Photosynthetica 2010, 48(4):580-588 | DOI: 10.1007/s11099-010-0075-7

Seasonal variation of photosynthesis and photosynthetic efficiency in Phalaenopsis

B. Pollet1,*, K. Steppe1, P. Dambre2, M. C. Van Labeke3, R. Lemeur1
1 Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Ghent, Belgium
2 Research Centre for Ornamental Plants (PCS), Destelbergen, Belgium
3 Department of Plant Production, Ghent University, Ghent, Belgium

Nowadays, a quest for efficient greenhouse heating strategies, and their related effects on the plant's performance, exists. In this study, the effects of a combination of warm days and cool nights in autumn and spring on the photosynthetic activity and efficiency of Phalaenopsis were evaluated; the latter, being poorly characterised in plants with crassulacean acid metabolism (CAM) and, to our knowledge, not reported before in Phalaenopsis. 24-h CO2 flux measurements and chlorophyll (Chl) fluorescence analyses were performed in both seasons on Phalaenopsis 'Hercules' exposed to relatively constant temperature regimes, 25.5/24.0°C (autumn) and 30/27°C (spring) respectively, and distinctive warm day/cool night temperature regimes, 27/20°C (autumn) and 36/24°C (spring), respectively. Cumulated leaf net CO2 uptake of the distinctive warm day/cool night temperature regimes declined with 10-16% as compared to the more constant temperature regimes, while the efficiency of carbon fixation revealed no substantial differences in both seasons. Nevertheless, a distinctive warm day/cool night temperature regime seemed to induce photorespiration. Although photorespiration is expected not to occur in CAM, the suppression of the leaf net CO2 exchange during Phase II and Phase IV as well as the slightly lower efficiency of carbon fixation for the distinctive warm day/cool night temperature regimes confirms the involvement of photorespiration in CAM. A seasonal effect was reflected in the leaf net CO2 exchange rate with considerably higher rates in spring. In addition, sufficiently high levels of photosynthetically active radiation (PAR) in spring led to an efficiency of carbon fixation of 1.06-1.27% which is about twice as high than in autumn. As a result, only in the case where a net energy reduction between the temperature regimes compensates for the reduction in net CO2 uptake, warm day/cool night temperature regimes may be recommended as a practical sustainable alternative.

Keywords: chlorophyll fluorescence; CO2 assimilation; crassulacean acid metabolism; irradiance; photorespiration; temperature; quantum yield

Received: March 10, 2010; Accepted: October 7, 2010; Published: December 1, 2010Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Pollet, B., Steppe, K., Dambre, P., Labeke, M.C., & Lemeur, R. (2010). Seasonal variation of photosynthesis and photosynthetic efficiency in Phalaenopsis. Photosynthetica48(4), 580-588. doi: 10.1007/s11099-010-0075-7.
Download citation

References

  1. Adams, W.W., Nishida, K., Osmond, C.B.: Quantum yields of CAM plants measured by photosynthetic O2 exchange. - Plant Physiol. 81: 297-300, 1986. Go to original source...
  2. Ali, M.B., Hahn, E.J., Paek, K.Y.: Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. - Plant Physiol. Biochem. 43: 213-223, 2005. Go to original source...
  3. Baker, N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  4. Blanchard, M.G., Runkle E.S.: Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. - J. Exp. Bot. 57: 4043-4049, 2006. Go to original source...
  5. Bolton, J.R., Hall, D.O.: The maximum efficiency of photosynthesis. - Photochem. Photobiol. 53: 545-548, 1991. Go to original source...
  6. Buchanan-Bollig, I.C., Kluge, M.: Crassulacean Acid Metabolism (CAM) in Kalanchoë daigremontiana - Temperature response of phosphoenolpyruvate (PEP)-carboxylase in relation to allosteric effectors. - Planta 152: 181-188, 1981. Go to original source...
  7. Buchanan-Bollig, I.C., Kluge, M., Müller, D.: Kinetic changes with temperature of phosphoenolpyruvate carboxylase from a CAM Plant. - Plant Cell Environ. 7: 63-70, 1984. Go to original source...
  8. Buwalda F., Eveleens B., Wertwijn R.: Ornamental crops tolerate large temperature fluctuations: A potential for more efficient greenhouse heating strategies. - Acta Hort. 515: 141-149, 2000. Go to original source...
  9. Carter, P.J., Wilkins, M.B., Nimmo, H.G., Fewson, C.A.: Effects of temperature on the activity of phosphoenolpyruvate carboxylase and on the control of CO2 fixation in Bryophyllum fedtschenkoi. - Planta 196: 375-380, 1995. Go to original source...
  10. Chen, W.H., Tseng, Y.C., Liu, Y.C., Chuo, C.M., Chen, P.T., Tseng, K.M., Yeh, Y.C., Ger, M.J., Wang, H.L.: Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite. - Plant Cell Rep. 27: 1667-1675, 2008. Go to original source...
  11. Chen, W.S., Liu, H.Y., Liu, Z.H., Yang, L., Chen, W.H.: Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. - Physiol. Plant. 90: 391-395, 1994. Go to original source...
  12. Dodd, A.N., Borland, A.M., Haslam, R.P., Griffiths, H., Maxwell, K.: Crassulacean acid metabolism: plastic, fantastic. - J. Exp. Bot. 53: 569-580, 2002. Go to original source...
  13. Duarte, H.M., Lüttge, U.: Correlation between photorespiration, CO2-assimilation and spatiotemporal dynamics of photosynthesis in leaves of the C3-photosynthesis/crassulacean acid metabolism-intermediate species Clusia minor L. (Clusiaceae). - Trees - Struct. Funct. 21: 531-540, 2007. Go to original source...
  14. Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. - Plant Physiol. 116: 571-580, 1998. Go to original source...
  15. Griffiths, H., Helliker, B., Roberts, A., Haslam, R.P., Girnus, J., Robe, W.E., Borland, A.M., Maxwell, K.: Regulation of Rubisco activity in crassulacean acid metabolism plants: better late than never. - Funct. Plant Biol. 29: 689-696, 2002. Go to original source...
  16. Guo, W.J., Lee, N.: Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. formosa. - J. Amer. Soc. Hortic. Sci. 131: 320-326, 2006. Go to original source...
  17. Ichihashi, S., Higuchi, T., Shibayama, H., Tesima, Y., Nishiwaki, Y., Ota, K.: Aspects of CO2 uptake in the crassulacean acid metabolism orchid Phalaenopsis. - Acta Hort. 766: 245-256, 2008. Go to original source...
  18. Jordan, D.B., Ogren, W.L.: The CO2/O2 specificity of ribulose-1,5-bisphoshate carboxylase/oxygenase dependence on ribulosebisphosphate concentration, pH and temperature. - Planta 161: 308-313, 1984. Go to original source...
  19. Körner, O., Challa, H.: Design for an improved temperature integration concept in greenhouse cultivation. - Comp. Electron. Agr. 39: 39-59, 2003. Go to original source...
  20. Körner, O., Van Straten, G.: Decision support for dynamic greenhouse climate control strategies. - Comp. Electron. Agr. 60: 18-30, 2008. Go to original source...
  21. Lichtenthaler, H.K., Buschmann, C., Knapp, M.: How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. - Photosynthetica 43: 379-393, 2005. Go to original source...
  22. Lootens, P., Heursel, J.: Irradiance, temperature, and carbon dioxide enrichment affect photosynthesis in Phalaenopsis hybrids. - HortScience 33: 1183-1185, 1998. Go to original source...
  23. Lund, J.B., Andreassen, A., Ottosen, C.O., Aaslyng, J.M.: Effect of a dynamic climate on energy consumption and production of Hibiscus rosa-sinensis L. in greenhouses. - HortScience 41: 384-388, 2006. Go to original source...
  24. Lüttge, U.: CO2-concentrating: consequences in crassulacean acid metabolism. - J. Exp. Bot. 53: 2131-2142, 2002. Go to original source...
  25. Lüttge, U.: Ecophysiology of Crassulacean Acid Metabolism (CAM). - Ann. Bot. 93: 629-652, 2004. Go to original source...
  26. Lüttge, U.: Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics. - New Phytol. 171: 7-25, 2006. Go to original source...
  27. Maxwell, K., Badger, M.R., Osmond, C.B.: A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. - Aust. J. Plant Physiol. 25: 45-52, 1998. Go to original source...
  28. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  29. McWilliams, E.L.: Comparative rates of dark CO2 uptake and acidification in Bromeliaceae, Orchidaceae, and Euphorbiaceae. - Bot. Gaz. 131: 285-290, 1970.
  30. Melis, A.: Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. - Plant Sci. 177: 272-280, 2009. Go to original source...
  31. Neales, T.F.: Effect of night temperature on assimilation of carbon-dioxide by mature pineapple plants, Ananas comosus (L) Merr. - Aust. J. Biol. Sci. 26: 539-546, 1973. Go to original source...
  32. Nimmo, H.G.: The regulation of phosphoenolpyruvate carboxylase in CAM plants. - Trends Plant Sci. 5: 75-80, 2000. Go to original source...
  33. Nobel, P.S.: Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodus, in Colorado desert. - Oecologia 27: 117-133, 1977. Go to original source...
  34. Nobel, P.S., Hartsock, T.L.: Relationships between photosynthetically active radiation, nocturnal acid accumulation, and CO2 uptake for a Crassulacean Acid Metabolism plant, Opuntia ficus-indica. - Plant Physiol. 71: 71-75, 1983. Go to original source...
  35. Nobel, P.S., Hartsock, T.L.: Physiological responses of Opuntia ficus-indica to growth temperature. - Physiol. Plant. 60: 98-105, 1984. Go to original source...
  36. Nobel, P.S., Pimienta-Barrios, E., Hernandez, J.Z., Ramirez-Hernandez, B.C.: Historical aspects and net CO2 uptake for cultivated Crassulacean acid metabolism plants in Mexico. - Ann. Appl. Biol. 140: 133-142, 2002. Go to original source...
  37. Osmond, C.B.: Crassulacean acid metabolism: A curiosity in context. - Annu. Rev. Plant. Phys. 29: 379-414, 1978. Go to original source...
  38. Ota, K., Morioka, K., Yamamoto, Y.: Effects of leaf age, inflorescence, temperature, light-intensity and moisture conditions on CAM photosynthesis in Phalaenopsis. - J. Jap. Soc. Hort. Sci. 60: 125-132, 1991. Go to original source...
  39. Pimienta-Barrios, E., Zanudo-Hernandez, J., Garcia-Galindo, J.: Seasonal photosynthesis in young plants of Agave tequilana. - Agrociencia 40: 699-709, 2006.
  40. Pollet, B., Steppe, K., Van Labeke, M.-C., Lemeur, R.: Diurnal cycle of chlorophyll fluorescence in Phalaenopsis. - Photosynthetica 47: 309-312, 2009. Go to original source...
  41. Pridgeon, A.: The Illustrated Encyclopedia of Orchids. - Timber Press, Portland 2000.
  42. Rascher, U., Lüttge, U.: High-resolution chlorophyll fluorescence imaging serves as a non-invasive indicator to monitor the spatio-temporal variations of metabolism during the daynight cycle and during the endogenous rhythm in continuous light in the CAM plant Kalanchoë aigremontiana. - Plant Biol. 4: 671-681, 2002. Go to original source...
  43. Singsaas, E.L., Ort, D.R., DeLucia, E.H.: Variation in measured values of photosynthetic quantum yield in ecophysiological studies. - Oecologia 128: 15-23, 2001. Go to original source...
  44. Skillman, J.B.: Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark. - J. Exp. Bot. 59: 1647-1661, 2008.
  45. Spalding, M.H., Edwards, G.E., Ku, M.S.B.: Quantum requirement for photosynthesis in Sedum praealtum during 2 phases of Crassulacean acid metabolism. - Plant Physiol. 66: 463-465, 1980. Go to original source...
  46. Spalding, M.H., Stumpf, D.K., Ku, M.S.B., Burris, R.H., Edwards, G.E.: Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum DC. - Aust. J. Plant Physiol. 6: 557-567, 1979. Go to original source...
  47. Thomas, D.A., André, M., Ganzin, A.-M.: Oxygen and carbon dioxide exchanges in crassulacean acid metabolism plants II. Effects of CO2 concentration and irradiance. - Plant Physiol. Bioch. 25: 95-103, 1987.
  48. Wild, B., Wanek, W., Postl, W., Richter, A.: Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoë daigremontiana. - J. Exp. Bot. 61: 1375-1383, 2010. Go to original source...
  49. Winter, K., Smith, J.A.C.: Crassulacean Acid Metabolism: Current status and perspectives. - In: Winter, K, Smith, J.A.C. (ed.): Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution. Pp 389-426. Springer-Verlag, Berlin 1996. Go to original source...