Photosynthetica 2019, 57(4):1084-1093 | DOI: 10.32615/ps.2019.126

Yield and photochemical activity of selected rice cultivars from Eastern India under medium depth stagnant flooding

D. PANDA1,2, A. RAY1, R.K. SARKAR1
1 Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, 753 006 Cuttack, India
2 Department of Biodiversity and Conservation of Natural Resources, Central University of Orissa, 764 021 Koraput, Odisha, India

Stagnant flooding (SF) is a serious threat for rice production in rainfed lowland areas of Southeast Asian countries. To overview the SF effect, photosynthetic performances and productivity were studied with three landraces (Ravana, Kamini, and Rashpanjor) and four high-yielding cultivars (Savitri, Savitri-Sub1, Gayatri, and Varshadhan) of rice under medium depth (40-50 cm) of water level. Stagnant flooding significantly increased the stem elongation and decreased yield and yield attributing parameters. The chlorophyll a fluorescence rises from O- to P-step with distinct J- and I-step were noticed in all the cultivars up to 75 d of SF. Prolonged flooding (> 2 months) perturbed both donor and acceptor side of PSII. Vitality indices (PIABS and PITOT) decreased greatly under prolonged SF. Analysis of O-J-I-P transients suggests that the information is useful for agricultural planning with the purpose to enhance rice yield under lowland medium depth SF.

Keywords: JIP-test; Oryza sativa; performance index; submergence; yield attributes.

Received: August 5, 2018; Accepted: September 11, 2019; Prepublished online: October 3, 2019; Published: November 1, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
PANDA, D., RAY, A., & SARKAR, R.K. (2019). Yield and photochemical activity of selected rice cultivars from Eastern India under medium depth stagnant flooding. Photosynthetica57(4), 1084-1093. doi: 10.32615/ps.2019.126.
Download citation

References

  1. Bailey-Serres J., Colmer T.D.: Plant tolerance of flooding stress -recent advances. - Plant Cell Environ. 37: 2211-2215, 2014.
  2. Bailey-Serres J., Voesenek L.A.C.J.: Flooding stress: acclimations and genetic diversity. - Annu. Rev. Plant Biol. 59: 313-339, 2008.
  3. Batra N.G., Kumari N., Sharma V.: Photosynthetic performance of Ocimum sanctum morphotypes in a semiarid region. - J. Herb. Spice. Med. Plant. 22: 211-224, 2016. Go to original source...
  4. Bin Rahman A.N.M.R., Zhang J.: Flood and drought tolerance in rice: Opposite but may coexist. - Food Energ. Secur. 5: 76-88, 2016. Go to original source...
  5. Cattling D.: Rice in Deep Water. Pp. 542. The Macmillan Press, London 1992. Go to original source...
  6. Dar M.H., de Janvry A., Emerick K. et al.: Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups. - Sci. Rep.-UK 3: 3315, 2013.
  7. Goswami S., Kar R.K., Paul A., Dey N.: Genetic potentiality of indigenous rice genotypes from Eastern India with reference to submergence tolerance and deepwater traits. - Curr. Plant Biol. 11-12: 23-32, 2017. Go to original source...
  8. Gu J.F., Yin X.Y., Stomph T.J., Struik P.C.: Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. - Plant Cell Environ. 37: 22-34, 2014.
  9. Haritha G., Vishnukiran T., Yugandhar P. et al.: Introgressions from Oryza rufipogon increase photosynthetic efficiency of KMR3 rice lines. - Rice Sci. 24: 85-96, 2017.
  10. Hattori Y., Nagai K., Furukawa S. et al.: The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. - Nature 460: 1026-1030, 2009. Go to original source...
  11. Hazrati S., Tahmasebi-Sarvestani Z., Modarres-Sanavy S.A.M. et al.: Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. - Plant Physiol. Bioch. 106: 141-148, 2016. Go to original source...
  12. Jiang C.D., Shi L., Gao H.Y. et al.: Development of photosystem 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. - Photosynthetica 44: 454-463, 2006. Go to original source...
  13. Kalaji H.M., Rastogi A., Živčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: An example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  14. Kuanar S.R., Ray A., Sethi S.K. et al.: Physiological basis of stagnant flooding tolerance in rice. - Rice Sci. 24: 73-84, 2017.
  15. Lazár D.: The polyphasic chlorophyll a fluorescence rise mea-sured under high intensity of exciting light. - Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  16. Lazár D., Schansker G.: Models of chlorophyll a fluorescence transients. - In: Laisk A., Nedbal L., Govindjee (ed.): Photosynthesis in Silico: Understanding Complexity From Molecules to Ecosystems. Vol. 29. Pp. 85-123. Springer, Dordrecht 2009.
  17. Oukarroum A., Bussotti F., Goltsev V., Kalaji H.M.: Correlation between reactive oxygen species production and photo-chemistry of photosyntem I and II in Lemna gibba L. plants under salt stress. - Environ. Exp. Bot. 109: 80-88, 2014. Go to original source...
  18. Oukarroum A., Madidi S.E., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  19. Panda D., Rao D.N., Sharma S.G. et al.: Submergence effect on rice genotypes during seedling stage: Probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction O-J-I-P transients. - Photosynthetica 44: 69-75, 2006. Go to original source...
  20. Panda D., Sarkar R.K.: Natural leaf senescence: Probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars. - Physiol. Mol. Biol. Pla. 19: 43-51, 2013.
  21. Panda D., Sharma S.G., Sarkar R.K.: Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). - Aquat. Bot. 88: 127-133, 2008. Go to original source...
  22. Ray A., Panda D., Sarkar R.K.: Can rice cultivar with submergence tolerant quantitative trait locus (SUB1) manage submergence stress better during reproductive stage? - Arch. Agron. Soil Sci. 63: 998-1008, 2017. Go to original source...
  23. Sakagami J.I., Kawano N.: Survival of submerged rice in a flood-prone region of West Africa. - Tropics 20: 55-66, 2011. Go to original source...
  24. Sarkar R.K., Panda D., Reddy J.N. et al.: Performance of submergence tolerant rice (Oryza sativa) genotypes carrying the Sub1 quantitative trait locus under stressed and non-stressed natural field conditions. - Indian J. Agr. Sci. 79: 876-883, 2009.
  25. Sarkar R.K., Ray A.: Submergence-tolerant rice withstands complete submergence even in saline water: Probing through chlorophyll a fluorescence induction O-J-I-P transients. - Photosynthetica 54: 275-287, 2016. Go to original source...
  26. Sarkar R.K., Reddy J.N., Sharma S.G., Ismail A.M.: Physiological basis of submergence tolerance in rice and implications for crop improvement. - Curr. Sci. India 91: 899-906, 2006.
  27. Singh A., Carandang J., Gonzaga Z.J.C. et al.: Identification of QTLs for yield and agronomic traits in rice under stagnant flooding conditions. - Rice 10: 15, 2017. Go to original source...
  28. Singh D.P., Sarkar R.K.: Distinction and characterization of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. - Funct. Plant Biol. 41: 727-736, 2014. Go to original source...
  29. Singh S., Mackill D.J., Ismail A.M.: Tolerance of longer-term partial stagnant flooding is independent of the SUB1 locus in rice. - Field Crop. Res. 121: 311-323, 2011. Go to original source...
  30. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  31. Strasser R.J., Stirbet A.D.: Heterogeneity of Photosystem II probed by the numerically simulated chlorophyll a fluores-cence rise (O-J-I-P). - Math. Comput. Simulat. 48: 3-9, 1998.
  32. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  33. Striker G.G.: Flooding stress on plants: Anatomical, morpho-logical and physiological responses. - In: Mworia J.K. (ed.): Botany. IntechOpen, 2012. Available at: https://www.intechopen.com/books/botany
  34. Vergara G.V., Nugraha Y., Esguerra M.Q. et al.: Variation in tolerance of rice to long-term stagnant flooding that submerges most of the shoot will aid in breeding tolerant cultivars. - AoB Plants 6: plu055, 2014.
  35. Wang Y., Xu C., Wu M., Chen G.: Characterization of photosynthetic performance during reproductive stage in high-yield hybrid rice LYPJ exposed to drought stress probed by chlorophyll a fluorescence transient. - Plant Growth Regul. 81: 489-499, 2017. Go to original source...
  36. Xing D., Wu Y.: Effect of phosphorus deficiency on photosynthetic inorganic carbon assimilation of three climber plant species. - Bot. Stud. 55: 60-67, 2014.
  37. Xu K., Xia X., Fukao T. et al.: Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. - Nature 442: 705-708, 2006. Go to original source...
  38. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  39. Zhang M., Shan Y., Kochian L. et al.: Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient. - Photosynth. Res. 126: 275-284, 2015. Go to original source...
  40. Živčák M., Kalaji H.M., Shao H.B. et al.: Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. - J. Photoch. Photobio. B 137: 107-115, 2014. Go to original source...