Photosynthetica 2018, 56(2):652-659 | DOI: 10.1007/s11099-017-0715-2

Investigating role of Triton X-100 in ameliorating deleterious effects of anthracene in wheat plants

C. Sharma1, S. Mathur1, R. S. Tomar1, A. Jajoo1,*
1 School of Life Science, Devi Ahilya University, Indore, India

This study focused on the deleterious effect of anthracene (ANT) and role of a surfactant, Triton (TX-100), in recovery from inhibitory effect of ANT. Fast chlorophyll (Chl) fluorescence measurements were performed in wheat plants. Results revealed that maximum quantum yield of PSII, area over the fluorescence curve, performance index (PI), and reaction centre density was negatively affected by ANT treatment. The effects on PSII quantum efficiency, reaction centre density, absorption, and trapping were partially recovered by TX-100. PSII heterogeneity in terms of PSII antenna heterogeneity, corresponding to PSII α, β, and γ centres, and reducing side, corresponding to QB-reducing and QB-nonreducing centres, were also investigated. The damage caused by ANT to PSII antenna heterogeneity was recovered almost by 100% owing to TX-100.

Keywords: anthracene; chlorophyll a fluorescence; photosystem II; heterogeneity; Triton X-100; wheat

Received: October 27, 2016; Accepted: January 19, 2017; Published: June 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sharma, C., Mathur, S., Tomar, R.S., & Jajoo, A. (2018). Investigating role of Triton X-100 in ameliorating deleterious effects of anthracene in wheat plants. Photosynthetica56(2), 652-659. doi: 10.1007/s11099-017-0715-2.
Download citation

References

  1. Aksmann A., Tukaj Z.: Intact anthracene inhibits photosynthesis in algal cells: a fluorescence induction study on Chlamydomonas reinhardtii cw92 strain. - Chemosphere 74: 26-32, 2008. Go to original source...
  2. Boonchan S., Britz M.L., Stanley G.A.: Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. - Biotechnol. Bioeng. 59: 482-494, 1998. Go to original source...
  3. Chen L.S., Cheng L.: Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh.) leaves than in fruit peel. - Photosynthetica 47: 112-120, 2009. Go to original source...
  4. Christen D., Schonmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. - Environ. Exp. Bot. 60: 504-514, 2007. Go to original source...
  5. Dianne J., Luning P., Parmely H.: Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar non-ionic surfactant solutions. - Water Res. 36: 3463, 2002.
  6. Force L., Critchley C., Van Rensen J.J.S.: New fluorescence parameters for monitoring photosynthesis in plants. - Photosynth. Res. 78: 17-33, 2003. Go to original source...
  7. Grimberg S.J., Stringfellow W.T., Aitken M.D.: Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. - Appl. Environ. Microbiol. 62: 2387-2392, 1996.
  8. Hsu B.D., Lee Y.S., Jang Y.R.: A method for analysis of fluorescence induction curve from DCMU-poisoned chloroplasts. - Biochim. Biophys. Acta 975: 44-49, 1989. Go to original source...
  9. Huang X.D., Zeiler L.F., Dixon D.G. et al.: Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (Canola) and Cucumbis sativus (Cucumber) in simulated solar radiation. - Ecotoxicol. Environ. Safe. 35: 191-197, 1996. Go to original source...
  10. Jin D., Jiang X., Jing X. et al.: Effect of concentration, head group, and structure of surfactants on the degradation of phenanthrene. - J. Hazard. Mater. 144: 215-221, 2007. Go to original source...
  11. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102-112, 2016. Go to original source...
  12. Kim I.S., Park J.S., Kim K.W.: Enhanced biodegradation of polycyclic aromatic hydrocarbons using non-ionic surfactants in soil slurry. - Appl. Geochem. 16: 1419-1428, 2001. Go to original source...
  13. Kummerová M., Barták M., Dubová J. et al.: Inhibitory effect of fluoranthene on photosynthetic processes in lichens detected by chlorophyll fluorescence. - Ecotoxicology 15: 121-131, 2006. Go to original source...
  14. Laha S., Luthy R.G.: Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. - Biotechnol. Bioeng. 40: 1367-1380, 1992. Go to original source...
  15. Li J.L., Chen B.H.: Effect of non-ionic surfactants on biodegradation of phenanthrene by a marine bacteria of Neptunomonas naphathovarans. - J. Hazard. Mater. 162: 66-73, 2009. Go to original source...
  16. Liu H., Weisman D., Ye Y.B. et al.: An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. - Plant Sci. 176: 357-382, 2009. Go to original source...
  17. Mathur S., Jajoo A., Mehta P. et al.: Analysis of elevated temperature induced inhibition of Photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves. - Plant Biol. 13: 1-6, 2011a. Go to original source...
  18. Mathur S., Allakhverdiev S.I., Jajoo A.: Analysis of the temperature stress on the dynamic of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). - BBA-Bioenergetics 1807: 22-29, 2011b.
  19. Mehta P., Jajoo A., Mathur S. et al.: Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. - Plant Physiol. Bioch. 48: 16-20, 2010. Go to original source...
  20. Oguntimehin I., Eissa F., Sakugawa H.: Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) fluoranthene mists negatively affected tomato plants. - Chemosphere 78: 877-884, 2010. Go to original source...
  21. Oguntimehin I., Sakugawa H.: Interactive effects of simultaneous ozone and fluoranthene fumigation on the eco-physiological status of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb et Zucc.). - Ecotoxicology 18: 100-109, 2009. Go to original source...
  22. Oguntimehin I., Nakatani N., Sakugawa H.: Phytotoxicities of fluoranthene and phenanthrene deposited on needle surfaces of the evergreen conifer, Japanese red pine (Pinus densiflora Sieb. et Zucc.). - Environ. Pollut. 154: 264-271, 2008. Go to original source...
  23. Oukarroum A., El Madidi, S.E., Schansker G. et al.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  24. Prak D.J.L., Pritchard P.H.: Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar non-ionic surfactant solutions. - Water Res. 36: 3463-3472, 2002. Go to original source...
  25. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C. (ed): Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  26. Strauss A.J., Krüger G.H.J., Strasser R.J. et al.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. - Environ. Exp. Bot. 56: 147-157, 2006. Go to original source...
  27. Tomar R.S., Sharma A., Jajoo A.: Assessment of phytotoxicity of anthracene in soybean (Glycine max.) with a quick method of chlorophyll fluorescence. - Plant Biol. 17: 870-876, 2015. Go to original source...
  28. Tomar R.S., Jajoo A.: Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes. - Ecotox. Environ. Safe. 122: 31-36, 2015. Go to original source...
  29. Tomar R.S., Jajoo A.: A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). - Ecotoxicology 22: 1313-1318, 2013a. Go to original source...
  30. Tomar R.S., Jajoo A.: Alteration in PSII heterogeneity under the influence of polycyclic aromatic hydrocarbon (fluoranthene) in wheat leaves (Triticum aestivum). - Plant Sci. 209: 58-63, 2013b. Go to original source...
  31. Tomar R.S., Mathur S., Allakhverdiev S.I. et al.: Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). - J. Bioenerg. Biomembr. 44: 411-419, 2012. Go to original source...
  32. Tongra T., Mehta P., Mathur S. et al.: Computational analysis of fluorescence induction curves in intact spinach leaves treated at different pH. - Biosystems 103: 158-163, 2011. Go to original source...
  33. Toth S.Z, Schansker G., Strasser R.J.: In intact leaves, the maximum fluorescence level (Fm) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. - BBA-Bioenergetics 1708: 275-282, 2005. Go to original source...
  34. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plants vitality: Applications in detecting and evaluating the beneficial role of mycorrization on host plants. - In: Varma A. (ed.): Mycorriza. Pp. 679-703, Springer Verlag, Berlin, Heidelberg 2008. Go to original source...
  35. USEPA (Environmental Protection Agency) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. Office of Research and Development, Washington, DC, 20460 (draft), 2002.
  36. Volkering F., Breure A.M., van Andel J.G. et al.: Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. - Appl. Environ. Microbiol. 61: 1699-1705, 1995.
  37. Wheatley A.D., Sadhra S.: Polycyclic aromatic hydrocarbons in solid residues from waste incineration. - Chemosphere 55: 743-749, 2004. Go to original source...
  38. Yamane Y., Shikanai T., Kashino Y. et al.: Reduction of QA in the dark: another cause of fluorescence Fo increases by high temperature in higher plants. - Photosynth. Res. 63: 23-34, 2000. Go to original source...
  39. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll fluorescence measurements. - Biochim. Biophys. Acta 1797: 1428-1438, 2010. Go to original source...
  40. Zhu L., Feng S.: Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants. - Chemosphere 53: 459-467, 2003. Go to original source...