Photosynthetica 2019, 57(1):32-39 | DOI: 10.32615/ps.2019.006

Effect of soil salinity on growth, metal distribution and photosynthetic performance of two Lycium species

V.L. DIMITROVA1, M.M. PAUNOV2, V. GOLTSEV2, M.P. GENEVA3, Y.K. MARKOVSKA2
1 Biotree, 1331 Sofia, Bulgaria
2 Faculty of Biology, University of Sofia, 1164 Sofia, Bulgaria
3 Department of Plant Soil Interactions, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

The effect of salinity on gas exchange and fluorescence characteristics in Lycium barbarum and Lycium chinense grown on nonsaline and saline soils was investigated. The distribution of Na+ between three types of substrates and different organs showed acropetal concentration gradient for Na+ accumulation only in L. barbarum grown on peat-moss-perlite and saline soil. Selective uptake of K+ over Na+ in the L. barbarum leaves was established. All plants grown on saline soil showed a slight inhibition of PSII activity as revealed by the quantum yield of the primary photochemical reaction. Intersystem electron transport, reduction of the end electron acceptors, and the performance index of photosynthesis declined to a greater extent in L. barbarum than that in L. chinense. The higher tolerance of L. chinense to salt stress was accompanied with the higher overall photosynthetic performance.

Keywords: Additional key words: chlorophyll fluorescence; metal contents; net photosynthesis; salinity.

Received: July 12, 2017; Accepted: May 18, 2018; Prepublished online: December 5, 2018; Published: January 30, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
DIMITROVA, V.L., PAUNOV, M.M., GOLTSEV, V., GENEVA, M.P., & MARKOVSKA, Y.K. (2019). Effect of soil salinity on growth, metal distribution and photosynthetic performance of two Lycium species. Photosynthetica57(1), 32-39. doi: 10.32615/ps.2019.006.
Download citation

References

  1. Ashraf M., O'Leary J.W.: Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress. 1. Yield components and ion distribution. - J. Agron. Crop Sci. 176: 91-101, 1996. Go to original source...
  2. Ashraf M, Orooj A.: Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Truchys permumammi [L.] Spraque). - J. Arid Environ. 64: 209-220, 2006. Go to original source...
  3. Ashraf M., Shahbaz M.: Assessment of genotypic variation in salt tolerance of early CIMMYT hexaploid wheat germplasm using photosynthetic capacity and water relations as selection criteria. - Photosynthetica 41: 273-280, 2003. Go to original source...
  4. Badawi G.H., Kawano N., Yamauchi Y. et al.: Overexpression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. - Physiol. Plantarum 121: 231-238, 2004. Go to original source...
  5. Bernardello L.M.: [Taxonomic revision of the South American species of Lycium (Solanaceae)] - Bol. Acad. Nac. Cienc Córdoba 57: 173-356, 1986. [In Spanish]
  6. Dajič Z.: Salt stress. - In: Rao K.V.M., Raghavendra A.S., Reddy K.J. (ed.): Physiology and Molecular Biology of Stress Tolerance in Plants. Pp. 41-99. Springer, Dordrecht 2006.
  7. Dimitrova V., Georgieva T., Markovska Y.: Influence of salt stress on some physiological characteristics of two Lycium varieties grown ex vitro in hydroponic. - Annu. Univ. Sofia Fac. Biol. 101: 141-148, 2016.
  8. Doumett S., Lamperi L., Checchini L.et al.: Heavy metal distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study: influence of different complexing agents. - Chemosphere 72: 1481-1490, 2008. Go to original source...
  9. Erdal S.Ç., Çakirlar H.: Impact of salt stress on photosystem II efficiency and antioxidant enzyme activities of safflower (Carthamus tinctorius L.) cultivars. - Turk. J. Biol. 38: 549-560, 2014. Go to original source...
  10. Geissler N., Hussin S., Koyro H.-W.: Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. - J. Exp. Bot. 60: 137-151, 2009. Go to original source...
  11. Goltsev V., Kalaji H., Kouzmanova M. et al.: Variable and Delayed Chlorophyll a Fluorescence. Basics and Application in Plant Sciences. Pp. 220. Inst. Comp. Sci., Moscow-Izshevsk 2014.
  12. Guissé B., Srivastava A., Strasser R.J.: The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. - Arch. Sci. 48: 147-160, 1995.
  13. Ivanova K., Dimitrova V., Georgieva T.et al.: Effect of soil salinity on growth, gas exchange and antioxidant defence of two Paulownia lines. - Genet. Plant Physiol. 4: 163-173, 2014.
  14. Jeschke W.D., Hartung W.: Root-shoot interactions in mineral nutrition. - Plant Soil 226: 57-69, 2000. Go to original source...
  15. Kolaksazov M., Laporte F., Goltsev V. et al.: Effect of frost stress on chlorophyll a fluorescence and modulated 820 nm reflection in Arabis alpina population from Ril amountain. - Genet. Plant Physiol. 4: 44-56, 2014.
  16. Kosová K., Vítámvás P., Prášil I.T. et al.: Plant proteome changes under abiotic stress - contribution of proteomics studies to understanding plant stress response. - J. Proteom. 74: 1301-1322, 2011. Go to original source...
  17. Koyro H.W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). - Environ. Exp. Bot. 56: 136-146, 2006. Go to original source...
  18. Koyro H.-W., Huchzermeyer B.: Ecophysiological needs of the potential biomass crop Spartina townsendii Grov. - Trop. Ecol. 45: 123-139, 2004.
  19. Koyro H.-W., Huchzermeyer B., Zӧrb Ch.: Effects of hyperosmotic salinity on protein patterns and enzyme activities. - In: Pessarakli M. (ed.): Handbook of Plant and Crop Physiology. Pp. 487-507, Taylor & Francis Group LLC, CRC Press, Boca Raton 2014. Go to original source...
  20. Levin R.A., Miller J.S.: Relationships within tribe Lycieae (Solanaceae): paraphyly of Lycium and multiple origins of gender dimorphism. - Am. J. Bot. 92: 2044-2053, 2005. Go to original source...
  21. Liu N., Guan L.: Linkages between woody plant proliferation dynamics and plant physiological traits in southwestern North America. - J. Plant Ecol. 5: 407-416, 2012. Go to original source...
  22. Miller J.S.: Phylogenetic relationships and the evolution of gender dimorphism in Lycium (Solanaceae). - Syst. Bot. 27: 416-428, 2002.
  23. Mishra A., Mishra K.B., Höermiller I.I. et al.: Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. - Plant Signal. Behav. 62: 301-310, 2011. Go to original source...
  24. Munns R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  25. Munns R.: Plant adaptations to salt and water stress: differences and commonalities. - Adv. Bot. Res. 57: 1-32, 2011. Go to original source...
  26. Munns R., Richards R.A.: Recent advances in breeding wheat for drought and salt stresses. - In: Jenks M.A., Hasegawa P.M., Jain S.M. (ed.): Advances in Molecular Breeding towards Salinity and Drought Tolerance. Pp. 565-585. Springer, New York 2007. Go to original source...
  27. Nellaepalli S., Kodru S., Subramanyam R.: Effect of cold temperature on regulation of state transitions in Arabidopsis thaliana. - J. Photoch. Photobio. B 112: 23-30, 2012. Go to original source...
  28. Nellaepalli S., Mekala N.R., Zsiros O. et al.: Moderate heat stress induces state transitions in Arabidopsis thaliana. - BBA-Bioenergetics 1807: 1177-1184, 2011.
  29. Petrova A., Vladimirov V., Georgiev V.: [Invasive Alien Species of Vascular Plants in Bulgaria.] Pp. 320. IBER - BAS, Sofia 2013. [In Bulgarian]
  30. [Referative basic data for the soils in Bulgaria.] Pp. 280. Agricultural Academy, Sofia 2009. [In Bulgarian]
  31. Schansker G., Srivastava A., Govindjee G. et al.: Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. - Funct. Plant Biol. 30: 785-796, 2003. Go to original source...
  32. Schansker G., Tόth S.Z., Strasser R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the in the chl a fluorescence rise OJIP. - Biochim. Biophys. Acta 1706: 250-261, 2005. Go to original source...
  33. Schreiber U., Neubauer C., Klughammer C.: Devices and methods for room-temperature fluorescence analysis. - Philos. T. Roy. Soc. B 323: 241-251, 1989. Go to original source...
  34. Sreenivasulu N., Grimm B., Wobus U., Weschke W.: Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italic). - Physiol. Plantarum 109: 435-443, 2000. Go to original source...
  35. Stirbet A., Riznichenko G.Yu., Rubin A.B. et al.: Modelling chlorophyll a fluorescence transient: relation to photosynthesis. - Biochemistry-Moscow+ 79: 291-323, 2014. Go to original source...
  36. Strasser R.J., Srivastava A., Govindjee G.: Polyphasic chlorophyll a fluorescent transient in plants and cyanobacteria. - Phytochem. Photobiol. 61: 32-42, 1995. Go to original source...
  37. Strasser, R.J. Tsimilli-Michael M., Qiang S. et al.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - Biochim. Biophys. Acta 1797: 1313-1326, 2010. Go to original source...
  38. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee R. (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Kluwer Academic Publishers, Dordrecht 2004. Go to original source...
  39. Strauss J.A., Krüger G.H.J., Strasser R.J. et al.: The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance. - Physiol. Plantarum 131: 89-105, 2007. Go to original source...
  40. Tόth S. Z., Schansker G., Strasser R. J.: In intact leaves, the maximum fluorescence level FM is independent of the redox state of the plastoquinone pool: A DCMU-inhibition study. - BBA-Bioenergetics 1708: 275-282, 2005.
  41. Venkatesh J., Upadhyaya C.P., Yu J.W. et al.: Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D-galacturonic acid reductase gene for salinity stress tolerance. - Hortic. Environ. Biote. 534: 320-328, 2012. Go to original source...
  42. Yamane Y., Kashino Y., Koike H. et al.: Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. - Photosynth. Res. 52: 57-64, 1997. Go to original source...
  43. Zheng G.-Q., Zheng Z.-Y., Xu X. et al.: Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense Mill. of different regions and varieties. - Biochem. Syst. Ecol. 38: 275-284, 2010. Go to original source...