Photosynthetica 2017, 55(2):264-275 | DOI: 10.1007/s11099-016-0236-4

Growth and ecophysiological response in juvenile clones of Guadua (Guaduinae: Bambusoideae) cultivated in an altered lowland tropical region

F. Ely1,*, O. Araque2, R. Jaimez2
1 Instituto Jardín Botánico de Mérida, Universidad de Los Andes, Mérida, Venezuela
2 Laboratorio de Ecofisiología de Cultivos, Instituto de Investigaciones Agropecuarias, Universidad de Los Andes, Mérida, Venezuela

Guadua amplexifolia and Guadua angustifolia are the most promising timber substitutes amongst American bamboos due to their outstanding dimensions and structural properties. Despite the commercial potential of these species, there are few studies on the survival and adaptability of juveniles in plantations. The present study dealt with survival, growth, and ecophysiological response of juvenile clonal plants of these species, cultivated in abandoned pastures in Mérida, Venezuela. Survivorship, growth (height and culm diameter), and ecophysiological parameters were monitored the first year during wet and dry seasons. Survival rates were high in both species (95% in G. amplexifolia and 89% in G. angustifolia). Midday leaf water potentials decreased in both species during dry months (-1.28 to-2.72 MPa in G. amplexifolia and-1.67 to-2.37 MPa in G. angustifolia, respectively). Net photosynthetic rates measured during wet [16.57 ± 1.40 and 13.68 ± 2.40 μmol(CO2) m-2 s-1, respectively] and dry seasons [12.19 ± 2.82 and 8.12 ± 1.81 μmol(CO2) m-2 s-1, respectively], demonstrated that G. amplexifolia maintained consistently higher photosynthetic rates compared to G. angustifolia, which could explain the higher growth rates of the former. Similar trends were observed for stomatal conductance, transpiration, water-use efficiency, electron transport rate, and photochemical quenching of PSII. G. angustifolia maintained higher nonphotochemical quenching as well as a higher consumption of electrons per molecule of CO2 fixed, indicating a lower photosynthetic efficiency. The maximal photochemical efficiency of PSII (0.73-0.76) suggested that neither of these species suffered from photoinhibition, despite persistently high radiation and air temperatures at the study site.

Keywords: bamboo; chlorophyll a fluorescence; leaf water potentials; photosynthesis; Venezuela

Received: July 27, 2015; Accepted: April 12, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ely, F., Araque, O., & Jaimez, R. (2017). Growth and ecophysiological response in juvenile clones of Guadua (Guaduinae: Bambusoideae) cultivated in an altered lowland tropical region. Photosynthetica55(2), 264-275. doi: 10.1007/s11099-016-0236-4.
Download citation

References

  1. Andressen R.: [Atmospheric circulation and climates types]. - In: Olivo B.C., Cunill P.G., Iturrieta P. et al. (ed.): GeoVenezuela. 2. Pp. 238-296. - Fundación Empresas Polar, Caracas 2008. [In Spanish]
  2. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: an overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  3. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  4. Cao K.F., Yang S.J., Zhang Y.J., Brodribb T.J.: The maximum height of grasses is determined by roots. - Ecol. Lett. 15: 666-672, 2012. Go to original source...
  5. Chaves M.M., Pereira J.S., Maroco J. et al.: How plants cope with water stress in the field. Photosynthesis and growth. - Ann. Bot.-London 89: 907-916, 2002. Go to original source...
  6. Cirtain M.C., Franklin S.B., Pezeshki S.R.: Effects of light intensity on Arundinaria gigantea growth and physiology. - Castanea 74: 236-246, 2009. Go to original source...
  7. Clark L.G., Ely F.: [Genera of woody bamboos (Poaceae: Bambusoideae: Arundinarieae, Bambuseae) of Venezuela.] - Acta Bot. Venez. 34: 79-103, 2011. [In Spanish]
  8. Clark L.G., Judziewicz E.J.: American woody bamboos-In: Judziewicz E.J., Clark L.G., Londoño X., Stern M.J. (ed.): American Bamboos. Pp. 239-253. Smithsonian Institution Press, Washington 1999.
  9. Cochard H., Ewers F.W., Tyree M.T.: Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. - J. Exp. Bot. 45: 1085-1089, 1994. Go to original source...
  10. Cruz-Ríos H.: [Guadua angustifolia Kunth. - Natural Forests in Colombia. - Commercial Plantations in México.] Pp. 710. COLMEX, Colombia 2009. [In Spanish]
  11. Ely F., Rada F., Gutiérrez N.: [Functional and morphological analysis of three woody treeline bamboos of the cloud forestparamo ecotone in the Venezuelan Andes]. - Ecotrópicos 24: 92-112, 2011. [In Spanish]
  12. Flexas J.M., Bota J., Loreto F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. - Plant Biol. 6: 269-279, 2004. Go to original source...
  13. Flexas, J., H. Medrano.: Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. - Ann. Bot.-London 89: 183-189, 2002. Go to original source...
  14. Genty J., Briantais J., Baker N.: The relationship between the quatum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  15. Giraldo-Herrera E., Sabogal A.: [Guadua a sustainable alternative]. Pp. 42. Publicación de la Corporación Regional Autónoma del Quindío. Armenia, Colombia 1999. [In Spanish]
  16. Golding A., Johnson G.N.: Down regulation of linear and activation of cyclic electron transport drought. - Planta 218: 107-114, 2003. Go to original source...
  17. Grattani L., Crescente M.F., Varone L., Fabrini E.D.: Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. - Flora 203: 77-84, 2008. Go to original source...
  18. Hu L., Wang Z., Huang B.: Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species. - Physiol. Plantarum 139: 93-106, 2010. Go to original source...
  19. Ishizuka M., Puangchit L.: Gas exchange characteristics of leaves and culms of Gigantochloa hasskaliana Back. ex K. Heyne in a seasonally dry forest of Western Thailand. Pp. 111-120. Proceedings of the International Symposium Bamboo. Chiangmai 2000.
  20. Jaimez, R.E. Araque, O., Guzman, D. et al.: Agroforestry systems of timber species and Cacao: survival and growth during the early stages. - J. Agr. Rural Dev. Trop. 114: 1-11, 2013.
  21. Kijewski J., Colina J., Stegmayer P. et al.: [Semi-detailed soil studies of the basin of rivers Mucujepe-Escalante, Southern region of the Lake Maracaibo Basin.]. Pp. 373. Serie Informes Técnicos, Ministerio de Ambiente y los Recursos Naturales Renovables. División de Información e Investigación del Ambiente, Maracaibo 1981. [In Spanish]
  22. Kleinhenz V., Midmore D.J.: Aspects of bamboo agronomy. - Adv. Agron. 74: 99-153, 2001. Go to original source...
  23. Koyama H., Uchimura E.: Seasonal Change of Photosynthesis Rate and its Relation to the Growth of Phyllostachys bambusoides. - Proceedings of the Vth International Bamboo Workshop and the IV International Bamboo Congress. Pp. 109-120. INBAR. Ubud 1995.
  24. Kumar K., Pal M., Teotia U.V.S.: Diurnal changes in chlorophyll fluorescence in four species of bamboo. - J. Bamboo Rattan 1: 341-349, 2002. Go to original source...
  25. Lawlor D.W.: Limitations in water stressed leaves: stomata vs metabolism and the role of ATP. - Ann. Bot.-London 89: 871-885, 2002. Go to original source...
  26. Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficit in higher plants. - Plant Cell Environ. 25: 275-294, 2002. Go to original source...
  27. Lawlor D.W., Tezara W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. - Ann. Bot. 103: 561-579, 2009. Go to original source...
  28. Lei T.T., Koike T.: Functional leaf phenotypes for shaded and open environments of a dominant dwarf bamboo (Sasa senanensis) in Northern Japan. - Int. J. Plant. Sci. 159: 812-820, 1998. Go to original source...
  29. Londoño X.: A decade of observations of a Guadua angustifolia plantation in Colombia. - J. Amer. Bamboo Soc. 12: 37-43, 1998.
  30. Londoño X., Stern, M.J., Judziewicz E.J.: Bamboos and people. - In: Judziewicz E., Clark L.G., Londoño X., Stern M.J. (ed.): American Bamboos. Pp. 87-103. Smithsonian Institution Press, Washington 1999.
  31. Ma L.T., Chen S.L.: [Seasonal variation in photosynthesis of an introduced bamboo species Guadua amplexifolia.] - Guihaia 33: 475-481, 2013. [In Chinese]
  32. Maxwell K., Johnson G.N.: Chlorophyll fluorescence‒a practical guide. - J. Exp. Bot. 345: 659-668, 2000. Go to original source...
  33. Montiel M., Sánchez E.: [Ultrastructure of bamboo, genera Guadua and Dendrocalamus]. - Int. J. Trop. Biol. 54: 43-50, 2006. [In Spanish]
  34. Motomura H., Hikosaka K., Suzuki M.: Relationships between photosynthetic activity and silica accumulation with ages of leaf in Sasa veitchii (Poaceae, Bambusoideae). - Ann. Bot. 101: 463-468, 2008. Go to original source...
  35. Plonczak M.: [Forest types and their exploitation pressure in Venezuela.] - Quebracho 6: 69-74, 1998. [In Spanish]
  36. Poppens R., Morán-Ubidia J.A.: [Living with the Guadua: A Construction Manual]. 1st ed. Pp. 44. Universidad Católica de Santiago de Guayaquil, Guayaquil 2005. [In Spanish]
  37. Qui G.X., Shen Y.K., Li D.Y. et al.: Bamboo in sub-tropical eastern China. - In: Long S.P., Jones M.B., Roberts, M.J. (ed.): Primary Productivity of Grass Ecosystems of the Tropics and Sub-tropics. Pp. 159-188. Chapman and Hall, London 1992.
  38. Riaño N., Londoño X., López Y., Gómez J.H.: Plant growth and biomass distribution on Guadua angustifolia Kunth in relation to aging in the Valle del Cauca. - J. Amer. Bamboo Soc. 16: 43-51, 2002.
  39. Romero L., Monasterio M.: [Ecological and socioeconomical costs of the milk self-sufficiency. The case of the Maracaibo Lake Basin]. - Agroalimentaria 3: 1-14, 1997. [In Spanish]
  40. Sage R.F., Kubien D.S. The temperature response of C3 and C4 photosynthesis. - Plant Cell Environ. 30: 1086-1106, 2007. Go to original source...
  41. Saha S., Holbrook N.M., Montti, L. et al.: Water relations of Chusquea ramosissima and Merostachys claussenii in Iguazu National Park, Argentina. - Plant Physiol. 149: 1992-1999, 2009.
  42. Stern M.J., Londoño X., Clark L.G.: Bamboos in native landscapes. - In: Judziewicz E.J., Clark L.G., Londoño X., Stern M.J. (ed.): American Bamboos. Pp. 55-85. Smithsonian Institution Press, Washington 1999.
  43. Tezara W., Mitchell V.J., Driscoll S.D., Lawlor D.W.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. - Nature 401: 914-917, 1999. Go to original source...
  44. Van Goethem, D., De Smedt S., Valcke R. et al.: Seasonal, diurnal, and vertical variation of chlorophyll fluorescence on Phyllostachys humilis in Ireland. - PLoS ONE 8: e72145, 2013. Go to original source...
  45. Van Goethem, D., Potters G., De Smedt S. et al.: Seasonal, diurnal, and vertical variation in photosynthetic parameters in Phyllostachys humilis bamboo plants. - Photosynth. Res. 120: 331-346, 2014. Go to original source...
  46. Wahid A., Gelani S., Ashraf M., Foolad M.R.: Heat tolerance in plants: an overview. - Environ. Exp. Bot. 61: 199-223, 2007. Go to original source...
  47. Wen G., Zhang L., Zhang R. et al.: Temporal and spatial dynamics of carbon fixation by Moso bamboo (Phyllostachys pubescens) in subtropical China. - Bot. Rev. 77: 271-277, 2011. Go to original source...
  48. Wu F.Z, Bao W.K., Li F.L., Wu N.: Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings. - Photosynthetica 46: 40-48, 2008. Go to original source...
  49. Xu W.S., Deng X.P., Xu B.C.: Effects of water stress and fertilization on leaf gas exchange and photosynthetic light response curves of Botriochloa ischaemum L. - Photosynthetica 51: 603-612, 2013. Go to original source...