Photosynthetica 2017, 55(1):153-163 | DOI: 10.1007/s11099-016-0240-8

Effect of sodium nitroprusside on responses of Melissa officinalis to bicarbonate exposure and direct Fe deficiency stress

R. Amooaghaie1,*, Sh. Roohollahi1
1 Biology Department, Science Faculty, Shahrekord University, Shahrekord, Iran

In our study, one-month-old Melissa officinalis plants were subjected to Fe-deficiency treatments, such as 10 µM Fe (as direct iron deficiency, DD), and 30 µM Fe + 10 mM NaHCO3 + 0.5 g l-1 CaCO3 (as indirect iron deficiency, ID), and 30 µM Fe (as control) for 14 d. Both Fe-deficiency types reduced plant growth, photosynthetic pigment contents, an active Fe content in roots and leaves, root Fe(III)-reducing capacity, Fe-use efficiency, maximal quantum yield of PSII photochemistry, a ratio of variable to basic fluorescence, and activities of antioxidant enzymes, while they increased lipid peroxidation and a H2O2 content in leaves. These effects were more pronounced in plants exposed to ID with bicarbonate than those of DD plants. We showed that sodium nitroprusside (SNP), as NO donor, could ameliorate the adverse effects of bicarbonate on above traits. The methylene blue, as NO blocker, reversed the protective effects conferred by SNP in the ID-treated plants as well as DD plants. These findings suggests that NO protects photosynthesis and growth of IDtreated plants as well as DD plants by contribution in availability and/or delivery of metabolically active iron or by changing activities of reactive oxygen species-scavenging enzymes.

Keywords: bicarbonate; iron; lemon balm; nitric oxide; chlorophyll fluorescence

Received: July 1, 2015; Accepted: April 12, 2016; Published: March 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Amooaghaie, R., & Roohollahi, S. (2017). Effect of sodium nitroprusside on responses of Melissa officinalis to bicarbonate exposure and direct Fe deficiency stress. Photosynthetica55(1), 153-163. doi: 10.1007/s11099-016-0240-8.
Download citation

References

  1. Alcántara E., Romera F.J., Caáete M., de la Guardia M.D.: Effects of bicarbonate and iron supply on Fe (III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock "Nemaguard". - C J. Plant Nutr. 23: 1607-1617, 2000. Go to original source...
  2. Amooaghaie R., Nikzad K.: The role of nitric oxide in priming induced low temperature tolerance in two genotypes of tomato. - Seed Sci. Res. 23: 123-131, 2013. Go to original source...
  3. Amooaghaie R., Tabatabaei F., Ahadi A.M.: Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nano silver and nitrate silver stresses. - Ecotoxicol. Environ. Safe. 113: 259-270, 2015. Go to original source...
  4. Aebi H.: Catalase in vitro. - Methods Enzymol. 105: 121-126, 1984. Go to original source...
  5. Balakrishnan K., Rajendran C., Kulandaivelu G.: Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. - Photosynthetica 38: 477-479, 2000.
  6. Beligni M.V., Lamattina L.: Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. - Planta 208: 337-344, 1999. Go to original source...
  7. Cellini A., Corpas F.J., Barroso J.B., Masia A.: Nitric oxide content is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants. - C J. Plant Physiol. 168: 1543-1549, 2011. Go to original source...
  8. Chen W.W., Yang J.L., Qin C. et al.: Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. - Plant Physiol. 154: 810-819, 2010. Go to original source...
  9. Chouliaras V., Therios I., Molassiotis A. et al.: Iron chlorosis in grafted sweet orange (Citrus sinensis L.) plants: physiological and biochemical responses. - Biol. Plantarum 48: 141-144, 2004. Go to original source...
  10. Cragan J.D.: Teratogen update: methylene blue. - Teratology 60: 42-48, 1999. Go to original source...
  11. Ding F., Wang X.F., Shi Q.H. et al.: Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient chinese cabbage (Brassica chinensis L.). - Agr. Sci. China 7: 168-179, 2008. Go to original source...
  12. Doerge D.R., Divi R.L., Churchwell M.I.: Identification of the colored guaiacol oxidation product produced by peroxidases. - Anal. Biochem. 250: 10-17, 1997. Go to original source...
  13. García M.J., Suárez V., Romera F.J., et al.: A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. - Plant Physiol. Bioch. 49: 537-544, 2011. Go to original source...
  14. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Bioch. 48: 909-930, 2010. Go to original source...
  15. Graziano M., Beligni M.V., Lamattina L.: Nitric oxide improves internal iron availability in plants. - Plant Physiol. 130: 1852-1859, 2002.
  16. Graziano M., Lamattina L.: Nitric oxide and iron in plants: an emerging and converging story. - Trends Plant Sci. 10: 4-8, 2005. Go to original source...
  17. Guerinot M.L.: Iron. - In: Hell R.I., Mendel R.R. (ed.): Cell Biology of Metals and Nutrients. Pp. 75-94, Springer, Heidelberg - Dordrecht - London - New York 2010. Go to original source...
  18. Health R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid and peroxidation. - Arch. Biochem. Biophys. 125: 189-198, 1968.
  19. Jelali N., Dell'Orto M., Rabhi M. et al.: Physiological and biochemical responses for two cultivars of Pisum sativum (Merveille de Kelvedon" and "Lincoln) to iron deficiency conditions. - Sci. Hortic.-Amsterdam 124: 116-121, 2010.
  20. Jin C.W., Du S.T., Shamsi I. H., et al.: NO synthase-generated NOacts downstream of auxin in regulating Fe-deficiencyinduced root branching that enhances Fe-deficiency tolerance in tomato plants. - C J. Exp. Bot. 62: 3875-3884, 2011. Go to original source...
  21. Kumar P., Tewari R.K., Sharma P.N.: Sodium nitroprussidemediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. - AoB Plants 2010: plq002, 2010.
  22. Kumari N., Sharma V., Mikosch M. et al.: Seasonal photosynthetic performance and nutrient relations of Butea monosperma TAUB in comparison to two other woody species of a seasonal deciduous forest in SE-Rajasthan and to planted trees in the area. - Ind. J. For. 26: 116-126, 2005.
  23. Laspina N.V., Groppa M.D., Tomaro M.L., Benavides M.P.: Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. - Plant Sci. 169: 323-330, 2005. Go to original source...
  24. Liang W.B., Xue S.G., Shen J.H., Wang P.: Effects of manganese stress on photosythesis and chlorophyll fluorescence parameters of Phytolacca americana. - Acta Ecol. Sin. 30: 619-625, 2010.
  25. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382, 1987. Go to original source...
  26. Lucena C., Romera F.J., Rojas C.L. et al.: Bicarbonate blocks the expression of several genes involved in the physiological responses to Fe deficiency of Strategy I plants. - Funct. Plant Biol. 34: 1002-1009, 2007. Go to original source...
  27. Mengel K.: Iron availability in plant tissues - iron chlorosis on calcareous soils. - Plant Soil 165: 275-283, 1994. Go to original source...
  28. Morales F., Belkhodja R., Abadía A., Abadía J.: Photosystem II efficiency and mechanisms of energy dissipation in iron deficient, field-grown pear trees (Pyrus communis L.). - Photosynth. Res. 63: 9-21, 2000. Go to original source...
  29. M¡¯Sehli W., Youssfi S., Donnini S. et al.: Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency. - Plant Soil 312: 151-162, 2008. Go to original source...
  30. Mukherjee S.P., Choudhuri M. A.: Implications of water stressinduced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. - Physiol. Plantarum 58:166-170, 1983. Go to original source...
  31. Nakano Y., Asada K.: Spinach chloroplasts scavenge hydrogen peroxide on illumination. - Plant Cell Physiol. 21: 1295-1307, 1980. Go to original source...
  32. Nikolic M., Römheld V., Merkt N.: Effect of bicarbonate on uptake and translocation of 59Fe in two grapevine rootstocks differing in their resistance to Fe deficiency chlorosis. - Vitis 39:145-149, 2000.
  33. Pestana M., de Varennes A., Abadía J., Faria E.A.: Differential tolerance to iron deficiency of Citrus rootstocks grown in nutrient solution. - Sci. Hortic.-Amsterdam 104: 25-36, 2005.
  34. Ramirez L., Simontacchi M., Murgia I.: Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well equipped team to preserve plant iron homeostasis. - Plant Sci. 181: 582-592, 2011. Go to original source...
  35. Romera F.J., Alcántara E., de la Guardia M.D.: Influence of bicarbonate and metal ions on the development of root Fe (III) reducing capacity by Fe-deficient cucumber (Cucumis sativus) plants. - Physiol. Plantarum 101: 143-148, 1997. Go to original source...
  36. Ruan H.H., Shen W.B., Xu L.L.: Nitric oxide modulates the activities of plasma membrane H+ - ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress. - Acta Bot. Sin. 46: 415-422, 2004.
  37. Sun B.T., Jing Y, Chen K.M. et al.: Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). - C J. Plant Physiol. 164: 536-543, 2007. Go to original source...
  38. Vladkova R., Dobrikova A.G., Singh R. et al.: Photoelectron transport ability of chloroplast thylakoid membranes treated with NOdonor SNP: changes in flash oxygen evolution and chlorophyll fluorescence. - Nitric Oxide 24: 84-90, 2011. Go to original source...
  39. Xu J., Yin H.X., Liu X.J. et al.: Nitric oxide alleviates Fe deficiency-induced stress in Solanum nigrum. - Biol. Plantarum 53: 784-788, 2009. Go to original source...
  40. Zhang X.W., Dong Y.J., Qiu1 X.K. et al.: Exogenous nitric oxide alleviates iron-deficiency chlorosis in peanut growing on calcareous soil. - Plant Soil Environ. 58: 111-120, 2012. Go to original source...
  41. Zhou B., Guo Z., Xing J., Huang B.: Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. - C J. Exp. Bot. 56: 3223-3228, 2005. Go to original source...