Photosynthetica 2018, 56(1):254-264 | DOI: 10.1007/s11099-018-0782-z

Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes

C. Kotakis1, P. Akhtar1,2, O. Zsiros1, G. Garab1,3, P. H. Lambrev1,*
1 Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
2 Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
3 Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic

The principal function of the thylakoid membrane depends on the integrity of the lipid bilayer, yet almost half of the thylakoid lipids are of non-bilayer-forming type, whose exact functions are not fully understood. Non-bilayer lipids can be extruded from the membrane in the presence of high concentrations of co-solutes. We applied 2 M sucrose to induce lipid phase separation in isolated thylakoid membranes, following consequent structural and physiological effects. Circular dichroism spectroscopy indicated significant changes in the chiral macro-arrangement of the pigment-protein complexes, which were reversed after washing out the co-solute. Similarly, merocyanine-540 fluorescence suggested reversible changes in the lipid phases. The PSII function, as tested by chlorophyll fluorescence induction transients and time-resolved fluorescence, was almost unaffected. However, the presence of sucrose dramatically increased the PSII thermostability, which can partly be explained by a direct osmolyte effect and partly by the lipid phase separation stabilizing the stacked membrane.

Keywords: circular dichroism; merocyanine-540; non-bilayer lipids; osmolyte; time-resolved fluorescence spectroscopy

Received: September 11, 2017; Accepted: November 15, 2017; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kotakis, C., Akhtar, P., Zsiros, O., Garab, G., & Lambrev, P.H. (2018). Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica56(1), 254-264. doi: 10.1007/s11099-018-0782-z.
Download citation

Supplementary files

Download filephs-201801-0024_S1.pdf

File size: 202.4 kB

Download filephs-201801-0024_S2.pdf

File size: 207.98 kB

Download filephs-201801-0024_S3.pdf

File size: 112.25 kB

References

  1. Akhtar P., Lingvay M., Kiss T. et al.: Excitation energy transfer between light-harvesting complex II and photosystem I in reconstituted membranes.-Biochim. Biophys. Acta 1857: 462-472, 2016.
  2. Barzda V., Istokovics A., Simidjiev I., Garab G.: Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment-protein complexes. Light-induced reversible structural changes associated with energy dissipation.-Biochemistry 35: 8981-8985, 1996. Go to original source...
  3. Bernik D., Tymczyszyn E., Daraio M.E., Negri R.M.: Fluorescent dimers of merocyanine 540 (MC540) in the gel phase of phosphatidylcholine liposomes.-Photochem. Photobiol. 70: 40-48, 1999. Go to original source...
  4. Broess K., Trinkunas G., van Hoek A. et al.: Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters.-Biochim. Biophys. Acta 1777: 404-409, 2008. Go to original source...
  5. Cseh Z., Rajagopal S., Tsonev T. et al.: Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity.-Biochemistry 39: 15250-15257, 2000. Go to original source...
  6. Demé B., Cataye C., Block M.A. et al.: Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids.-FASEB J. 28: 3373-3383, 2014. Go to original source...
  7. Douce R., Joyard J.: Biosynthesis of thylakoid membrane lipids.-In: Ort D.R., Yocum C.F. (ed.): Oxygenic Photosynthesis: The Light Reactions. Pp. 69-101. Kluwer Academic Publishers, Dordrecht 1996. Go to original source...
  8. Garab G., Faludi-Daniel A., Sutherland J.C., Hind G.: Macroorganization of chlorophyll a/b light-harvesting complex in thylakoids and aggregates - information from circular differential scattering.-Biochemistry 27: 2425-2430, 1988a. Go to original source...
  9. Garab G., Kieleczawa J., Sutherland J.C. et al: Organization of pigment protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll-b-less mutant of barley as revealed by circular-dichroism.-Photochem. Photobiol. 54: 273-281, 1991. Go to original source...
  10. Garab G., Lohner K., Laggner P., Farkas T.: Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis.-Trends Plant Sci. 5: 489-494, 2000. Go to original source...
  11. Garab G., Ughy B., Goss R.: Role of MGDG and non-bilayer lipid phases in the structure and dynamics of chloroplast thylakoid membranes.-In: Nakamura Y., Li-Beisson Y. (ed.): Lipids in Plant and Algae Development. Pp. 127-157. Springer, Dordrecht 2016. Go to original source...
  12. Garab G., Ughy B., Waard P. et al.: Lipid polymorphism in chloroplast thylakoid membranes-as revealed by (31) P-NMR and time-resolved merocyanine fluorescence spectroscopy.-Sci. Rep. 7: 13343, 2017. Go to original source...
  13. Garab G., van Amerongen H.: Linear dichroism and circular dichroism in photosynthesis research.-Photosynth. Res. 101: 135-146, 2009. Go to original source...
  14. Garab G., Wells S., Finzi L., Bustamante C.: Helically organized macroaggregates of pigment protein complexes in chloroplasts - evidence from circular intensity differential scattering.-Biochemistry 27: 5839-5843, 1988b. Go to original source...
  15. Goltsev V., Yordanov I., Tsonev T.: Evaluation of relative contribution of initial and variable chlorophyll fluorescence measured at different temperatures.-Photosynthetica 30: 629-643, 1994.
  16. Goss R., Lohr M., Latowski D. et al.: Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation.-Biochemistry 44: 4028-4036, 2005. Go to original source...
  17. Goss R., Oroszi S., Wilhelm C.: The importance of grana stacking for xanthophyll cycle-dependent NPQ in the thylakoid membranes of higher plants.-Physiol. Plantarum 131: 496-507, 2007. Go to original source...
  18. Holzwarth A.R., Miloslavina Y., Nilkens M., Jahns P.: Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence.-Chem. Phys. Lett. 483: 262-267, 2009. Go to original source...
  19. Jahns P., Latowski D., Strzalka K.: Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids.-BBA-Bioenergetics 1787: 3-14, 2009. Go to original source...
  20. Janik E., Bednarska J., Zubik M. et al.: Molecular architecture of plant thylakoids under physiological and light stress conditions: A study of lipid-light-harvesting complex II model membranes.-Plant Cell 25: 2155-2170, 2013. Go to original source...
  21. Kirchhoff H., Haase W., Wegner S. et al.: Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplast.-Biochemistry 46: 11169-11176, 2007. Go to original source...
  22. Kouřil R., Lazár D., Ilík P. et al.: High-temperature induced chlorophyll fluorescence rise in plants at 40-50 °C: Experimental and theoretical approach.-Photosynth. Res. 81: 49-66, 2004. Go to original source...
  23. Kovács L., Damkjaer J., Kereïche S. et al.: Lack of the lightharvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts.-Plant Cell 18: 3106-3120, 2006. Go to original source...
  24. Kowalewska L., Mazur R., Suski S. et al.: Three-dimensional visualization of the internal plastid membrane network during runner bean chloroplast biogenesis. Dynamic model of the tubular-lamellar transformation.-Plant Cell 28: 875-891, 2016. Go to original source...
  25. Krishna M., Periasamy N.: Fluorescence of organic dyes in lipid membranes: site of solubilization and effects of viscosity and refractive index on lifetimes.-J. Fluoresc. 8: 81-91, 1998. Go to original source...
  26. Krumova S.B., Dijkema C., de Waard P. et al.: Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR.-BBA-Biomembranes 1778: 997-1003, 2008a. Go to original source...
  27. Krumova S.B., Koehorst R.B.M., Bóta A. et al.: Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine.-Biochim. Biophys. Acta 1778: 2823-2833, 2008b. Go to original source...
  28. Krumova S.B., Laptenok S.P., Kovács L. et al.: Digalactosyldiacylglycerol- deficiency lowers the thermal stability of thylakoid membranes.-Photosynth. Res. 105: 229-242, 2010. Go to original source...
  29. Langner M., Hui S.W.: Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellarhexagonal transition of phosphatidylethanolamine bilayers.-Biochim. Biophys. Acta 1415: 323-330, 1999. Go to original source...
  30. Latowski D., Akerlund H.E., Strzałka K.: Violaxanthin deepoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity.-Biochemistry 43: 4417-4420, 2004. Go to original source...
  31. Miloslavina Y., Wehner A., Lambrev P.H. et al.: Far-red fluorescence: A direct spectroscopic marker for LHCII oligomers forming in non-photochemical quenching.-FEBS Lett. 582: 3625-3631, 2008. Go to original source...
  32. Mitchell P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.-Biol. Rev. Camb. Philos. 41: 445-501, 1966. Go to original source...
  33. Nagy G., Szabó M., Ünnep R. et al.: Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy.-Photosynth. Res. 111: 71-79, 2012. Go to original source...
  34. Nagy G., Ünnep R., Zsiros O. et al.: Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo.-P. Natl. Acad. Sci. USA 111: 5042-5047, 2014. Go to original source...
  35. Pal S.K., Sukul D., Mandal D., Bhattacharyya K.: Solvation dynamics of DCM in lipid.-J. Phys. Chem. B 104: 4529-4531, 2000. Go to original source...
  36. Páli T., Garab G., Horváth L.I., Kóta Z.: Functional significance of the lipid-protein interface in photosynthetic membranes.-Cell Mol. Life Sci. 60: 1591-1606, 2003. Go to original source...
  37. Posselt D., Nagy G., Kirkensgaard J.J. et al.: Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes-periodicity and structural flexibility of the stroma lamellae.-Biochim. Biophys. Acta 1817: 1220-1228, 2012.
  38. Pueyo J.J., Alfonso M., Andrés C., Picorel R.: Increased tolerance to thermal inactivation of oxygen evolution in spinach Photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium.-Biochim. Biophys. Acta 1554: 29-35, 2002. Go to original source...
  39. Roelofs T.A., Lee C.-H., Holzwarth A.R.: Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II α- and β-units.-Biophys. J. 61: 1147-1163, 1992. Go to original source...
  40. Simidjiev I., Barzda V., Mustárdy L., Garab G.: Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II.-Biochemistry 37: 4169-4173, 1998. Go to original source...
  41. Simidjiev I., Stoylova S., Amenitsch H. et al.: Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro.-P. Natl. Acad. Sci. USA 97: 1473-1476, 2000. Go to original source...
  42. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient.-J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  43. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient.-In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 463-495. Springer, Dordrecht 2004. Go to original source...
  44. Stratt R.M., Maroncelli M.: Nonreactive dynamics in solution: The emerging molecular view of solvation dynamics and vibrational relaxation.-J. Phys. Chem. 100: 12981-12996, 1996. Go to original source...
  45. Tóth T.N., Rai N., Solymosi K. et al.: Fingerprinting the macroorganisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy.-BBA-Bioenergetics 1857: 1479-1489, 2016.
  46. Tsvetkova N.M., Apostolova E.L., Brain A.P. et al.: Factors influencing PSII particle array formation in Arabidopsis thaliana chloroplasts and the relationship of such arrays to the thermostability of PS II.-BBA-Bioenergetics 1228: 201-210, 1995. Go to original source...
  47. Ünnep R., Zsiros O., Solymosi K. et al.: The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering.-BBA-Bioenergetics 1837: 1572-1580, 2014.
  48. van der Weij-de Wit C.D., Ihalainen J.A., van Grondelle R., Dekker J.P.: Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy.-Photosynth. Res. 93: 173-182, 2007. Go to original source...
  49. van Eerden F.J., de Jong D.H., de Vries A.H. et al.: Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations.-Biochim. Biophys. Acta 1848: 1319-1330, 2015.
  50. Williams W., Brain A., Dominy P.: Induction of non-bilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to therthermal stability of Photosystem II.-BBA-Bioenergetics 1099: 137-144, 1992. Go to original source...
  51. Williams W., Gounaris K.: Stabilisation of PS-II-mediated electron transport in oxygen-evolving PS II core preparations by the addition of compatible co-solutes.-Biochim. Biophys. Acta 1100: 92-97, 1992. Go to original source...
  52. Williams W.P.: The physical properties of thylakoid membrane lipids and their relation to photosynthesis.-In: Siegenthaler P.-A., Murata N. (ed.): Lipids in Photosynthesis: Structure, Function and Genetics. Pp. 103-118. Springer, Dordrecht 1998. Go to original source...
  53. Yamamoto H.Y., Higashi R.: Violaxanthin de-epoxidase: lipid composition and substrate specificity.-Arch. Biochem. Biophys. 190: 514-522, 1978. Go to original source...
  54. Yancey P.H.: Compatible and counteracting solutes.-In: Strange K. (ed.): Cellular and Molecular Physiology of Cell Volume Regulation. Pp. 81-109. CRC Press, Boca Raton 1994.