Photosynthetica 2018, 56(1):217-228 | DOI: 10.1007/s11099-018-0781-0

The multiplicity of roles for (bi)carbonate in photosystem II operation in the hypercarbonate-requiring cyanobacterium Arthrospira maxima

G. Ananyev1,2, C. Gates1,2, G. C. Dismukes1,2,*
1 The Waksman Institute of Microbiology, Rutgers University, Piscataway, USA
2 Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, USA

Arthrospira maxima is unique among cyanobacteria, growing at alkaline pH (<11) in concentrated (bi)carbonate (1.2 M saturated) and lacking carbonic anhydrases. We investigated dissolved inorganic carbon (DIC) roles within PSII of A. maxima cells oximetrically and fluorometrically, monitoring the light reactions on the donor and acceptor sides of PSII. We developed new methods for removing DIC based on a (bi)carbonate chelator and magnesium for (bi)carbonate ionpairing. We established relative affinities of three sites: the water-oxidizing complex (WOC), non-heme iron/QA-, and solvent-accessible arginines throughout PSII. Full reversibility is achieved but (bi)carbonate uptake requires light. DIC depletion at the non-heme iron site and solvent-accessible arginines greatly reduces the yield of O2 due to O2 uptake, but accelerates the PSII-WOC cycle, specifically the S2→S3 and S3→S0 transitions. DIC removal from the WOC site abolishes water oxidation and appears to influence free energy stabilization of the WOC from a site between CP43-R357 and Ca2+.

Keywords: bicarbonate depletion; dissolved inorganic carbon; oxygen-evolving complex; redox tuning; water-oxidizing complex

Received: May 23, 2017; Accepted: September 8, 2017; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ananyev, G., Gates, C., & Dismukes, G.C. (2018). The multiplicity of roles for (bi)carbonate in photosystem II operation in the hypercarbonate-requiring cyanobacterium Arthrospira maxima. Photosynthetica56(1), 217-228. doi: 10.1007/s11099-018-0781-0.
Download citation

Supplementary files

Download filephs-201801-0020_S1.pdf

File size: 142.63 kB

Download filephs-201801-0020_S2.pdf

File size: 192.3 kB

Download filephs-201801-0020_S3.pdf

File size: 387.05 kB

Download filephs-201801-0020_S4.pdf

File size: 244.71 kB

Download filephs-201801-0020_S5.pdf

File size: 162.43 kB

Download filephs-201801-0020_S6.pdf

File size: 155.45 kB

References

  1. Ananyev G., Dismukes G.C.: How fast can Photosystem II split water? Kinetic performance at high and low frequencies.-Photosynth. Res. 84: 355-365, 2005. Go to original source...
  2. Ananyev G., Gates C., Dismukes G.C.: The oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II.-BBA-Bioenergetics 1857: 1380-1391, 2016.
  3. Ananyev G., Gates C., Dismukes G.C.: Biogenesis and assembly of the CaMn4O5 core of photosynthetic water oxidases and inorganic mutants.-In: Scott R. (ed.): Metalloprotein Active Site Assembly. John Wiley & Sons, Chichester 2017.
  4. Ananyev G., Nguyen T., Putnam-Evans C., Dismukes G.C.: Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi) carbonate functioning in the water oxidizing complex of photosystem II.-Photoch. Photobio. Sci. 4: 991-998, 2005. Go to original source...
  5. Armstrong C.T., Mason P.E., Anderson J.R., Dempsey C.E.: Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels.-Sci. Rep. 6: 21759, 2016. Go to original source...
  6. Askerka M., Vinyard D.J., Brudvig G.W., Batista V.S.: NH3 Binding to the S2 state of the O2-evolving complex of photosystem II: Analogue to H2O binding during the S2→ S3 transition.-Biochemistry 54: 5783-5786, 2015. Go to original source...
  7. Babcock G.T., Barry B.A., Debus R.J. et al.: Water oxidation in photosystem II: from radical chemistry to multielectron chemistry.-Biochemistry 28: 9557-9565, 1989. Go to original source...
  8. Baranov S., Tyryshkin A., Katz D. et al.: Bicarbonate is a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation.-Biochemistry 43: 2070-2079, 2004. Go to original source...
  9. Brinkert K., De Causmaecker S., Krieger-Liszkay A. et al.: Bicarbonate-induced redox tuning in photosystem II for regulation and protection.-P. Natl. Acad. Sci. USA 113: 12144-12149, 2016. Go to original source...
  10. Capone M., Narzi D., Bovi D., Guidoni L.: Mechanism of water delivery to the active site of photosystem II along the S2 to S3 transition.-J. Phys. Chem. Lett. 7: 592-596, 2016.
  11. Carrieri D., Ananyev G., Brown T., Dismukes G.C.: In vivo bicarbonate requirement for water oxidation by photosystem II in the hypercarbonate-requiring cyanobacterium Arthrospira maxima.-J. Inorg. Biochem. 101: 1865-1874, 2007.
  12. Clausen J., Beckmann K., Junge W., Messinger J.: Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution.-Plant Physiol. 139: 1444-1450, 2005. Go to original source...
  13. Dasgupta J., Ananyev G.M., Dismukes G.C.: Photoassembly of the water-oxidizing complex in photosystem II.-Coordin. Chem. Rev. 252: 347-360, 2008.
  14. Dasgupta J., Tyryshkin A.M., Baranov S.V., Dismukes G.C.: Bicarbonate coordinates to Mn3+ during photo-assembly of the catalytic Mn4Ca core of photosynthetic water oxidation: EPR characterization.-Appl. Magn. Reson. 37: 137-150, 2010. Go to original source...
  15. Diner B.A., Petrouleas V., Wendoloski J.J.: The iron-quinone electron-acceptor complex of photosystem II.-Physiol. Plantarum 81: 423-436, 1991. Go to original source...
  16. Drake B.G., Gonzàlez-Meler M.A., Long S.P.: More efficient plants: a consequence of rising atmospheric CO2?-Annu. Rev. Plant Phys. 48: 609-639, 1997. Go to original source...
  17. Ferreira K.N., Iverson T.M., Maghlaoui K. et al.: Architecture of the photosynthetic oxygen-evolving center.-Science 303: 1831-1838, 2004. Go to original source...
  18. Gates C., Ananyev G., Dismukes G.C.: The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors.-BBA-Bioenergetics 1857: 1550-1560, 2016.
  19. Govindjee, van Rensen J.: Photosystem II reaction centers and bicarbonate.-In: Deisenhofer j. (ed.): Photosynthetic Reaction Centers. Pp. 357-389, Academic Press, San Diego 1993. Go to original source...
  20. Hillier W., McConnell I., Badger M.R. et al.: Quantitative assessment of intrinsic carbonic anhydrase activity and the capacity for bicarbonate oxidation in photosystem II.-Biochemistry 45: 2094-2102, 2006. Go to original source...
  21. Hunger J., Neueder R., Buchner R., Apelblat A.: A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.-J. Phys. Chem. B 117: 615-622, 2013. Go to original source...
  22. Hwang H.J., Dilbeck P., Debus R.J., Burnap R.L.: Mutation of arginine 357 of the CP43 protein of photosystem II severely impairs the catalytic S-state cycle of the H2O oxidation complex.-Biochemistry 46: 11987-11997, 2007. Go to original source...
  23. Ippolito J.A., Alexander R.S., Christianson D.W.: Hydrogen bond stereochemistry in protein structure and function.-J. Mol. Biol. 215: 457-471, 1990. Go to original source...
  24. Khorobrykh A., Dasgupta J., Kolling D.R. et al.: Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn2+ photo-oxidation by anoxygenic bacterial reaction centers.-Chem. Bio. Chem. 14: 1725-1731, 2013. Go to original source...
  25. Klimov V.V., Allakhverdiev S.I., Feyziev Y.M., Baranov S.V.: Bicarbonate requirement for the donor side of photosystem II.-FEBS Lett. 363: 251-255, 1995. Go to original source...
  26. Klimov V., Baranov S.: Bicarbonate requirement for the wateroxidizing complex of photosystem II.-BBA-Bioenergetics 1503: 187-196, 2001. Go to original source...
  27. Kolber Z.S., Prášil O., Falkowski P.G.: Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols.-BBABioenergetics 1367: 88-106, 1998. Go to original source...
  28. Koroidov S., Shevela D., Shutova T. et al.: Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation.-P. Natl. Acad. Sci. USA 111: 6299-6304, 2014. Go to original source...
  29. Kuriata A.M., Chakraborty M., Henderson J.N. et al: ATP and magnesium promote cotton short-form ribulose-1, 5- bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations.-Biochemistry 53: 7232-7246, 2014. Go to original source...
  30. Lubitz W., Cox N., Rapatskiy L. et al.: Light-induced water oxidation in photosynthesis.-J. Biol. Inorg. Chem. 19: S350-S350, 2014.
  31. Roach T., Sedoud A., Krieger-Liszkay A.: Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition.-BBABioenergetics 1827: 1183-1190, 2013.
  32. Rutherford A.W., Govindjee, Inoue Y.: Charge accumulation and photochemistry in leaves studied by thermo-luminescence and delayed light-emission.-P. Natl. Acad. Sci. USA 81: 1107-1111, 1984. Go to original source...
  33. Shen J.-R.: The structure of photosystem II and the mechanism of water oxidation in photosynthesis.-Annu. Rev. Plant Biol. 66: 23-48, 2015. Go to original source...
  34. Shevela D., Eaton-Rye J.J., Shen J.-R., Govindjee: Photosystem II and the unique role of bicarbonate: A historical perspective.-BBA-Bioenergetics 1817: 1134-1151, 2012.
  35. Shevela D., Su J.-H., Klimov V., Messinger J.: Hydrogencarbonate is not a tightly bound constituent of the wateroxidizing complex in photosystem II.-BBA-Bioenergetics 1777: 532-539, 2008. Go to original source...
  36. Snel J.F.H., van Rensen J.J.S.: Reevaluation of the role of electron flow in broken chloroplasts.-Plant Physiol. 75: 146-150, 1984. Go to original source...
  37. Stemler A.: Inhibition of photosystem II by formate. Possible evidence for a direct bicarbonate and formate in the regulation of photosynthetic role of bicarbonate in photosynthetic oxygen evolution.-BBA-Bioenergetics 593: 103-112, 1980. Go to original source...
  38. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient.-J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  39. van Rensen J.J.S., Tonk W.J.M., de Bruijn S.M.: Involvement of bicarbonate in the protonation of the secondary quinone electron acceptor of photosystem II via the non-haem iron of the quinone-iron acceptor complex.-FEBS Lett. 226: 347-351, 1988. Go to original source...
  40. van Rensen J.J.S., Xu C., Govindjee: Role of bicarbonate in photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis.-Physiol. Plantarum 105: 585-592, 1999. Go to original source...
  41. Vermaas W.F., Rutherford A.W.: EPR measurements on the effects of bicarbonate and triazine resistance on the acceptor side of photosystem II.-FEBS Lett. 175: 243-248, 1984. Go to original source...
  42. Vinyard D.J., Zachary C.E., Ananyev G., Dismukes G.C.: Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: A mathematical solution to asymmetric Markov chains.-BBA-Bioenergetics 1827: 861-868, 2013.
  43. Vogt L., Ertem M.Z., Pal R. et al.: Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca2+ or Ca2+ substituted by Sr2+.-Biochemistry 54: 820-825, 20
  44. Vonshak A., Tomaselli L.: Arthrospira (Spirulina): systematics and ecophysiology.-In: Whitton B.A.(ed.): The Ecology of Cyanobacteria. Pp. 505-522. Springer, Dordrecht 2000 Go to original source...
  45. Wincencjusz H., van Gorkom H.J., Yocum C.F.: The photosynthetic oxygen evolving complex requires chloride for its redox state S2→ S3 and S3→ S0 transitions but not for S0→ S1 or S1→ S2 transitions.-Biochemistry 36: 3663-3670, 1997. Go to original source...
  46. Wydrzynski T., Govindjee: A new site of bicarbonate effect in photosystem II of photosynthesis: Evidence from chlorophyll fluorescence transients in spinach chloroplasts.-BBABioenergetics 387: 403-408, 1975. Go to original source...
  47. Zarrouk C.: [Contribution to the study of Cyanophyceae, influence of various physical and chemical factors on growth and photosynthesis of Spirulina maxima (Setch and Gardner) Geitler.]-J. Univ de Paris, 1966. [In French]
  48. Zhang H., Joseph J., Gurney M., et al.: Bicarbonate enhances peroxidase activity of Cu, Zn-superoxide dismutase role of carbonate anion radical and scavenging of carbonate anion radical by metalloporphyrin antioxidant enzyme mimetics.-J. Biol. Chem. 277: 1013-1020, 2002. Go to original source...