go to original source...
  33. Lootens P., Van Waes J., Carlier L.: Effect of a short photoinhibition stress on photosynthesis, chlorophyll a fluorescence, and pigment contents of different maize cultivars. Can a rapid and objective stress indicator be found? - Photosynthetica 42: 187-192, 2004. Go to original source...
  34. Matros A., Peshev D., Peukert M. et al.: Sugars as hydroxyl radical scavengers. Proof-of-concept by studying the fate of sucralose in Arabidopsis. - Plant J. 82: 822-839, 2015. Go to original source...
  35. Miguez F.E., Villamil M.B., Long S.P. et al.: Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. - Agric. For. Meteorol. 148: 1280-1292, 2008. Go to original source...
  36. Morsy M.R., Jouve L., Hausman J-F. et al.: Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. - J. Plant Physiol. 164: 157-167, 2007. Go to original source...
  37. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  38. Muylle H., Van Hulle S., De Vliegher A. et al.: Dry matter yield and energy balance of annual and perennial lignocellulosic crops for bio-refinery use: a four-year field experiment in Belgium. - Eur. J. Agron. 63: 62-70, 2015. Go to original source...
  39. Nägele T., Heyer A.G.: Approximating subcellular organisation of carbohydrate metabolism during cold acclimation in different natural accessions of Arabidopsis thaliana. - New Phytol. 198: 777-787, 2013. Go to original source...
  40. Nägele T., Stutz S., Hörmiller I. et al.: Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana. - Plant J. 72: 102-114, 2012. Go to original source...
  41. Naidu S.L., Long S.P.: Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: an in vivo analysis. - Planta 220: 145-155, 2004. Go to original source...
  42. Nishizawa A., Yabuta Y., Shigeoka S.: Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. - Plant Physiol. 147: 1251-1263, 2008. Go to original source...
  43. Peter R., Eschholz T.W., Stamp P. et al.: Swiss Flint maize landraces. - A rich pool of variability for early vigour in cool environments. - F. Crop Res. 110: 157-166, 2009. Go to original source...
  44. Purdy S.J., Maddison A.L., Jones L.E. et al.: Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. × giganteus compared with M. sinensis and M. sacchariflorus. - Ann. Bot. 111: 999-1013, 2013. Go to original source...
  45. Robson P., Jensen E., Hawkins S. et al.: Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus. - J. Exp. Bot. 64: 4143-55, 2013a. Go to original source...
  46. Robson P., Mos M., Clifton-Brown J. et al.: Phenotypic variation in senescence in Miscanthus: towards optimising biomass quality and quantity. - BioEnergy Res. 5: 95-105, 2011.
  47. Robson P.R.H., Farrar K., Gay A.P. et al.: Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. - J. Exp. Bot. 64: 2373-83, 2013b. Go to original source...
  48. Rymen B., Fiorani F., Kartal F. et al.: Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. - Plant Physiol. 143: 1429-1438, 2007. Go to original source...
  49. Sadok W., Naudin P., Boussuge B. et al.: Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. - Plant Cell Environ. 30: 135-146, 2007. Go to original source...
  50. Schneider T., Keller F.: Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope. - Plant Cell Physiol. 50: 2174-2182, 2009. Go to original source...
  51. Spence A.K., Boddu J., Wang D. et al.: Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus × giganteus. - J. Exp. Bot. 65: 3737-3747, 2014. Go to original source...
  52. Tarkowski L.P., Van den Ende W.: Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. - Front Plant Sci. 6: 203, doi: 10.3389/fpls.2015.00203, 2015. Go to original source...
  53. Valluru R., Van den Ende W.: Plant fructans in stress environments: emerging concepts and future prospects. - J. Exp. Bot. 59: 2905-16, 2008. Go to original source...
  54. Van den Ende W., El-Esawe S.K.: Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses? - Environ. Exp. Bot. 108: 4-13, 2013. Go to original source...
  55. Van Hulle S., Van Waes C., De Vliegher A. et al.: Comparison of dry matter yield of lignocellulosic perennial energy crops in a longterm Belgian field experiment. - In: 24th General Meeting of the European Grassland Federation, Lublin 2012.
  56. Vargas L.A., Andersen M.N., Jensen C.R. et al.: Estimation of leaf area index, light interception and biomass accumulation of Miscanthus sinensis "Goliath" from radiation measurements. - Biomass Bioenerg. 22: 1-14, 2002. Go to original source...
  57. Voorend W., Lootens P., Nelissen H. et al.: LEAF-E: a tool to analyze grass leaf growth using function fitting. - Plant Methods 10: doi: 10.1186/1746-4811-10-37 37, 2014. Go to original source...
  58. Wang D., Portis A.R., Moose S.P. et al.: Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. - Plant Physiol. 148: 557-67, 2008. Go to original source...
  59. Yan J., Chen W., Luo F. et al.: Variability and adaptability of Miscanthus species evaluated for energy crop domestication. - GCB Bioenergy 4: 49-60, 2011. Go to original source...
  60. Zhang J., Xu Y., Chen W., Dell B. et al.: A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. - New Phytol. 205: 293-305, 2015. Go to original source...
  61. Zub H.W., Arnoult S., Brancourt-Hulmel M.: Key traits for biomass production identified in different Miscanthus species at two harvest dates. - Biomass Bioenerg. 35: 637-651, 2011. Go to original source...
  62. Zub H.W., Arnoult S., Younous J. et al.: The frost tolerance of Miscanthus at the juvenile stage: Differences between clones are influenced by leaf-stage and acclimation. - Eur. J. Agron. 36: 32-40, 2012b. Go to original source...
  63. Zub H.W., Brancourt-Hulmel M.: Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. - Agron. Sustain. Dev. 30: 201-214, 2010. Go to original source...
  64. Zub H.W., Rambaud C., Bethencourt L. et al.: Late emergence and rapid growth maximize the plant development of Miscanthus clones. - BioEnergy Res. 5: 841-854, 2012a. Go to original source...