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Abstract

We study variants of Buss’s theories of bounded arithmetic axiomatized by induction

schemes disallowing the use of parameters, and closely related induction inference rules.

We put particular emphasis on Π̂b
i induction schemes, which were so far neglected in the

literature. We present inclusions and conservation results between the systems (including

a witnessing theorem for T i
2 and Si

2 of a new form), results on numbers of instances of the

axioms or rules, connections to reflection principles for quantified propositional calculi,

and separations between the systems.
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1 Introduction

Commonly studied theories of arithmetic, weak and strong alike, are typically axiomatized

by variants of induction or other axiom schemes (comprehension, collection, . . . ) restricted

to suitable classes of formulas, where these formulas may freely use parameters: arbitrary

numbers or other objects manipulated by the theory that enter the induction formula by

means of free variables, unrelated to the induction variable. This generally makes the theories

robust in their formal properties, and intuitive to work with. Nevertheless, induction schemes

without parameters proved fruitful to study in the context of strong subtheories of Peano

arithmetic (Σn-induction), revealing a landscape of strange, and yet familiar systems: see

e.g. Kaye, Paris, and Dimitracopoulos [30], Adamowicz and Bigorajska [1], Bigorajska [5],

Beklemishev [3, 4], and Cordón-Franco and Lara-Mart́ın [20].

On the one hand, the parameter-free induction schemes IΣ−n and IΠ−n (for n ≥ 1) are close

to the original schemes with parameters IΣn, as the theories are conservative over each other

with respect to large classes of sentences (though the correspondence is a bit off, as IΠ−n+1

is on the same level as IΣn and IΣ−n ). On the other hand, there are substantial differences:
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as already alluded to, the Πn schemes without parameters become genuinely distinct from

(and weaker than) the matching Σn schemes, whereas IΣn = IΠn; neither IΣ−n nor IΠ−n are

finitely axiomatizable, in contrast to IΣn.

The parameter-free schemes IΣ−n and IΠ−n are intimately connected to induction rules IΣR
n

and IΠR
n : here, instead of theories generated just by axioms on top of the usual rules of first-

order logic, we consider a form of induction as an additional (Hilbert-style) rule of inference. It

turns out IΣ−n is the weakest theory all of whose extensions are closed under IΣR
n , and likewise

for Πn. An important role in the analysis of IΣ−n and IΠ−n is played by reflection principles for

fragments of arithmetic [3, 4]: while IΣn is equivalent to a certain uniform (global) reflection

principle, the theories IΣ−n and IΠ−n can be characterized using relativized local reflection

principles. There are also intricate connections relating the nesting of applications of rules

and the number of instances of axioms. As an alternative to reflection principles, parameter-

free induction schemes can be analysed using local induction [20].

In contrast to all these results, much less is known about parameter-free induction axioms

and induction rules in the context of bounded arithmetic: the early work of Kaye [29] intro-

duced the parameter-free subtheories IE−i of I∆0, while the only investigation of parameter-

free Buss’s theories was done by Bloch [6], who studied proof-theoretically Σb
i parameter-free

induction rules1 in a sequent formalism, and Cordón-Franco, Fernandéz-Margarit, and Lara-

Mart́ın [19], whose main results concern conservativity of the theories Si
2 and T i

2 over the

parameter-free and induction-rule versions of Σ̂b
i -PIND and Σ̂b

i -IND , and conservativity of

BBΣb
i over its rule version. They rely on model-theoretic methods exploiting variants of

existentially closed models.

The purpose of this paper is to study parameter-free versions of Buss’s theories in a more

systematic way, filling in various gaps in our knowledge to obtain a more complete picture.

Some highlights are as follows. We will investigate Π̂b
i schemes and rules, which were so far

entirely ignored in the literature, alongside their Σ̂b
i counterparts; in particular, we will prove

conservation results of T i
2 and Si

2 over Π̂b
i -(P)IND−. We try to get as complete a description

of the relationships among the systems in question as possible; to this end, we also include

tentative separation results (conditional or relativized). While bounded arithmetic is too weak

to prove the consistency of interesting first-order theories, it has a well-known connection

to propositional proof systems; in accordance with this, we will present characterizations

of our systems in terms of variants of reflection principles for fragments of the quantified

propositional sequent calculus. We also include some results on the nesting of rules, namely

conditions ensuring that closure under the induction rules collapses to unnested closure, and

conservation results of n instances of parameter-free induction axioms over n applications of

induction rules.

The paper is organized as follows. After some preliminary background in Section 2, we

introduce in Section 3 the main axioms and rules that we are interested in, and we prove some

of their elementary properties—primarily reductions between the rules (Theorem 3.5), but

also a result on a collapse of Π̂b
i -(P)INDR to unnested applications (Theorem 3.7). We discuss

various variants of the axioms and rules in Section 4, and we show them mostly equivalent to

1Warning: the proof of Theorem 27, which effectively claims that Σ̂b
i -(P)IND− ≡ Σ̂b

i -(P)INDR, is incorrect.
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our main systems (Proposition 4.2).

The most substantial technical part of the paper comes in Section 5, which is devoted to

conservation results. We recall the conservation of T i
2 and Si

2 over Σ̂b
i -(P)INDR (Theorem 5.1)

from [6, 19], and we set out to prove an analogous conservation result over Π̂b
i -(P)INDR (The-

orem 5.9). A key part of the proof is a new witnessing theorem for ∀∃∀Σ̂b
i−1 consequences

(and ∀∃∀Σ̂b
i consequences) of T i

2 and Si
2, which may be of independent interest (Theorem 5.4

and Proposition 5.5). We obtain conservation results over Γ-(P)IND−, summarized in Corol-

lary 5.15, and a result on collapse of nesting of Σ̂b
i -(P)INDR (Theorem 5.10). We also prove

more direct conservation results of T + Γ-(P)IND− over T + Γ-(P)INDR for arbitrary theo-

ries T (Theorem 5.22).

We discuss connections to propositional proof systems in Section 6, the main result being

a characterization of Γ-(P)INDR and Γ-(P)IND− in terms of reflection principles for quan-

tified propositional calculi (Theorem 6.5). Section 7 is devoted to separations between our

systems: we present some conditional separations in Section 7.1, and unconditional relativized

separations in Section 7.2. We conclude the paper with a few remarks in Section 8.

2 Notation and preliminaries

We assume the reader is familiar with the basics of bounded arithmetic. We will work in the

framework of Buss’s one-sorted theories Si
2 and T i

2, as presented e.g. in Buss [7], Hájek and

Pudlák [21, Ch. V], or Kraj́ıček [32]. It would not be too difficult to adapt our results to

the setting of two-sorted theories V i as in Cook and Nguyen [17], but we find the one-sorted

setting simpler to use for the present purpose.

In order not to get bogged down in trivial technicalities, we will employ a robust base

theory in a rich language in place of Buss’s BASIC : let BTC 0 denote the basic first-order

theory for TC0, in a language LTC0 with function symbols for all TC0 functions so that BTC 0

is a universal theory. We are not very particular about its exact definition; for example, we

may axiomatize it as the theory ∆b
1-CR of Johannsen and Pollett [26] expanded with function

symbols for all Σb
1-definable functions of the theory, or as the equivalent theory TTC 0 of Clote

and Takeuti [14]. Note that BTC 0 is RSUV -isomorphic to the theory VTC 0 (or rather,

VTC
0
) of Cook and Nguyen [17]. Unless stated otherwise, we will assume all first-order

theories to be formulated in LTC0 and to extend BTC 0.

If Γ is a (possibly empty) set of sentences, and ϕ a sentence, we write Γ ` ϕ if ϕ is provable

in the theory BTC 0 + Γ. We may omit outermost universal quantifiers when writing down Γ

or ϕ, as is the customary fashion. We may also write Γ ` ∆ for a set of sentences ∆, meaning

Γ ` ϕ for all ϕ ∈ ∆. We stress that BTC 0 + Γ is only closed under the standard deduction

rules of first-order logic (i.e., it includes logically valid sentences, and it is closed under modus

ponens); it is not supposed to be closed under the ∆b
1-CR rule even if we define BTC 0 as

in [26].

Let Σ̂b
i and Π̂b

i denote the classes of strict Σb
i and Πb

i formulas in LTC0 : that is, Σ̂b
0 =

Π̂b
0 = Σb

0 = Πb
0 is the class of sharply bounded formulas, and for i > 0, a Σ̂b

i formula

(Π̂b
i formula) consists of i alternating (possibly empty) blocks of bounded quantifiers followed
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by a Σb
0 formula, where the first block is existential (universal, resp.). Equivalently, we

could further restrict the blocks to a single quantifier apiece. Note that every Σb
0 formula is

equivalent to an atomic formula in BTC 0. The class of all bounded formulas is denoted Σb
∞.

We will combine notations such as Σ̂b
i and Π̂b

i with symbolic prefixes denoting unbounded

quantifiers: for example, ∀∃Σ̂b
i denotes the class of formulas (in most contexts, sentences)

consisting of a block of universal quantifiers, followed by a block of existential quantifiers,

followed by a Σ̂b
i formula.

Let Γ be a class of sentences, and T a theory. The Γ-fragment of T is the theory axiom-

atized by BTC 0 + {ϕ ∈ Γ : T ` ϕ}. If S is another theory, T is Γ-conservative over S if the

Γ-fragment of T is included in S.

Let Σ∗1 denote the least class of formulas that includes bounded formulas, and is closed

under existential and bounded universal quantifiers; Π∗1 denotes the dual class. A model-

theoretic characterization of these classes is that Π∗1 formulas are preserved downwards in

cuts, and Σ∗1 formulas upwards.

Theorem 2.1 (Parikh) Let T be a Π∗1-axiomatized extension of BTC 0, and ϕ ∈ Σ∗1. If

T ` ∀x ∃y ϕ(x, y), there exists a term t such that T ` ∀x ∃y ≤ t(x)ϕ(x, y). 2

We will occasionally use that Σ∗1-sentences true in the standard model of arithmetic N are

provable in BTC 0.

Another fundamental tool for studying systems of bounded arithmetic is Buss’s witnessing

theorem. We are actually not interested in witnessing per se, but in the following consequence:

Theorem 2.2 (Buss) For any i ≥ 0, Si+1
2 is a ∀Σ̂b

i+1-conservative extension of T i
2. 2

We will in fact use it in an ostensibly stronger form:

Corollary 2.3 For any i ≥ 0 and T ⊆ ∃∀Σ̂b
i , S

i+1
2 + T is ∀∃Σ̂b

i+1-conservative over T i
2 + T .

Proof: Assume that Si+1
2 + ∃u ∀z ψ(u, z) ` ∀x ∃y ϕ(x, y), where ψ ∈ Σ̂b

i , and ϕ ∈ Σ̂b
i+1. Then

Si+1
2 proves ∀x, u∃y

(
¬ψ(u, y)∨ϕ(x, y)

)
. By Parikh’s theorem, we may bound the y quantifier

by a term in x and u, which makes the statement (equivalent to) a ∀Σ̂b
i+1 sentence. Thus, it

is provable in T i
2 by Theorem 2.2, and this implies T i

2 + ∃u∀z ψ(u, z) ` ∀x ∃y ϕ(x, y). 2

Our basic objects of study will be rules rather than just axiom schemes. Here, a rule R is

a set of pairs 〈Γ, ϕ0〉, where ϕ0 is a sentence, and Γ = {ϕ1, . . . , ϕn} is a finite set of sentences;

each 〈Γ, ϕ0〉 ∈ R is called an instance of R, and will be written more conspicuously as Γ / ϕ0,

or

(1)
ϕ1 ϕ2 . . . ϕn

ϕ0
.

The instance above is n-ary. We will identify axiom schemes with 0-ary rules. Again, we

will often omit outermost universal quantifiers from the sentences ϕi when writing down rules

like (1).

If T is a theory, and R a rule, then T + R denotes the least theory T ′ (i.e., deductively

closed set of sentences) which includes T , and which is closed under R, meaning that for any
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instance Γ / ϕ of R, if Γ ⊆ T ′, then ϕ ∈ T ′. We may stratify this definition by counting the

nesting depth of applications of the rules. Let [T,R] denote the closure of T under unnested

applications of R-instances, i.e., the theory axiomatized by

T ∪
{
ϕ : Γ / ϕ ∈ R, T ` Γ

}
,

and we define [T,R]0 = T , [T,R]n+1 = [[T,R]n, R] by induction on n ∈ ω. Notice that

T +R =
⋃

n[T,R]n. See also Remark 3.6.

A rule R is weakly reducible to a rule S if T +R ⊆ T + S for all theories T , and R and S

are weakly equivalent if they are weakly reducible to each other. Likewise, R is reducible to S,

written R ≤ S, if [T,R] ⊆ [T, S] for every theory T , and R and S are equivalent, written

R ≡ S, if R ≤ S ≤ R. While this definition speaks about arbitrary theories T , the only

interesting cases are theories axiomatized by premises of instances of the rules:

Observation 2.4 Let R and S be rules.

(i) R is weakly reducible to S iff ϕ ∈ BTC 0 + Γ + S for all instances Γ / ϕ of R.

(ii) R is reducible to S iff ϕ ∈ [BTC 0 + Γ, S] for all instances Γ / ϕ of R. 2

More generally, we say that R is reducible to S over a theory B if [T,R] ⊆ [T, S] for all

T ⊇ B, and similarly for weak reducibility. Observation 2.4 also generalizes to this situation.

We remark that just like sets of axioms are represented uniquely up to equivalence by

theories, rules can be represented up to weak equivalence by finitary consequence relations,

extending the standard first-order consequence relation of BTC 0.

Aside from bounded arithmetic, we will also assume (especially in Section 6) familiarity

with basic propositional proof complexity, and in particular with the quantified propositional

sequent calculus G (see [32, 17]). The classes Σq
i and Πq

i of quantified propositional formulas

are defined as usual: Σq
0 = Πq

0 consists of quantifier-free formulas; Σq
i+1 and Πq

i+1 include

Σq
i ∪Πq

i , and are closed under ∧ and ∨; Σq
i+1 is closed under existential quantifiers, and Πq

i+1

under universal quantifiers; negations of Σq
i+1 formulas are Πq

i+1, and vice versa.

Following [17], we define Gi for i > 0 as G restricted so that all cut-formulas are Σq
i . When

the sequent to be proved consists of Σq
i formulas, this is equivalent to the original definition

as in [32]. Note that up to polynomial simulation, we could allow Πq
i cut-formulas in Gi as

well; on the other hand, we could restrict cut-formulas to prenex Σq
i formulas only [25]. Let

G∗i denote the tree-like version of Gi. For i = 0, we define G0 as extended Frege, optionally

considered as a proof system for prenex Σq
1 formulas (the system introduced as ePK in [17]).

If P is a quantified propositional proof system, and j ≥ 0, then RFNj(P ) denotes the

Σq
j -reflection principle for P . If j = 0, we take this to mean the Π̂b

1 reading of the principle:

“for every proof of a quantifier-free formula A, and every evaluation of subformulas of A that

respects the connectives, the value assigned to A is 1” (Πq
0-RFNP in the notation of [17,

§X.2.3]). (This can make a difference, as BTC 0 does not necessarily prove that any given

quantifier-free formula can be evaluated.) Note that for all proof systems we are going to

consider, this form of RFN0 is BTC 0-provably equivalent to consistency.
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3 Main systems

We are ready to introduce the main axioms and rules that will be the topic of this paper.

In the rest of this section, we will show their basic properties, most importantly reductions

(inclusions) among the rules.

Definition 3.1 The induction and polynomial induction axioms for a formula ϕ are defined

as usual:

ϕ(0, y) ∧ ∀x (ϕ(x, y)→ ϕ(x+ 1, y))→ ∀xϕ(x, y),(ϕ-IND)

ϕ(0, y) ∧ ∀x (ϕ(bx/2c, y)→ ϕ(x, y))→ ∀xϕ(x, y).(ϕ-PIND)

The corresponding induction rules are

ϕ(0, y) ϕ(x, y)→ ϕ(x+ 1, y)

ϕ(x, y)
,(ϕ-INDR)

ϕ(0, y) ϕ(bx/2c, y)→ ϕ(x, y)

ϕ(x, y)
.(ϕ-PINDR)

If Γ is a set of formulas (usually Γ = Σ̂b
i or Γ = Π̂b

i for i ≥ 0), we define the schema

Γ-IND = {ϕ-IND : ϕ ∈ Γ}, and similarly for PIND and (P)INDR.

In the formulation above, the variable y is a parameter of these axioms and rules (we could

equivalently allow a tuple of parameters, as this can be encoded by a single parameter using a

pairing function). The corresponding parameter-free schemes, denoted by superscript −, are

obtained by disallowing y, i.e., Γ-(P)IND− consists of ϕ-(P)IND for formulas ϕ ∈ Γ with no

free variables besides x.

The familiar theories Si
2 and T i

2 are defined as BTC 0 + Σ̂b
i -PIND and BTC 0 + Σ̂b

i -IND ,

respectively.

Remark 3.2 The cases i = 0 of our schemes and rules are idiosyncratic in various ways:

first, Σ̂b
0 = Π̂b

0; second, Σ̂b
0 is closed under neither bounded existential nor bounded univer-

sal quantifiers, which is going to break some constructions; and third, Σ̂b
0-PIND and their

parameter-free and rule variants are already derivable in the base theory BTC 0 (that is, in

our language, S0
2 = BTC 0, whereas T 0

2 is essentially PV1).

The standard theories with parameters T i
2 and Si

2 are axiomatizable by bounded formulas

(i.e., ∀Σb
∞ sentences), since the IND axiom as stated above is equivalent to

∀z
(
ϕ(0, y) ∧ ∀x < z (ϕ(x, y)→ ϕ(x+ 1, y))→ ϕ(z, y)

)
,

and similarly for PIND . The proof of this equivalence uses z as a parameter, hence it is

not obvious that this should hold for the parameter-free schemes as well. Nevertheless, the

Π̂b
i -(P)IND− schemes do have, for i > 0, bounded axiomatizations (specifically, by ∀Σ̂b

i+1 sen-

tences), similarly to the case with parameters: if ϕ ∈ Π̂b
i , then

(2) ∀x
(
ϕ(0) ∧ ∀y < x (ϕ(y)→ ϕ(y + 1))→ ϕ(x)

)
6



is provable by induction on the Π̂b
i formula ψ(x) = ∀y ≤ xϕ(y), as

` ∀y < x (ϕ(y)→ ϕ(y + 1)) ∧ ¬ϕ(x)→ ∀z (ψ(z)→ ψ(z + 1)),

and similarly for PIND . This argument does not seem to work for Σ̂b
i -(P)IND−, though.

A crucial property is that induction rules are equivalent to their parameter-free versions.

The case of Σ̂b
i was already proved in [19], but we include it for completeness anyway.

Lemma 3.3 If Γ = Σ̂b
i or Π̂b

i for i ≥ 0, then Γ-(P)INDR ≡ Γ-(P)INDR−.

Proof: Let 〈x, y〉 be a TC0 pairing function nondecreasing in x such that 〈x, y〉 ≥ x + y,

provably in BTC 0. If i ≤ j ≤ |x|, let x[i,j) denote the number whose binary representation

consists of the ith through (j − 1)th binary digits of x, where the most significant digit has

index 0; i.e., x[i,j) = bx/2|x|−jc mod 2j−i.

An instance of Σ̂b
i -INDR for a formula ϕ(x, y) can be reduced to Σ̂b

i -INDR for the formula

z = 0 ∨ ϕ(z[m,|z|), z[1,m)), where m = d|z|/2e: we have either z[m,|z|) = 0, or |z| = |z − 1|,
z[m,|z|) = (z − 1)[m,|z|) + 1, and z[1,m) = (z − 1)[1,m).

Since Π̂b
0 = Σ̂b

0 and BTC 0 ` Σ̂b
0-PIND , we may assume i > 0 in the remaining cases.

For Π̂b
i -INDR, let ϕ(x, y) ∈ Π̂b

i , and put ψ(z) = ∀x, y ≤ z (〈x, y〉 ≤ z → ϕ(x, y)). Then

ϕ(0, y) ` ψ(0),

ϕ(0, y), ϕ(x, y)→ ϕ(x+ 1, y) ` ψ(z)→ ψ(z + 1),

` ψ(〈x, y〉)→ ϕ(x, y).

For Π̂b
i -PINDR, we may use ψ(z) = ∀u ≤ |z|ϕ(z mod 2u, bz/2uc) in a similar fashion. In

order to verify

ϕ(0, y), ϕ(bx/2c, y)→ ϕ(x, y) ` ψ(bz/2c)→ ψ(z),

assume z > 0, and let u ≤ |z|. Put x = z mod 2u, y = bz/2uc. If u = 0, we have x = 0,

and ϕ(0, y) holds by assumption. Otherwise put z′ = bz/2c, u′ = u− 1, x′ = z′ mod 2u
′
, and

y′ = bz′/2u′c. We have u′ ≤ |z′|, x′ = bx/2c, and y′ = y, hence ϕ(bx/2c, y) by the induction

hypothesis, which implies ϕ(x, y) by assumption.

For Σ̂b
i -PINDR, let ϕ(x, y) be a Σ̂b

i formula of the form ∃u ≤ t(x, y) θ(x, y, u) with θ ∈ Π̂b
i−1.

Fix a suitable sequence encoding with (w)i being the ith element of the sequence coded by w,

and b(z) a term such that every sequence w of length at most |z|, each of whose entries is

bounded by t(x, y) for some x, y ≤ z, satisfies w ≤ b(z). Let ψ(z) be the Σ̂b
i formula

∃w ≤ b(z) ∀i, j ≤ |z|
(
〈i, j〉 < |z| → (w)〈i,j〉 ≤ t(z[j,i+j), z[0,j)) ∧ θ(z[j,i+j), z[0,j), (w)〈i,j〉)

)
.

Again, the least obvious property to check is that assuming the premises of Σ̂b
i -PINDR for ϕ,

we can derive ψ(bz/2c) → ψ(z). Let z > 0, z′ = bz/2c, and assume that w′ is a sequence

of length |z′| witnessing ψ(z′). We will construct a sequence w witnessing ψ(z). If 〈i, j〉 <
|z′| = |z| − 1, then i + j < |z′|, thus z′[j,i+j) = z[j,i+j) and z′[0,j) = z[0,j), and we may take

(w)〈i,j〉 = (w′)〈i,j〉. If 〈i, j〉 = |z′|, put x = z[j,i+j), y = z[0,j). Either i = 0, in which case x = 0

and ϕ(0, y) holds, or 〈i− 1, j〉 < 〈i, j〉, z′[0,j) = y, and z′[j,j+i−1) = bx/2c. We have ϕ(bx/2c, y)

as witnessed by (w)〈i−1,j〉, hence ϕ(x, y). Either way, we can extend w′ to w so that (w)〈i,j〉
is a witness for ϕ(x, y), and then w witnesses ψ(z). 2
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Corollary 3.4 If Γ = Σ̂b
i or Π̂b

i for i ≥ 0, then BTC 0 + Γ-(P)IND− is the weakest theory

all of whose extensions are closed under Γ-(P)INDR.

Proof: On the one hand, it is clear that any extension of Γ-(P)IND− derives Γ-(P)INDR−,

hence Γ-(P)INDR by Lemma 3.3. On the other hand, assume that all extensions of T are

closed under Γ-(P)INDR. Let ϕ → ψ be any instance of Γ-(P)IND− as in Definition 3.1

(here, ϕ and ψ are sentences). Then ϕ / ψ is an instance of Γ-(P)INDR, thus T + ϕ ` ψ by

assumption. The deduction theorem then gives T ` ϕ→ ψ. 2

The next result presents all reductions between our core rules that we know about; they

are summarized in Fig. 3.1. We will argue in Section 7 that no other reductions are likely

waiting to be discovered.

Theorem 3.5 Let i ≥ 0, and Γ be Σ̂b
i or Π̂b

i .

(i) Γ-(P)INDR ≤ Γ-(P)IND− ≤ Γ-(P)IND.

(ii) Σ̂b
i -(P)IND ≡ Π̂b

i -(P)IND.

(iii) Π̂b
i -(P)IND− ≤ Σ̂b

i -(P)IND−, and Π̂b
i -(P)INDR ≤ Σ̂b

i -(P)INDR.

(iv) Γ-PIND ≤ Γ-IND, Γ-PIND− ≤ Γ-IND−, and Γ-PINDR ≤ Γ-INDR.

(v) Σ̂b
i -IND ≤ Σ̂b

i+1-PINDR. (See also Corollary 5.13.)

(vi) Σ̂b
i -IND− ≤ Π̂b

i+1-PIND−, and Σ̂b
i -INDR ≤ Π̂b

i+1-PINDR.

Proof: (i) is an immediate consequence of Lemma 3.3.

(ii) is well known: IND for ϕ(x, y) follows from IND for ¬ϕ(a −̇ x, y), and PIND for ϕ

follows from PIND for ¬ϕ(ba/2|x|c, y), where a is an additional parameter.

(iii): We may assume i > 0. Consider an instance of Π̂b
i -INDR for a formula ϕ(x, y) =

∀z ≤ t(x, y) θ(x, y, z), where θ ∈ Σ̂b
i−1, and let ψ(x, y, a, z) be the Σ̂b

i formula

ϕ(a −̇ x, y) ∧ z ≤ t(a, y)→ θ(a, y, z).

Then

` ψ(0, y, a, z),

ϕ(x, y)→ ϕ(x+ 1, y) ` ψ(x, y, a, z)→ ψ(x+ 1, y, a, z),

ψ(x, y, x, z) ` ϕ(0, y)→ ϕ(x, y),

showing that ϕ-INDR reduces to ψ-INDR.

In order to show Π̂b
i -IND− ≤ Σ̂b

i -IND−, assume further that ϕ(x) is parameter-free. Then

BTC 0 + Σ̂b
i -IND− + ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)) proves ϕ(x) as it is closed under Σ̂b

i -INDR

by (i), hence under Π̂b
i -INDR by the first part of the proof. Thus, BTC 0 + Σ̂b

i -IND− proves

ϕ-IND− by the deduction theorem.

The cases of PINDR and PIND− are similar, using ba/2|x|c in place of a −̇ x, as in (ii).
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Figure 3.1: Reductions between the rules

(iv): We may assume i > 0, as BTC 0 ` Σ̂b
0-PIND . PIND for a Π̂b

i formula ϕ(x, y) follows

from IND for the Π̂b
i formula ∀u ≤ xϕ(u, y), and likewise for PIND− or PINDR. PIND for

a Σ̂b
i formula ϕ(x, y) follows from IND for the formula ϕ(ba/2|a|−̇xc, y) with an additional

parameter a, and this also applies to PINDR. The result for PIND− follows from the result

for PINDR as in the proof of (iii).

(v): Let ϕ(x, y) ∈ Σ̂b
i , and let ψ(x, y, a) be the Σ̂b

i+1 formula

ϕ(0, y) ∧ ¬ϕ(a, y)→ ∃u ≤ a, v ≤ da/2|x|e (u+ v ≤ a ∧ ϕ(u, y) ∧ ¬ϕ(u+ v, y)).

Then it is easy to check that BTC 0 proves

ψ(0, y, a),

ψ(bx/2c, y, a)→ ψ(x, y, a),

ψ(a, y, a)→
(
ϕ(0, y) ∧ ∀u < a (ϕ(u, y)→ ϕ(u+ 1, y))→ ϕ(a, y)

)
,

thus [BTC 0, Σ̂b
i+1-PINDR] derives the induction axiom for ϕ.

(vi): Let ϕ(x, y) ∈ Σ̂b
i , and let ψ(x, y, z) be the Π̂b

i+1 formula

∀x′ ≤ z (ϕ(x′, y) ∧ x+ x′ ≤ z → ϕ(x+ x′, y)).
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Then

` ψ(0, y, z),

ϕ(x, y)→ ϕ(x+ 1, y) ` ψ(1, y, z),

` ψ(x0, y, z) ∧ ψ(x1, y, z)→ ψ(x0 + x1, y, z),

ψ(x, y, x) ` ϕ(0, y)→ ϕ(x, y),

whence Σ̂b
i -INDR ≤ Π̂b

i+1-PINDR. The result for Σ̂b
i -IND− follows as in (iii). 2

Remark 3.6 Recall that we defined [T,R]n by counting the nesting depth of applications

of R, which is in general necessary in order to make [T,R]n a deductively closed first-order

theory. However, observe that unnested applications of (P)INDR for formulas ϕ0(x, ~y), . . . ,

ϕk(x, ~y) may be reduced to a single application of the same rule for the formula ϕ(x, ~y) =∧
i≤k ϕi(x, ~y). It follows that if Γ is closed under ∧ (such as Σ̂b

i or Π̂b
i), then [T,Γ-(P)INDR]n

coincides with the set of formulas provable using n instances of Γ-(P)INDR; the same applies

to (P)INDR−.

Surprisingly, a simple argument shows that the closure of T under Π̂b
i -(P)INDR collapses

to unnested applications of the rule (thus a single application is enough to prove any given

consequence) under very mild assumptions on the complexity of the theory T . In particular,

note that all traditional subsystems of S2 such as Si
2 are axiomatized by ∀Σb

∞ ⊆ Π∗1 sentences.

Theorem 3.7 If T is Π∗1-axiomatized, and i > 0, then

T + Π̂b
i -(P)INDR = [T, Π̂b

i -(P)INDR].

Proof: In view of Remark 3.6, it is enough to show that [T, Π̂b
i -(P)INDR] includes all

formulas provable using two instances of Π̂b
i -(P)INDR−: this implies [T, Π̂b

i -(P)INDR] =

[T, Π̂b
i -(P)INDR]2, i.e., [T, Π̂b

i -(P)INDR] is closed under Π̂b
i -(P)INDR, and as such it equals

T + Π̂b
i -(P)INDR. So, let ϕ,ψ ∈ Π̂b

i be formulas such that

T ` ϕ(0),

T ` ϕ(y)→ ϕ(y + 1),

T + ∀y ϕ(y) ` ψ(0),

T + ∀y ϕ(y) ` ψ(x)→ ψ(x+ 1).

(The case of PIND is completely analogous.) Since ψ(0) is a bounded sentence, we may

assume it is provable in T alone. By Parikh’s theorem 2.1, there is a constant c such that

T ` ∀y ≤ 2|x|
c
ϕ(y)→ (ψ(x)→ ψ(x+ 1)).

Put

χ(z) = ∀y ≤ z ϕ(y) ∧ ∀x ≤ z (2|x|
c

+ x ≤ z → ψ(x)).

Then T proves χ(0) and χ(z)→ χ(z + 1), while ∀z χ(z) implies ∀xψ(x). 2
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An analogous result for Σ̂b
i -(P)INDR only applies to theories T of bounded complexity

(∀Σ̂b
i)—more in line with our expectations—and it seems to require a considerably more

complicated proof, see Theorem 5.10. However, as noted by the reviewer, a weaker result for

Σ̂b
i -PIND with i > 0 and T restricted to ∃∀Σ̂b

i−1 follows from Corollary 2.3 and Theorem 3.5

(v), as T + Σ̂b
i -PINDR = T + T i−1

2 = [T, Σ̂b
i -PINDR] (cf. Corollary 5.13).

4 Variants

Induction and polynomial induction axioms in bounded arithmetic have equivalent variants

that differ in various details (see e.g. [32, §5.2]): we may consider the length-induction scheme,

variants of minimization principles, or their dual “ordinal” induction axioms, and it is not

a priori clear if such variants are still equivalent without parameters. The corresponding

induction rules may be varied even more: e.g., the induction base case may be moved to the

conclusion of the rule (cf. [3, §2])).

For completeness, we briefly discuss such variants in this section: fortunately, most of

them turn out to be equivalent to some of the axioms and rules introduced in Section 3,

except for a few pathological cases.

Definition 4.1 We consider the following schemes and rules, where Γ is a set of formulas,

and ϕ is taken from Γ:

ϕ(0, y) ∧ ∀x (ϕ(x, y)→ ϕ(x+ 1, y))→ ∀xϕ(|x|, y)(Γ-LIND)

∀x (∀x′ < xϕ(x′, y)→ ϕ(x, y))→ ∀xϕ(x, y)(Γ-IND<)

∀x (∀x′ < xϕ(x′, y)→ ϕ(x, y))→ ∀xϕ(|x|, y)(Γ-LIND<)

∀x (∀x′ (|x′| < |x| → ϕ(x′, y))→ ϕ(x, y))→ ∀xϕ(x, y)(Γ-PIND<)

∀x (∀u ≤ |x| (u > 0→ ϕ(bx/2uc, y))→ ϕ(x, y))→ ∀xϕ(x, y)(Γ-PIND �)

∃xϕ(x, y)→ ∃x (ϕ(x, y) ∧ ∀x′ < x¬ϕ(x′, y))(Γ-MIN )

∃xϕ(x, y)→ ∃x (ϕ(x, y) ∧ ∀x′ (|x′| < |x| → ¬ϕ(x′, y)))(Γ-LMIN )

ϕ(0, y), ϕ(x, y)→ ϕ(x+ 1, y) / ϕ(|x|, y)(Γ-LINDR)

ϕ(x, y)→ ϕ(x+ 1, y) / ϕ(0, y)→ ϕ(x, y)(Γ-INDR
0 )

ϕ(bx/2c, y)→ ϕ(x, y) / ϕ(0, y)→ ϕ(x, y)(Γ-PINDR
0 )

ϕ(x, y)→ ϕ(x+ 1, y) / ϕ(0, y)→ ϕ(|x|, y)(Γ-LINDR
0 )

∀x′ < xϕ(x′, y)→ ϕ(x, y) / ϕ(x, y)(Γ-INDR
<)

∀x′ < xϕ(x′, y)→ ϕ(x, y) / ϕ(|x|, y)(Γ-LINDR
<)

∀x′ (|x′| < |x| → ϕ(x′, y))→ ϕ(x, y) / ϕ(x, y)(Γ-PINDR
<)

∀u ≤ |x| (u > 0→ ϕ(bx/2uc, y))→ ϕ(x, y) / ϕ(x, y)(Γ-PINDR
� )

∃xϕ(x, y) / ∃x (ϕ(x, y) ∧ ∀x′ < x¬ϕ(x′, y))(Γ-MIN R)

∃xϕ(x, y) / ∃x (ϕ(x, y) ∧ ∀x′ (|x′| < |x| → ¬ϕ(x′, y)))(Γ-LMIN R)

As before, the parameter-free versions of these schemes and rules are denoted by −.
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Proposition 4.2 Let Γ = Σ̂b
i or Π̂b

i , where i ≥ 0, and Γ be its dual. The following equiva-

lences hold:

Γ-(P)INDR−
(0) ≡ Γ-(P)INDR,(3)

Γ-LIND
(R)
(<) ≡ Γ-PIND (R),(4)

Σ̂b
i/Π̂

b
i+1-(P)IND (R)(−)

< ≡ Π̂b
i+1-(P)IND (R)(−),(5)

Γ-PIND
(R)(−)
� ≡ Γ-PIND (R)(−),(6)

Γ-(P/L)INDR
0 ≡ Σ̂b

i -(P)INDR,(7)

Γ-(L)MIN (−) ≡ Γ-(P)IND (−)
< ,(8)

Γ-(L)MIN R ≡ Γ-(L)MIN .(9)

Proof (sketch):

(3): The position of ϕ(0) is immaterial as it is a bounded sentence, and therefore provable

or refutable in BTC 0. The rest was proved in Lemma 3.3.

(4): PIND for ϕ(x, y) can be reduced to LIND for ϕ(bz/2|z|−xc, y), while LIND for ϕ(x, y)

can be reduced to PIND for ϕ(|x|, y). In the case of LIND<, we may use ∀u ≤ |x|ϕ(u, y);

if Γ = Σ̂b
i (where w.l.o.g. i > 0), we write ϕ(x, y) = ∃z ≤ t(x, y) θ(x, y, z), and use PIND on

∃w ∀u ≤ |x| θ(u, (w)u, y) with a suitable bound on w.

(5): (P)IND (R)(−)
< for ϕ(x, y) follows from (P)IND (R)(−) for ∀z ≤ xϕ(z, y). On the other

hand, let ϕ(x) = ∀z < 2|x|
c
θ(x, z) with θ ∈ Σ̂b

i . Then the pairing function 〈u, v〉 := u2|u|
c

+ v

satisfies 〈u, v〉 < 〈u′, v′〉 or |〈u, v〉| < |〈u′, v′〉| as long as u < u′ or |u| < |u′| (resp.), v < 2|u|
c
,

and v′ < 2|u
′|c . Thus, defining ψ(x) as r(x) < 2|l(x)|c → θ(l(x), r(x)), where l(〈u, v〉) = u

and r(〈u, v〉) = v, Π̂b
i+1-(P)IND (R)− for ϕ reduces to Σ̂b

i -(P)IND (R)−
< for ψ. The case with

parameters is similar, but easier.

(6): PIND � for ϕ(x, y) reduces to PIND for ∀u ≤ |x|ϕ(bx/2uc, y); in the case of Γ = Σ̂b
i ,

we swap the outermost quantifiers as in the proof of (4).

(7): Σ̂b
i -(P/L)INDR

0 is equivalent to Π̂b
i -(P/L)INDR

0 as in Theorem 3.5 (ii), and it is

provable from Σ̂b
i -(P/L)INDR by replacing ϕ(x, y) = ∃z ≤ t(x, y) θ(x, y, z) with z ≤ t(0, y) ∧

θ(0, y, z)→ ϕ(x, y). (If i = 0, we just take θ = ϕ.)

(8): (L)MIN for ϕ(x, y) amounts to (P)IND< for ¬ϕ(x, y).

(9): Since Σ̂b
i+1-(L)MIN ≡ Π̂b

i -(L)MIN by (5) and (8), it suffices to show Π̂b
i -(L)MIN ≤

Π̂b
i -(L)MIN R. Let ϕ(x, y) ∈ Π̂b

i . If i = 0, put θ = ϕ, otherwise write ϕ(x, y) = ∀v θ(x, y, v),

where θ ∈ Σ̂b
i−1. Let ψ(x, y, x0) be the Π̂b

i formula

θ(x0, y, x)→ ϕ(x, y).

Then BTC 0 proves ∃xψ(x, y, x0): either ¬θ(x0, y, x) for some x, or ϕ(x0, y) and we may

take x = x0. If ∃xϕ(x, y), fix x0 such that ϕ(x0, y). Then a (length-)minimal x satisfying

ψ(x, y, x0) is a (length-)minimal element satisfying ϕ(x, y). 2

Proposition 4.2 shows that each schema or rule from Definition 4.1 is equivalent to one of

those introduced in Definition 3.1, except for the following, which are too weak, and thus do

not fit nicely in the main hierarchy:
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• Γ-LIND
(R)−
(0/<): Bounded formulas applied to lengths (without non-length parameters) are

essentially sharply bounded, thus LIND− (as well as all its variants) for bounded for-

mulas whose bounding terms are polynomials is provable in BTC 0, and full Σb
∞-LIND−

is provable in BTC 0 + Ω2.

• Γ-(L)MIN R−: The premises and conclusions of these rules are Σ1 sentences, hence prov-

able in BTC 0 if true. It follows that every Σ1-sound theory, and every Π∗1-axiomatized

theory, is closed under these rules.

Other common variants of induction axioms include maximization schemes. In the presence

of parameters, variants of maximization are easily seen to be equivalent to the corresponding

variants of minimization. However, it is unclear how to sensibly formulate maximization

axioms and rules without parameters: the problem is that unlike minimization, we need an

upper bound for maximization, and if this is given by an extra variable, it can be abused to

encode arbitrary parameters.

5 Conservation

In this section we investigate conservation results between induction schemes with and without

parameters and induction rules. The main results state that for theories T of appropriate

complexity, T + T i
2 (T + Si

2) is conservative over T + Σ̂b
i -(P)INDR and T + Π̂b

i -(P)INDR

w.r.t. suitable classes of formulas. This will also imply certain conservativity of T i
2 (Si

2) over

Σ̂b
i -(P)IND− and Π̂b

i -(P)IND−.

We start with the easier, and already understood, case of Σ̂b
i rules. The conservation result

for Σ̂b
i -(P)INDR below, which also implies a conservation result for Σ̂b

i -(P)IND−, was proved

by Cordón-Franco, Fernández-Margarit, and Lara-Mart́ın [19] by model-theoretic means. It

generalizes the special case for T ⊆ ∀Σ̂b
i shown proof-theoretically by Bloch [6]; an analogous

result for IE−n was shown earlier by Kaye [29]. We include a proof-theoretic proof of the

result for completeness.

Theorem 5.1 ([19]) Let i ≥ 0, and T be ∀∃Σ̂b
i+1-axiomatized. Then the theory T + Si

2 is

∀Σ̂b
i -conservative over T + Σ̂b

i -PINDR, and T + T i
2 is ∀Σ̂b

i -conservative over T + Σ̂b
i -INDR.

Proof: We may formulate T + Si
2 in sequent calculus with quantifier-free initial sequents for

axioms of BTC 0, bounded quantifier introduction rules, the PIND rule

(10)
Γ, ϕ(bx/2c) =⇒ ϕ(x),∆

Γ, ϕ(0) =⇒ ϕ(t),∆
,

where ϕ ∈ Σ̂b
i (possibly with parameters not shown) and x is not free in Γ∪∆, and for every

axiom of T of the form ∀x ∃y ¬θ(x, y) with θ ∈ Σ̂b
i , the rule

Γ =⇒ θ(t, y),∆

Γ =⇒ ∆
,

where y is not free in Γ, ∆, or t. By the free-cut-elimination theorem, every Σ̂b
i formula

provable in T +Si
2 has a sequent proof which only contains Σ̂b

i formulas; in particular, the side
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formulas Γ∪∆ in each instance of the PIND rule are Σ̂b
i . Then we show by (meta-)induction

on the length of the proof that all sequents in the proof (that is, their equivalent formulas)

are provable in T + Σ̂b
i -PINDR. The induction step for (10) goes as follows. First, we may

replace each formula ∃u ≤ sψ(u) in Γ with v ≤ s ∧ ψ(v), where v is a fresh variable; this

turns all formulas in Γ into Π̂b
i−1 ⊆ Π̂b

i formulas (this transformation is not needed if i = 0,

in which case Γ ⊆ Σ̂b
0 = Π̂b

0 from the get-go). Thus, we may negate them and move them to

the right-hand side. Taking the disjunction of the side formulas on the right-hand side, we

are left with a rule
ϕ(bx/2c)→ ϕ(x) ∨ ψ
ϕ(0)→ ϕ(t) ∨ ψ

,

where ϕ,ψ ∈ Σ̂b
i , and x is not free in ψ. This follows from an instance of Σ̂b

i -PINDR
0 for the

formula ϕ(x) ∨ ψ, and it is reducible to Σ̂b
i -PINDR by Proposition 4.2 (7).

The argument for T i
2 is similar. 2

Parikh’s theorem gives

Observation 5.2 If T is Π∗1-axiomatized, then the ∀Σ̂b
i - and ∀∃Σ̂b

i -fragments of T are equiv-

alent, for each i > 0. 2

Corollary 5.3 Let i > 0, and T be ∀Σ̂b
i+1-axiomatized. Then T + Si

2 is ∀∃Σ̂b
i -conservative

over T + Σ̂b
i -PINDR, and T + T i

2 is ∀∃Σ̂b
i -conservative over T + Σ̂b

i -INDR. 2

In order to obtain a similar conservation result for Π̂b
i -(P)INDR (Theorem 5.9), we will

need a different method. Our starting point is the following witnessing theorem, somewhat

reminiscent of the KPT theorem [34]. In the context of parameter-free schemes, it is related

to a conservation result for the LΣ−∞n scheme (called IΠ−∞n in Kaye [27]) proved by Kaye,

Paris, and Dimitracopoulos [30, Thm 2.2].

Theorem 5.4 Let i > 0, T be ∀∃Σ̂b
i -axiomatized, and ϕ(x) ∈ ∃∀Π̂b

i . If T +T i
2 (T +Si

2) proves

∀xϕ(x), then there are k ∈ ω and Π̂b
i−1 formulas θ1(x0, x1), . . . , θk(x0, . . . , xk) such that

T ` ϕ(x0) ∨ ∃y θj(x0, . . . , xj−1, y), j = 1, . . . , k,(11)

T `
k∧

j=1

θj(x0, . . . , xj)→ ϕ(x0) ∨
k∨

j,l=1

(
xl ≺ xj ∧ θj(x0, . . . , xj−1, xl)

)
,(12)

where y ≺ x denotes y < x (|y| < |x|, respectively).

Proof: Let {θj : j ≥ 1} be the list of all Π̂b
i−1 formulas θ(~x, y) such that

T ` ϕ(x0) ∨ ∃y θ(~x, y),

enumerated in such a way that the free variables of θj are among x0, . . . , xj−1, y. Put

S = T + ¬ϕ(c0) + {θj(c0, . . . , cj) : j ≥ 1}+ {cl ≺ cj → ¬θj(c0, . . . , cj−1, cl) : j, l ≥ 1},

where C = {cj : j ∈ ω} is a set of fresh constants. If the conclusion of the theorem fails, S is

consistent. Let U be a maximal set of ∀Σ̂b
i−1(C) sentences consistent with S. Let us fix a

model M � S + U , and put M0 = {cMj : j ∈ ω}.
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Claim 5.4.1 Let θ(x0, . . . , xn, y) be a Π̂b
i−1 formula such that M � ∃y θ(c0, . . . , cn, y).

(i) There are m ≥ n and ψ ∈ ∀Σ̂b
i−1 such that M � ψ(c0, . . . , cm), and

T ` ψ(x0, . . . , xm)→ ϕ(x0) ∨ ∃y θ(x0, . . . , xn, y).

(ii) There exists j such that M � θ(c0, . . . , cn, cj), and M � ¬θ(c0, . . . , cn, cl) for all l such

that cl ≺ cj.

Proof:

(i): If not, then T + Th∀Σ̂b
i−1(C)(M) + ¬ϕ(c0) + ∀y ¬θ(~c, y) is consistent. This theory

includes S + U , but it also contains the ∀Σ̂b
i−1(C) sentence ∀y ¬θ(~c, y) which is not in U

(being false in M), contradicting the maximality of U .

(ii): Write ψ as ∀y ξ(x0, . . . , xm, y) with ξ ∈ Σ̂b
i−1, and let j > m be such that θj(~x, y) is

equivalent to ¬ξ(~x, y) ∨ θ(~x, y). Then M � θj(c0, . . . , cj), which means M � θ(c0, . . . , cn, cj)

as M � ξ(c0, . . . , cm, cj). Likewise, M � cl ≺ cj → ¬θ(c0, . . . , cn, cl). 2 (Claim 5.4.1)

By part (ii) of the claim, M0 is an ∃Π̂b
i−1-elementary substructure of M . Since S ⊆

∀∃Π̂b
i−1(C), we obtain M0 � S, in particular M0 � T + ¬∀xϕ(x).

It remains to show M0 � T i
2 (Si

2, resp.). If θ(~c, y) is a Π̂b
i−1 formula with parameters

from M0 such that M0 � ∃y θ(~c, y), then using M0 �∃Π̂b
i−1

M and the claim, there is j such

that M0 � θ(~c, cj), and M0 � ¬θ(~c, cl) for all l such that cl ≺ cj . Since all elements of M0 are

of the form cl for some l, this in fact shows

M0 � θ(~c, cj) ∧ ∀y ≺ cj ¬θ(~c, y).

Thus, M0 � Π̂b
i−1-(L)MIN , which is equivalent to Σ̂b

i -(P)IND . 2

As an aside, an analogous argument shows the following property, whose special case with

ϕ ∈ Σ̂b
i may be employed to give a yet another alternative proof of Theorem 5.1:

Proposition 5.5 Let i ≥ 0, T be ∀∃Σ̂b
i+1-axiomatized, and ϕ(x) ∈ ∃∀Π̂b

i+1. If T+T i
2 (T+Si

2)

proves ∀xϕ(x), then there are k ∈ ω and Π̂b
i formulas θ1(x0, x1), . . . , θk(x0, . . . , xk) satisfying

(11) and

T `
k∧

j=1

θj(x0, . . . , xj)→ ϕ(x0) ∨
k∨

j=1

(
xj 6= 0 ∧ θj(x0, . . . , xj−1, P (xj))

)
,

where P (x) denotes x− 1 (bx/2c, respectively).

Proof: We use the same proof as Theorem 5.4, with i′ = i+ 1 in place of i, and with axioms

cj = 0 ∨ ¬θj(c0, . . . , cj−1, P (cj))

in place of cl ≺ cj → ¬θj(c0, . . . , cj−1, cl) in S. By the same argument, M0 is an ∃Π̂b
i′−1-

elementary substructure of M (in particular, M0 � T + ¬∀xϕ(x)), and M0 � Σ̂b
i′−1-(P)IND .

2
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Remark 5.6 The conclusion of Theorem 5.4 (and, similarly, Proposition 5.5) implies that T

proves

(13)
[ k∧
j=1

∀x1, . . . , xj−1 ∃y θj(x0, . . . , xj−1, y)

→ ∃x1, . . . , xk

k∧
j=1

(
θj(x0, . . . , xj) ∧ ∀z ≺ xj ¬θj(x0, . . . , xj−1, z)

)]
→ ϕ(x0),

which means that ϕ(x0) follows over T from a form of k-times iterated Π̂b
i−1-minimization.

This k-dimensional minimization is, similarly to Kaye’s IΠ
−(k)
n , a form of induction over

the ordinal ωk, in contrast to the usual induction over ω; this is what makes IΠ−∞n strictly

stronger than IΠ−n . However, we will see next that in our main case of interest, the ∃y
quantifiers above can be bounded by a term t(x0). In that case, the induction is really over

the ordinal ak for a = t(x0), which is finite, and as such should follow from ordinary induction.

We will formalize this intuition below.

Lemma 5.7 Let i > 0, T ⊆ ∀Σ̂b
i , and ϕ(x) ∈ ∃Π̂b

i . If T + T i
2 (T + Si

2) proves ∀xϕ(x), then

there are k ∈ ω, Π̂b
i−1 formulas θ1(x0, x1), . . . , θk(x0, . . . , xk), and a term t(x0) such that

` y ≥ t(x0)→ θj(x0, . . . , xj−1, y), j = 1, . . . , k,(14)

T `
k∧

j=1

θj(x0, . . . , xj)→ ϕ(x0) ∨
k∨

j=1

∃z ≺ xj θj(x0, . . . , xj−1, z),(15)

where y ≺ x denotes y < x (|y| < |x|, respectively).

Proof: We modify the proof of Theorem 5.4 as follows. Let {〈θj , tj〉 : j ≥ 1} be an enumera-

tion of pairs 〈θ, t〉 where t(x) is a term, and θ(~x, y) is a Π̂b
i−1 formula of the form y ≥ t(x0)∨. . . .

We define

S = T + ¬ϕ(c0) + {cj ≤ tj(c0) ∧ θj(c0, . . . , cj) ∧ ∀z ≺ cj ¬θj(c0, . . . , cj−1, z) : j ≥ 1},

and U , M , and M0 as in Theorem 5.4. Since S+U is Π∗1-axiomatized, its validity is preserved

downwards to cuts; thus, in view of the axioms cj ≤ tj(c0), we may assume that every element

of M is bounded by a term in c0.

In the proof of the Claim, there exists a term t such that M � ∃y ≺ t(c0) θ(c0, . . . , cn, y),

hence we may assume w.l.o.g. that θ has the form y ≺ t(x0) ∧ . . . . We change the definition

of θj(~x, y) to y ≥ t(x0) ∨ ¬ξ(~x) ∨ θ(~x, y), with tj = t. Then M satisfies θj(~c, cj), and

∀z ≺ cj ¬θj(~c, z). Either θ(c0, . . . , cn, cj), in which case we are done, or cj = t(c0). But

in the latter case, we have ∃y ≺ cj θj(~c, y), a contradiction.

The rest of the proof is as in Theorem 5.4. 2

Lemma 5.8 In Lemma 5.7, we may take k = 1. That is, under the assumptions of the

lemma, there is a Π̂b
i−1 formula θ(x, y) and a term t(x) such that

` y ≥ t(x)→ θ(x, y),

T ` θ(x, y)→ ϕ(x) ∨ ∃z ≺ y θ(x, z).
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Proof: Let us first consider the case of IND . Let k, t, and θ1, . . . , θk be as in Lemma 5.7.

We may assume w.l.o.g. that t(x) = 2|x|
c − 1 for some constant c ≥ 1. A k-tuple 〈x1, . . . , xk〉

where x1, . . . , xk < 2|x|
c

may be represented by a number y < 2k|x|
c

as

(16) y = x12(k−1)|x|c + x22(k−2)|x|c + · · ·+ xk.

With this encoding in mind, we define a Π̂b
i−1 formula θ(x, y) by

y ≥ 2k|x| ∨
k∧

j=1

θj

(
x,

⌊
y

2(k−1)|x|c

⌋
mod 2|x|

c
, . . . ,

⌊
y

2(k−j)|x|

⌋
mod 2|x|

c

)
.

Work in T , and assume for contradiction

θ(x, y) ∧ ∀z < y ¬θ(x, z) ∧ ¬ϕ(x).

Since θ(x, 2k|x|
c−1) by (14), we must have y < 2k|x|

c
. Write x0 = x, and let x1, . . . , xk < 2|x|

c

be as in (16). By (15), we have

¬θj(x0, . . . , xj) ∨ ∃z < xj θj(x0, . . . , xj−1, z)

for some j = 1, . . . , k. However, ¬θj(x0, . . . , xj) is impossible because of θ(x, y), thus let us

fix zj < xj such that θj(x0, . . . , xj−1, zj), and put

z = x12(k−1)|x|c + · · ·+ xj−12(k−j+1)|x|c + (zj + 1)2(k−j)|x|c − 1,

which represents the k-tuple 〈x1, . . . , xj−1, zj , 2
|x|c − 1, . . . , 2|x|

c − 1〉. We have θl(x0, . . . , xl)

for l < j as θ(x, y), θj(x0, . . . , xj−1, zj) by the choice of zj , and θl(x0, . . . , xj−1, zj , 2
|x|c−1, . . .)

for l > j by (14), hence θ(x, z) and z < y, a contradiction.

In the case of PIND , we proceed similarly, except that we encode 〈x1, . . . , xk〉 by

2|x1||x|(k−1)c+|x2||x|(k−2)c+···+|xk|+k|x|c + x12(k−1)|x|c + x22(k−2)|x|c + · · ·+ xk,

and we define θ(x, y) to hold if y ≥ 2|x|
kc+k|x|c , or if y is a valid encoding of 〈x1, . . . , xk〉 such

that
k∧

j=1

θj(x, x1, . . . , xj).

It is easy to see that if y encodes 〈x1, . . . , xk〉, and z encodes 〈x1, . . . , xj−1, zj , . . . , zk〉 with

|zj | < |xj |, then |z| < |y|. Using this property, the same proof as above shows

T ` θ(x, y)→ ϕ(x) ∨ ∃z
(
|z| < |y| ∧ θ(x, z)

)
as required. 2
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Theorem 5.9 If i > 0 and T is ∀Σ̂b
i -axiomatized, T +Si+1

2 (T +Si
2) is ∀Π̂b

i -conservative over

[T, Π̂b
i -(P)INDR].

Proof: T + Si+1
2 is ∀Σ̂b

i+1-conservative over T + T i
2 by Corollary 2.3, hence it suffices to deal

with T i
2 in place of Si+1

2 .

Assume that T + T i
2 (T + Si

2) proves ∀xϕ(x) with ϕ ∈ Σ̂b
i−1, and let θ and t be as in

Lemma 5.8. Putting ψ(x, y) = ϕ(x) ∨ ¬θ(x, y), we have

T ` ∀z ≺ y ψ(x, z)→ ψ(x, y),

hence an application of Σ̂b
i−1-(P)INDR

<, equivalent to Π̂b
i -(P)INDR by Proposition 4.2, yields

ψ(x, y). Since θ(x, y) holds for all sufficiently large y, this implies ϕ(x). 2

Using a similar strategy, we also obtain a Σ̂b
i version of Theorem 3.7:

Theorem 5.10 If i > 0 and T is ∀Σ̂b
i -axiomatized, T + Si+1

2 (T + Si
2) is ∀Σ̂b

i -conservative

over [T, Σ̂b
i -(P)INDR]. In particular, T + Σ̂b

i -(P)INDR = [T, Σ̂b
i -(P)INDR].

Proof: Assume T + T i
2 (T + Si

2) proves ∀xϕ(x) with ϕ ∈ Σ̂b
i , and let θ and t be as in

Lemma 5.8. In the case of Σ̂b
i -IND , we put

ψ(x,w) = ϕ(x) ∨ ∃y ≤ t(x)
(
w + y ≤ t(x) ∧ θ(x, y)

)
,

and observe

` ψ(x, 0),

T ` ψ(x,w)→ ψ(x,w + 1),

` ψ(x, t(x) + 1)→ ϕ(x),

thus [T, Σ̂b
i -INDR] ` ϕ(x). In the case of Σ̂b

i -PIND , we use

ψ(x,w) = ϕ(x) ∨ ∃y ≤ t(x)
(
|w|+ |y| ≤ |t(x)| ∧ θ(x, y)

)
in a similar way. 2

As we will see in Corollary 6.7, Theorem 5.10 also holds for i = 0.

Corollary 5.11 Let T be ∀Σ̂b
i -axiomatized.

(i) T + Si
2 is ∀∃Σ̂b

i -conservative over [T, Σ̂b
i -PINDR] for i ≥ 1, and ∀∃Σ̂b

i−1-conservative

over [T, Π̂b
i -PINDR] for i ≥ 2.

(ii) T + Si+1
2 is ∀∃Σ̂b

i+1-conservative over T + T i
2, ∀∃Σ̂b

i -conservative over [T, Σ̂b
i -INDR] for

i ≥ 1, and ∀∃Σ̂b
i−1-conservative over [T, Π̂b

i -INDR] for i ≥ 2.

Proof: By Observation 5.2, Corollary 5.3, Theorems 5.9 and 5.10, and Corollary 2.3. 2
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Remark 5.12 We can further extend Theorems 5.9 and 5.10 and Corollary 5.11 using the

observation that if T + S is Γ-conservative over [T,R] and ψ ∈ Γ, then T + ¬ψ + S is

Γ-conservative over [T + ¬ψ,R] (as long as Γ is closed under disjunction).

For example, if i ≥ 1, then T + Si+1
2 (T + Si

2) is ∀∃Σ̂b
i -conservative over [T, Σ̂b

i -(P)INDR]

whenever T ⊆ ∀Σ̂b
i ∪ ∃∀Π̂b

i .

We will not list explicitly all cases as it would get too unwieldy.

We can draw a few conclusions from Theorems 5.1 and 5.9. First, some of our rules collapse

over sufficiently simple base theories; this is analogous to the fact that T + IΠR
n+1 = T + IΣR

n

for T ⊆ Πn+1 (Beklemishev [3]).

Corollary 5.13 Let i ≥ 0, and T be a theory.

(i) If T is ∀Σ̂b
i ∪ ∃Π̂b

i -axiomatized, then T + Π̂b
i+1-PINDR = T + Σ̂b

i -INDR. If i > 0, this

holds also for T ⊆ ∀Σ̂b
i ∪ ∃∀Π̂b

i .

(ii) If T is ∃∀Σ̂b
i -axiomatized, then T + Σ̂b

i+1-PINDR = T + T i
2.

Proof:

(i): T + Π̂b
i+1-PINDR includes T + Σ̂b

i -INDR by Theorem 3.5. On the other hand, T +

Π̂b
i+1-PINDR is ∀Σ̂b

i -axiomatized over T , and included in T + Si+1
2 , hence it is included in

[T, Σ̂b
i -INDR] by Corollary 5.11 and Remark 5.12.

(ii): Likewise, T +T i
2 ⊆ T +Σ̂b

i+1-PINDR ⊆ T +Si+1
2 , and the ∀Σ̂b

i+1-fragment of T +Si+1
2

is included in T + T i
2 by Corollary 2.3. 2

The inclusion diagram between theories axiomatized over BTC 0 by the rules from Def-

inition 3.1, taking into account Corollary 5.13, is depicted in Figure 5.1. We will present

evidence in Section 7 that no further inclusions hold.

Second, we obtain conservation results over parameter-free schemes from the correspond-

ing results for rules and the deduction theorem. The following corollary summarizes conserva-

tivity of T i
2 or Si

2 over theories axiomatized over BTC 0 by parameter-free induction axioms or

rules; since the conservations are generally for classes of sentences that include the complexity

of the natural axiomatization of the theories in question, it provides their characterization as

particular fragments of T i
2 or Si

2.

Definition 5.14 If Γ is a set of sentences, then B(Γ) denotes the set of Boolean combinations

of sentences from Γ, and M(Γ) monotone Boolean combinations of sentences from Γ.

Corollary 5.15 Let i ≥ 0.

(i) BTC 0 + Σ̂b
i+1-PIND− is the B(∀Σ̂b

i+1)-fragment of Si+1
2 , and it is ∃∀Σ̂b

i+1-conservative

and M(∃Π̂b
i+2 ∪ ∀∃Σ̂b

i+1)-conservative under Si+1
2 .

(ii) BTC 0+Σ̂b
i+1-PINDR = T i

2 is the ∀Σ̂b
i+1-fragment of Si+1

2 , and it is ∀∃Σ̂b
i+1-conservative

under Si+1
2 .
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Figure 5.1: Inclusions between the theories

(iii) BTC 0 + Π̂b
i+1-PIND− is the M(∃Π̂b

i+1 ∪ ∀Σ̂b
i)-fragment of Si+1

2 , and if i > 0, it is

M(∃Π̂b
i+1 ∪ ∀∃Σ̂b

i)-conservative under Si+1
2 .

(iv) BTC 0 + Σ̂b
i -IND− is the B(∀Σ̂b

i)-fragment of Si+1
2 or T i

2, and it is ∃∀Σ̂b
i -conservative

under T i
2. If i > 0, it is also M(∃Π̂b

i+1 ∪ ∀∃Σ̂b
i)-conservative under T i

2, and M(∃Π̂b
i ∪

∀∃Σ̂b
i)-conservative under Si+1

2 .

(v) BTC 0 + Σ̂b
i -INDR = BTC 0 + Π̂b

i+1-PINDR is the ∀Σ̂b
i -fragment of Si+1

2 or T i
2, and if

i > 0, it is ∀∃Σ̂b
i -conservative under Si+1

2 .

(vi) For i > 0, BTC 0 + Π̂b
i -IND− is the M(∃Π̂b

i ∪ ∀Σ̂b
i−1)-fragment of Si+1

2 or T i
2. If i > 1,

it is M(∃Π̂b
i ∪ ∀∃Σ̂b

i−1)-conservative under Si+1
2 .

(vii) For i > 0, BTC 0 + Π̂b
i -INDR is the ∀Σ̂b

i−1-fragment of Si+1
2 or T i

2, and if i > 1, it is

∀∃Σ̂b
i−1-conservative under Si+1

2 .

Proof: (i): On the one hand, each instance of Σ̂b
i+1-PIND− may be written as an implication

between two ∀Σ̂b
i+1 sentences, and it is provable in Si+1

2 . On the other hand, if ϕ is an ∃∀Σ̂b
i+1

sentence provable in Si+1
2 , then BTC 0 + ¬ϕ+ Σ̂b

i+1-PIND− ⊇ BTC 0 + ¬ϕ+ Σ̂b
i+1-PINDR is
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inconsistent by Theorem 5.1 and Lemma 3.3, thus BTC 0 + Σ̂b
i+1-PIND− proves ϕ. Likewise,

an M(∃Π̂b
i+2 ∪ ∀∃Σ̂b

i+1) sentence may be written as a conjunction of implications ϕ → ψ,

where ϕ ∈ ∀Σ̂b
i+2, and ψ ∈ ∀∃Σ̂b

i+1. If Si+1
2 ` ϕ→ ψ, then BTC 0 + ϕ+ Σ̂b

i+1-PINDR ` ψ by

Corollary 5.3, thus BTC 0 + Σ̂b
i+1-PIND− ` ϕ→ ψ.

The other items are similar. 2

Notice that the missing cases i = 0 in (vi) and (vii) are covered by (iv) and (v) (respec-

tively), as Π̂b
0 = Σ̂b

0.

We also obtain similar characterizations for rules rather than theories. For simplicity, we

will state only the basic cases involving ∀Σb
∞ formulas. If Γ,Θ are classes of sentences, let us

say that a rule R is a Γ / Θ rule if all instances of R have premises in Γ and conclusions in Θ.

Corollary 5.16 Let i ≥ 0, and Θ = Σ̂b
i or Π̂b

i .

(i) Θ-INDR is a ∀Σ̂b
i / ∀Θ rule derivable in T i

2, and all ∀Σ̂b
i / ∀Θ rules derivable in Si+1

2

are reducible to it.

(ii) Θ-PINDR is a ∀Σ̂b
i / ∀Θ rule derivable in Si

2, and all ∀Σ̂b
i / ∀Θ rules derivable in Si

2

are reducible to it.

Proof: The first assertions in both (i) and (ii) are clear. Let ϕ / ψ be a ∀Σ̂b
i / ∀Θ rule

derivable in Si+1
2 (Si

2, respectively). If i > 0, we have ψ ∈ [BTC 0 + ϕ,Θ-(P)INDR] by

Theorems 5.9 and 5.10; if i = 0, which is a nontrivial case only for (i), we have ψ ∈ BTC 0 +

ϕ + Σ̂b
0-INDR by Theorem 5.1, and BTC 0 + ϕ + Σ̂b

0-INDR = [BTC 0 + ϕ, Σ̂b
0-INDR] by

Corollary 6.7. Thus, ϕ / ψ is reducible to Θ-(P)INDR by Observation 2.4. 2

Our third conclusion is that Σ̂b
i -induction schemes may be extended to variants of ∆̂b

i+1-

induction.

Proposition 5.17 Let i ≥ 0, and ϕ be a Π̂b
i+1 formula.

(i) If ϕ is provably equivalent to a Σ̂b
i+1 formula in Si+1

2 , then Σ̂b
i -IND− proves ϕ-IND−,

and ϕ-INDR weakly reduces to Σ̂b
i -INDR; more precisely, ϕ-INDR ≤ Σ̂b

i -INDR over the

theory [BTC 0, Σ̂b
i -INDR].

(ii) If ϕ is provably equivalent to a Σ̂b
i+1 formula in Si

2, then Σ̂b
i -PIND− proves ϕ-PIND−,

and ϕ-PINDR weakly reduces to Σ̂b
i -PINDR; more precisely, ϕ-PINDR ≤ Σ̂b

i -PINDR

over [BTC 0, Σ̂b
i -PINDR] = T i−1

2 (over BTC 0 if i = 0).

Proof:

(i): Let ϕ′ be a Σ̂b
i+1 formula that Si+1

2 proves equivalent to ϕ. Recall that under the

assumptions, ϕ-IND is provable in Si+1
2 : assuming ∀x < a (ϕ(x, y) → ϕ(x + 1, y)), we show

∀x (x+ z ≤ a ∧ ϕ′(x, y)→ ϕ(x+ z, y)) by Π̂b
i+1-PIND on z.

By Corollary 5.16, the ∀Σ̂b
i / ∀Σ̂b

i rule

ϕ(0, y) ϕ′(x, y)→ ϕ(x+ 1, y)

ϕ(x, y)
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is reducible to Σ̂b
i -INDR, and likewise the ∀Σ̂b

i sentence ∀x, y (ϕ′(x, y)→ ϕ(x, y)) is provable

in the theory [BTC 0, Σ̂b
i -INDR]. Thus, ϕ-INDR is derivable from two instances of Σ̂b

i -INDR;

if ϕ is parameter-free, it follows that Σ̂b
i -IND− proves ϕ-IND by the deduction theorem.

(ii) is analogous, using the fact that Si
2 proves ∆̂b

i+1-PIND [32, Cor. 8.2.7]. (For i = 0, if

ϕ is ∆̂b
1 in BTC 0, it is in fact Σ̂b

0 in BTC 0, hence BTC 0 proves ϕ-PIND .) 2

Remark 5.18 In contrast to Theorem 5.1, it is unclear whether the ∀Π̂b
i -conservativity of

T + T i
2 (T + Si

2) over T + Π̂b
i -(P)INDR in Theorem 5.9 carries over to ∀∃Σ̂b

i -axiomatized

theories T , and whether T i
2 (Si

2) is ∃∀Π̂b
i -conservative over Π̂b

i -(P)IND−. (These two problems

are in fact equivalent as a consequence of Theorem 5.22 below.)

Notice that the ∀Π̂b
i consequences of T + T i

2 (T + Si
2) are axiomatized over T by the rule

“from (13) infer ∀xϕ(x)” for ϕ ∈ Σ̂b
i−1, and likewise, the ∃∀Π̂b

i consequences of T i
2 (Si

2) are

axiomatized by the scheme

(17)

k∧
j=1

∀x1, . . . , xj−1 ∃y θj(x1, . . . , xj−1, y)

→ ∃x1, . . . , xk

k∧
j=1

(
θj(x1, . . . , xj) ∧ ∀z ≺ xj ¬θj(x1, . . . , xj−1, z)

)
for k ∈ ω and θj ∈ Π̂b

i−1. Thus, the question becomes whether Π̂b
i -(P)IND− proves (17). For

k = 1, (17) is just Π̂b
i−1-(L)MIN−, which is equivalent to Π̂b

i -(P)IND− by Proposition 4.2,

hence another formulation is if the scheme (17) collapses to its case k = 1.

Question 5.19 Let i > 0.

(i) Is T i
2 (Si

2) ∃∀Π̂b
i -conservative over Π̂b

i -(P)IND−?

(ii) Is T +T i
2 (T +Si

2) ∀Π̂b
i -conservative over T + Π̂b

i -(P)INDR for every ∀∃Σ̂b
i -axiomatized

theory T?

Theorems 5.1 and 5.9 imply certain conservativity of (P)IND− over (P)INDR. As we will

see below, we can do better by a direct argument: the conservation results hold over base

theories of arbitrary complexity, and they respect numbers of instances.

Kaye [28] gave a simple argument showing the conservativity of k instances of axioms of

a particular form over k instances of the corresponding rule, with IΣR
n as the main intended

application. While he states the result more restrictively, his proof can be seen to give the

following general statement.

Theorem 5.20 (Kaye [28]) Let Γ and ∆ be sets of sentences such that Γ ∨ ∆ ⊆ Γ. Let

A− = {αj → βj : j < k} be a set of k sentences satisfying αj ∈ ∆, and AR the set of

corresponding rules αj∨τ / βj∨τ for τ ∈ Γ. Then for any theory T , T+A− is Γ-conservative

over [T,AR]k. 2
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Theorem 5.20 implies a conservation result of Σ̂b
i -(P)IND− over Σ̂b

i -(P)INDR preserving

numbers of instances, but it does not seem applicable to Π̂b
i -(P)INDR, as the latter is not

invariant under addition of Σ̂b
i side-formulas. We remedy this defect using a modification

of Kaye’s argument that works under somewhat different assumptions, at the expense of

employing more complicated rules (essentially, several rules from AR working in parallel).

The conservation results for Π̂b
i -(P)INDR we proved earlier then allow us to simulate these

rules.

Lemma 5.21 Let Γ and ∆ be sets of sentences such that Γ ∨∆ ⊆ Γ. Let A− = {αj → βj :

j < k} be a set of k sentences satisfying βj ∈ ∆, and let AR‖ denote the rules∨
j∈J αj ∨ τ∨
j∈J βj ∨ τ

, τ ∈ Γ, J ⊆ {0, . . . , k − 1}.

Then for any theory T , T +A− is Γ-conservative over [T,AR‖]k.

Proof: Assume that

(18) T `
∧
j<k

(αj → βj)→ ϕ,

where ϕ ∈ Γ. We define the sentences

τm = ϕ ∨
∨
J⊆k
|J |=m

∧
j∈J

βj ,

σm = ϕ ∨
∨
J⊆k
|J |=m

(∧
j∈J

βj ∧
∨
j /∈J

αj

)

for m ≤ k. Using (18), we can check easily

` τ0,

` σk → ϕ,

T ` τm → σm,

it thus suffices to show [σm, A
R‖] ` τm+1. Now, for every I ⊆ k with |I| = k −m, we have

σm ` ϕ ∨
∨
j∈I

βj ∨
∨
j∈I

αj

where ϕ ∨
∨

j∈I βj ∈ Γ, hence

[σm, A
R‖] ` ϕ ∨

∨
j∈I

βj .

Since

`
∧
I⊆k

|I|=k−m

(
ϕ ∨

∨
j∈I

βj

)
→ τm+1,

this gives [σm, A
R‖] ` τm+1. 2
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Theorem 5.22 Let i ≥ 0, and Θ = Σ̂b
i or Π̂b

i . If T is an arbitrary extension of BTC 0, then

T + Θ-(P)IND− is ∀Θ-conservative over T + Θ-(P)INDR.

More precisely, all ∀Θ sentences provable from T and k instances of Θ-(P)IND− are in

[T,Θ-(P)INDR]k.

Proof: We apply Lemma 5.21 with A− being k instances of Θ-(P)IND−, and Γ = ∆ = ∀Θ.

The rules AR‖ are ∀Σ̂b
i / ∀Θ, and they are clearly derivable in T i

2 (Si
2, resp.), hence each

instance is reducible to an instance of Θ-(P)INDR by Corollary 5.16. 2

Corollary 5.23 Let i ≥ 0, and Θ = Σ̂b
i or Π̂b

i . If Θ-(P)IND− is finitely axiomatizable, there

is a constant k such that T + Θ-(P)INDR = [T,Θ-(P)INDR]k for every T ⊇ BTC 0. 2

Question 5.24 Are the theories Σ̂b
i -(P)IND− and Π̂b

i -(P)IND− finitely axiomatizable?

6 Propositional proof systems

A fundamental tool for analysis of strong theories of arithmetic, especially in the context

of induction rules and parameter-free schemes, are reflection principles for other theories

of arithmetic (Beklemishev [3, 4]). This idea does not quite work for bounded arithmetic,

which is too weak to prove even the consistency of the base theory Q. Instead, theories of

bounded arithmetic may be studied using reflection principles for propositional proof systems

by means of translation of bounded formulas to families of propositional formulas. Apart

from the switch from first-order theories to propositional logic, there will be clear analogies

between the form of our results and the classical case of strong systems.

There are two main families of propositional translations of interest:

(i) A translation of bounded formulas to quantified propositional formulas, where number

variables translate to sequences of propositional variables representing their bits, and

bounded quantifiers translate to blocks of propositional quantifiers.

(ii) A translation of bounded formulas in a relativized language (i.e., with a new predicate

α(x)) to bounded-depth propositional formulas, where number variables are set to con-

stants, atomic formulas involving α translate to propositional variables, and bounded

quantifiers translate to large disjunctions and conjunctions.

Translation (i) goes back to Cook [15] who introduced it as a translation of the equational

theory PV to EF ; the extension to quantified propositional logic is due to Kraj́ıček and

Pudlák [33]. Under this translation, Buss’s theories T i
2 correspond to subsystems of the

quantified propositional calculus G. See Kraj́ıček [32] and Cook and Nguyen [17] for detailed

treatments.

Translation (ii) was introduced by Paris and Wilkie [35] for I∆0(α). Under this transla-

tion, relativized Buss’s theories T i
2(α) translate to quasipolynomial-size bounded-depth proofs.

See [9, §3] for a thorough discussion of variants of the Paris–Wilkie translation2.

2Their setup includes modular counting gates, but most of the results work also in the usual setup.
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The relationship between the two translations depends on the point of view. On the one

hand, translation (ii) produces exponentially larger formulas than translation (i). On the

other hand, if we identify Buss’s theories with the two-sorted theories V i using the RSUV -

isomorphism, translation (ii) becomes essentially equivalent to a special case of translation (i)

for sharply bounded formulas (this is how it appears in [17]).

In this paper, we are going to work with translation (i). For one thing, it is already well

known that it leads to an exact correspondence of various subsystems of S2 (with parameters)

to reflection principles for subsystems of G, and the setup works smoothly enough so that it

can be generalized to the theories we are interested in.

Perhaps more importantly, translation (ii) inherently needs relativized theories, and this

is problematic in the context of parameter-free induction axioms. On the one hand, oracles

are somewhat similar to parameters in that they provide black-box information shared by all

parts of the induction axiom, and as such go against the idea of disallowing parameters; in

some contexts, they may be used to sneak parameters back in. See Section 7.2 for more discus-

sion. On the other hand, the Paris–Wilkie translation (ii) largely eliminates the distinction

between induction axioms with and without parameters, as parameters (like all variables)

are set to constants before the translation. This stands in contrast to translation (i), in

which parameters explicitly manifest as tuples of propositional variables that appear both in

premises and conclusions of translations of induction axioms, and thus their presence makes

a difference.

In light of this discussion, for any formula ϕ(~x) ∈ Σb
∞, let {[[ϕ]]n : n ∈ ω} denote a sequence

of quantified propositional formulas obtained by a (i)-style translation of ϕ, where each first-

order variable xi translates to a vector of n propositional variables in [[ϕ]]n, representing an

integer < 2n. We do not want to get into the gory technical details of the translation; we can

generally follow the definition of ‖ϕ‖nq(n) (for a suitably chosen bounding polynomial q(n))

from Kraj́ıček [32, §9.2], or up to the RSUV isomorphism, the definition of ‖ϕ( ~X)‖ in [17,

§VII.5]. In particular:

• bounded existential (universal) quantifiers translate to polynomial-size blocks of exis-

tential (universal, resp.) propositional quantifiers,

• sharply bounded existential (universal) quantifiers within Σ̂b
0 formulas translate to

polynomial-size disjunctions (conjunctions, resp.), and

• propositional connectives translate to themselves.

There is a bit of a problem in the definition of the translation for atomic formulas ϕ, which

we would like to turn into Σq
0 (i.e., quantifier-free) formulas: the translation from [32] is not

suitable as it translates atomic formulas to Σq
1 formulas (provably equivalent to Πq

1 formulas

in strong enough proof systems); the translation from [17] does translate atomic (and ΣB
0 )

formulas to Σq
0 formulas—even of bounded depth—but it only works in a much less expressive

language. It does not apply to our TC0 language.

The solution is to construct, in a suitably canonical way depending on the exact definition

of BTC 0, for each atomic formula ϕ a uniform sequence of TC0 circuits that compute it,
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and expand them into (log-depth) propositional formulas [[ϕ]]n by means of formulas com-

puting majority. Something similar was done in [24] for a theory whose language includes

NC1 functions. Again, the details do not matter for us, as long as the translation is sufficiently

well-behaved so that it can be operated by our theories and proof systems. We stress that

the weakest proof system in which we will reason with the translations is extended Frege.

In this way, the translations of Σ̂b
i formulas are Σq

i , and translations of Π̂b
i formulas are Πq

i ,

for any i ≥ 0.

We recall the following characterization [17, X.2.23–24] (cf. [18]):

Theorem 6.1

(i) If i ≥ j > 0, the ∀Σ̂b
j consequences of Si

2 are axiomatized by BTC 0 + RFNj(G
∗
i ). If

additionally i > j, they are also axiomatized by BTC 0 + RFNj(Gi−1).

(ii) If i > 0, Si
2 = BTC 0 + RFNi+1(G∗i ).

(iii) If i ≥ 0, T i
2 = BTC 0 + RFNi+1(G∗i+1). 2

The main result of this section will be a characterization of parameter-free induction

axioms and induction rules analogous to Theorem 6.1. It will involve the following proof

systems:

Definition 6.2 Let i ≥ 0. For any ξ(x) ∈ Σ̂b
i , we define the proof system Gi + ξ as Gi

with additional initial sequents of the form =⇒ [[ξ]]n( ~A), where n ∈ ω, and A0, . . . , An−1 are

quantifier-free formulas; G∗i + ξ is its tree-like version.

Proposition 6.3 Let i ≥ 0, ξ ∈ Σ̂b
i , and ϕ ∈ Σb

∞.

(i) If i > 0 and Si
2 + ∀x ξ(x) ` ∀xϕ(x), then BTC 0 proves that the formulas [[ϕ]]n have

TC0-constructible polynomial-size (G∗i + ξ)-proofs.

(ii) If i > 0 or ϕ ∈ Σ̂b
1, and T i

2 + ∀x ξ(x) ` ∀xϕ(x), then BTC 0 proves that the formulas

[[ϕ]]n have TC0-constructible polynomial-size (Gi + ξ)-proofs.

Proof: For i > 0, the standard proofs of these results without ξ as in [17, VII.5.2, X.1.21]

proceed as follows. We formulate Si
2 (T i

2) in a sequent calculus with bounded quantifier

introduction rules, and an appropriate induction rule. By the free-cut-elimination theorem,

each bounded consequence of the theory has a proof that only contains bounded formulas

such that all cut-formulas are Σ̂b
i . Then we translate the proof to propositional logic line

by line, supplying short subderivations for each step. This argument works in our situation

just the same: if we enhance the first-order calculus with substitution instances of ξ ∈ Σ̂b
i

as additional axioms, the free-cut-elimination theorem again makes all cuts Σ̂b
i , and then

the same translation as before produces a valid G
(∗)
i proof except for instances of ξ, which

translate to the additional axioms of G
(∗)
i + ξ. The case i = 0 needs a different argument

(either direct as in [17, X.1.23], or by simulation of G∗1 [17, VII.4.16]), but again it works in

the presence of additional quantifier-free axioms. 2
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Lemma 6.4 Let i ≥ 0, and ξ ∈ Σ̂b
i .

(i) T i
2 + ∀x ξ(x) proves RFNmax{i,1}(Gi + ξ).

(ii) If i > 0, Si
2 + ∀x ξ(x) proves RFNi+1(G∗i + ξ).

(iii) If i = 0, [BTC 0 + ∀x ξ(x), Σ̂b
0-INDR] proves RFN0(G0 + ξ).

Proof: (i): The implication ∀x ξ(x)→ RFNi(Gi + ξ) is ∀∃Σ̂b
i+1, hence it is enough to prove it

in Si+1
2 , which is straightforward for i > 0: a (Gi + ξ)-proof of a Σq

i formula contains only Σq
i

formulas, hence we may show by Π̂b
i+1-LIND on the length of the proof that every sequent in

the proof is valid. For i = 0, we may e.g. show that the given assignment can be extended to

satisfy all extension axioms in the proof using Σ̂b
1-LIND , and then show that all lines of the

proof are true under this assignment by ∆̂b
1-LIND . This shows that the target Σq

1 formula

has a true witness, and therefore is itself true.

(ii): We may get rid of each axiom =⇒ [[ξ]]n(A0, . . . , An−1) in a (G∗i + ξ)-proof by adding

the Σq
i+1 sentence ∃x0, . . . , xn−1 ¬[[ξ]]n(x0, . . . , xn−1) to the succedent of every sequent in the

proof. It follows using Theorem 6.1 that the original end-sequent or one of the new formulas

is true under any given assignment, however, the latter contradicts ∀x ξ(x).

(iii): It suffices to prove the consistency of G0 + ξ, i.e., EF + ξ. By introducing extension

variables for all subformulas used in the proof and other standard manipulations, BTC 0 knows

that if there is an (EF + ξ)-proof of ⊥, there is one where all formulas have bounded size (in

particular, we can evaluate them on any given assignment in TC0), and the only variables

that occur in the proof are extension variables. Let π(z) be a Σ̂b
0 formula stating that z is a

proof of this form. Let

qm−1 ↔ Am−1, qm−2 ↔ Am−2(qm−1), . . . , q0 ↔ A0(q1, . . . , qm−1)

be the list of all extension axioms used in z. Writing ui for the ith bit of u, let θ(u, z) be the

formula

π(z)→ u < 2m ∧ ∀i < m
[
∀j < m

(
j > i→ uj = Aj(uj+1, . . . , um−1)

)
∧ ui = 1

→ Ai(ui+1, . . . , um−1) = 1
]
.

Notice that assuming π(z), we can extract m (which is a length) and Ai from z by a TC0

function, hence we can write θ(u, z) as a Σ̂b
0 formula. Clearly, BTC 0 proves θ(0, z), and

π(z) → ¬θ(2m, z), that is, ∀u θ(u, z) → ¬π(z), which in view of the preceding discussion

means that

` ∀u, z θ(u, z)→ RFN0(G0 + ξ).

It thus suffices to verify

∀x ξ(x) ` θ(u, z)→ θ(u+ 1, z).

Assume for contradiction that θ(u, z) ∧ ¬θ(v, z), where v = u + 1. We must have π(z) and

u < 2m. Let i0 ≤ m be the least index of a 0-bit of u, so that uj = vj for j > i0; ui0 = 0,

vi0 = 1; and uj = 1, vj = 0 for j < i0. If v = 2m, we can show Ai(xi+1, . . . , xm−1) = 1 by
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reverse induction on i < m (i.e., Σ̂b
0-LIND , available in BTC 0). If v < 2m, let i < m be a

witness that ¬θ(v, z), i.e.,

∀j < m
(
j > i→ vj = Aj(vj+1, . . . , vm−1)

)
∧ vi = 1 ∧Ai(vi+1, . . . , vm−1) = 0.

Since vi = 1, this makes i ≥ i0. On the other hand, we cannot have i > i0, as then the same

would hold for u in place of v, contradicting θ(u, z). Thus, i = i0. This implies

∀j < m
(
j > i0 → uj = Aj(uj+1, . . . , um−1)

)
∧ ui0 = 0 = Ai0(ui0+1, . . . , um−1).

Using θ(u, z) and uj = 1 for j < i0, we then prove Aj(xj+1, . . . , um−1) = 1 for j < i0 by

reverse induction on j (Σ̂b
0-LIND again), hence in either case,

uj = Aj(uj+1, . . . , um−1)

for all j < m. In other words, the bits of u taken as an assignment to the qj variables satisfy

all the extension axioms. Using Σ̂b
0-LIND once more, we show that the assignment in fact

satisfies all formulas in the proof: the induction steps for Frege rules follow from the fact that

the rules are sound, and the [[ξ]] axioms are true because we assume ∀x ξ(x). However, the

last formula of the proof, ⊥, is false, which is a contradiction. 2

Theorem 6.5 Let i ≥ 0.

(i) Σ̂b
i -INDR is equivalent to the rule

ξ(x)

RFNi(Gi + ξ)
, ξ ∈ Σ̂b

i .

(ii) Σ̂b
i -IND− is equivalent to the scheme

∀x ξ(x)→ RFNi(Gi + ξ), ξ ∈ Σ̂b
i .

(iii) For i > 0, Π̂b
i -INDR is equivalent to the rule

ξ(x)

RFNi−1(Gi + ξ)
, ξ ∈ Σ̂b

i .

(iv) For i > 0, Π̂b
i -IND− is equivalent to the scheme

∀x ξ(x)→ RFNi−1(Gi + ξ), ξ ∈ Σ̂b
i .

If i > 0, analogous equivalences hold with PIND in place of IND, and G∗i in place of Gi.

Proof: (ii) and (iv) follow from (i) and (iii) and the deduction theorem.

(i): On the one hand, ∀x ξ(x) / RFNi(Gi + ξ) is a ∀Σ̂b
i / ∀Σ̂b

i rule derivable in T i
2 by

Lemma 6.4, hence it reduces to Σ̂b
i -INDR by Corollary 5.16. (If i = 0, Corollary 5.16 depends

on Theorem 6.5 through Corollaries 6.6 and 6.7. However, we get a reduction to Σ̂b
0-INDR

directly from Lemma 6.4 (iii) and Observation 2.4.)
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On the other hand, let ∀x ξ(x) be a ∀Σ̂b
i sentence equivalent to ϕ(0)∧∀x (ϕ(x)→ ϕ(x+1)),

where ϕ ∈ Σ̂b
i . Then T i

2 +∀x ξ(x) proves ∀xϕ(x), hence by Proposition 6.3, the formulas [[ϕ]]n
have short (Gi+ξ)-proofs, provably in BTC 0. Consequently, BTC 0+RFNi(Gi+ξ) proves that

[[ϕ]]n are tautologies for every length n, which implies ∀xϕ(x) by reasoning in BTC 0. (Note

for i = 0 or the Π̂b
1 cases that even the Π̂b

1-definition of validity of [[ϕ]]n ensures ∀x < 2n ϕ(x)

for ϕ ∈ Σ̂b
0: BTC 0 can construct the evaluation of [[ϕ]]n and its subformulas under a given

assignment using a TC0 function, even though it may not prove that propositional formulas

can be evaluated in general.)

(iii) is similar to (i), and the arguments for PIND and G∗i are analogous. 2

Corollary 6.6 If i ≥ 0, and T is a finitely ∀Σ̂b
i -axiomatized extension of BTC 0, then the

theories T + Σ̂b
i -(P)INDR and T + Π̂b

i -(P)INDR are finitely axiomatizable.

Specifically, if T = BTC 0 + ∀x ξ(x) with ξ ∈ Σ̂b
i , then

T + Σ̂b
i -INDR = BTC 0 + RFNi(Gi + ξ),

and for i > 0,

T + Σ̂b
i -PINDR = BTC 0 + RFNi(G

∗
i + ξ),

T + Π̂b
i -INDR = T + RFNi−1(Gi + ξ),

T + Π̂b
i -PINDR = T + RFNi−1(G∗i + ξ).

Proof: The inclusions ⊇ are special cases of Theorem 6.5. On the other hand, T + Σ̂b
i -INDR

is ∀Σ̂b
i -axiomatized, and if T + Σ̂b

i -INDR ⊆ T i
2 + ∀x ξ(x) proves a Σ̂b

i formula ϕ(x), then

BTC 0 + RFNi(Gi + ξ) proves ϕ(x) by the argument in the proof of Theorem 6.5. The other

cases are similar, except that the arguments work just for ϕ ∈ Σ̂b
i−1 if we have only RFNi−1.

This is fine as T + Π̂b
i -(P)INDR is ∀Σ̂b

i−1-axiomatized over T . 2

Using this characterization, we can extend Theorem 5.10 to the case i = 0:

Corollary 6.7 If T ⊆ ∀Σ̂b
0, T + Σ̂b

0-INDR = [T, Σ̂b
0-INDR].

Proof: W.l.o.g., T is finitely axiomatizable, hence we may write T = BTC 0 + ∀x ξ(x) with

ξ ∈ Σ̂b
0. Then T + Σ̂b

0-INDR = BTC 0 + RFN0(G0 + ξ) ⊆ [T, Σ̂b
0-INDR] by Corollary 6.6 and

Lemma 6.4. 2

A direct proof of Corollary 6.7 is also possible, but it is not particularly illuminating.

Remark 6.8 We could extend the definition of Gi + ξ to ξ ∈ Σ̂b
i+1 as follows: write ξ(x) =

∃y < 2|x|
c ¬θ(x, y) with θ ∈ Σ̂b

i , and let Gi + ξ denote Gi augmented by the rule

Γ =⇒ ∆, [[θ]]n,nc(A0, . . . , An−1, x0, . . . , xnc−1)

Γ =⇒ ∆
,

where Aj are quantifier-free, and xj are not free in Γ, ∆, or Aj′ ; likewise for G∗i + ξ. (This is

easily seen to be p-equivalent to the original definition if ξ ∈ Σ̂b
i .) Proposition 6.3 continues

to hold in this setting, and the proof of Lemma 6.4 gives Si+1
2 +∀x ξ(x) ` RFNi(Gi+ξ). Since

this extension does not seem to yield new insights about parameter-free induction schemes or

rules, we skip the details.

29



7 Separations

We have seen in the previous sections many results relating subsystems of bounded arithmetic

with and without parameters, but in order for these results to be useful, it would be nice to

know that the systems do not collapse: what if the parameter-free induction schemes are

actually equivalent to the usual schemes with parameters, so that e.g. T i
2 = Σ̂b

i -IND−? This

would make the investigation of IND− rather pointless. Likewise, since we spent so much

effort on Π̂b
i schemes and rules, we would like to know that they are genuinely distinct from

the corresponding Σ̂b
i rules.

In general, we are interested if there are any reductions between our schemes and rules

that do not follow from Theorem 3.5 (as depicted in Figure 3.1), and furthermore if there are

any inclusions between the theories generated by our schemes and rules over the base theory

that do not follow from Theorem 3.5 and Corollary 5.13 (as depicted in Figure 5.1).

Checking all the cases naively would be a gargantuan task: we have 10 schemes and rules

at each level of the hierarchy, and we need to consider reductions spanning three levels: e.g.,

Si
2 is supposed not to be included in BTC 0 + Π̂b

i+1-IND−, which is two levels higher up,

being ∀Σ̂b
i -conservative under Si+2

2 . However, we do not actually have to consider all possible

pairs, as there is a lot of redundancy: for example, we do not need to check separately that

BTC 0 +Σ̂b
i -IND− 0 T i

2, because T i
2 ⊇ Si

2, Σ̂b
i -IND− ⊆ Π̂b

i+1-IND−, and we want to make sure

that BTC 0 + Π̂b
i+1-IND− 0 Si

2 anyway. Let us put our job into a more formal setting:

Definition 7.1 A basis of non-inequalities of a poset 〈P,≤〉 is a set B ⊆ P 2 such that

(i) a � b for any 〈a, b〉 ∈ B, and

(ii) for each a, b ∈ P such that a � b, there is 〈a′, b′〉 ∈ B such that a′ ≤ a and b ≤ b′.

A critical pair of P is 〈a, b〉 ∈ P such that a � b, but a′ ≤ b for all a′ < a, and a ≤ b′ for all

b′ > b. Observe that any basis of non-inequalities of P has to include all critical pairs.

Let 〈PR,≤R〉 denote the poset with formal elements representing BTC 0 and the axioms

and rules Σ̂b
i -IND , Σ̂b

i -IND−, Σ̂b
i -INDR, Π̂b

i+1-IND−, Π̂b
i+1-INDR, Σ̂b

i+1-PIND , Σ̂b
i+1-PIND−,

Σ̂b
i+1-PINDR, Π̂b

i+1-PIND−, and Π̂b
i+1-PINDR for i ≥ 0, and with ≤R being the transitive

reflexive closure of the relation given by Theorem 3.5. (BTC 0 is a least element of PR.)

Let 〈PT ,≤T 〉 be the quotient of 〈PR,≤R〉 identifying Σ̂b
i+1-PINDR with Σ̂b

i -IND , and

Π̂b
i+1-PINDR with Σ̂b

i -INDR, for each i ≥ 0.

Beware that neither PR nor PT is a lattice.

Lemma 7.2 Let 〈P,≤〉 be a poset in which all strictly increasing infinite sequences are up-

wards cofinal, and all strictly decreasing infinite sequences are downwards cofinal3. Then the

set of critical pairs is a basis of non-inequalities of P .

Proof: The assumptions may be restated such that for each u ∈ P , < is well-founded on

{x ∈ P : x � u}, and converse well-founded on {x ∈ P : u � x}. Thus, given a � b, we can

3In fact, weaker assumptions suffice: it is enough if Q, ωt1, and ω∗t1 do not embed in P , where t denotes

disjoint union of posets.
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find a minimal a′ ≤ a such that a′ � b, and then a maximal b′ ≥ b such that a′ � b′. Then

〈a′, b′〉 is a critical pair. 2

The critical pairs of PR and PT can be determined by a somewhat tedious, but straight-

forward computation, chasing the diagrams in Figures 3.1 and 5.1. We see that PR and PT

have common critical pairs

〈Σ̂b
i -PIND ,Π̂b

i+1-IND−〉, 〈Σ̂b
0-IND ,Π̂b

1-IND−〉,
〈Π̂b

i -PIND−,Π̂b
i+1-INDR〉, 〈Σ̂b

0-IND−,Π̂b
1-INDR〉,

〈Π̂b
i -INDR,Σ̂b

i -PIND〉, 〈Σ̂b
0-INDR,BTC 0〉

for i ≥ 1. Moreover, PR has critical pairs

〈Π̂b
i+1-PINDR,Σ̂b

i -IND〉

for i ≥ 0, but we can disregard these: Π̂b
i+1-PINDR ≤ T i

2 implies T i
2 ` Π̂b

i+1-PIND− using the

deduction theorem, hence also BTC 0 + Π̂b
i+2-INDR ` Π̂b

i+1-PIND−, which is an instance of

another critical pair. Thus, we obtain:

Proposition 7.3 If there is a reduction between the schemes and rules from Definition 3.1

which does not follow from Theorem 3.5, or an additional inclusion between the first-order

theories they generate over BTC 0 not warranted by Corollary 5.13, it implies one of the

following:

Si
2 ` BTC 0 + Π̂b

i -INDR for some i ≥ 0,(19)

Π̂b
i+1-IND− ` Si

2 for some i > 0,(20)

Π̂b
1-IND− ` T 0

2 ,(20′)

BTC 0 + Π̂b
i+1-INDR ` Π̂b

i -PIND− for some i > 0, or(21)

BTC 0 + Π̂b
1-INDR ` Σ̂b

0-IND−.(21′)

(Recall that in our setup, S0
2 = BTC 0.) 2

The remaining goal is to convince ourselves that (19)–(21′) are likely false, or at least

suspect. We are not very picky, and do not attempt to devise sophisticated separation ar-

guments optimized for the particular theories; rather, we are content with any evidence that

we did not overlook something in Theorem 3.5. We will present run-of-the-mill separations

of two kinds, as commonly done for systems of bounded arithmetic: separations conditional

on plausible complexity-theoretic assumptions, and unconditional separations of relativized

versions of our theories.

7.1 Unrelativized separations

The state of our knowledge does not allow us to disprove even BTC 0 = S2 unconditionally—

this would require a major breakthrough. We thus cannot disprove (19)–(21′) either. What

we can do instead is to show that they imply other statements (from computational and proof

complexity) that are more commonly recognized as implausible.
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Theorem 7.4 If Si
2 ` BTC 0 + Π̂b

i -INDR, then T i
2 is ∀Σ̂b

max{i−1,0}-conservative over Si
2 (and

thus over T i−1
2 for i > 0). Consequently:

(i) If i = 0, TC0-Frege p-simulates EF .

(ii) If i > 0, G∗i and Gi−1 p-simulate Gi with respect to Σq
i−1 sequents.

(iii) If i > 1, the game induction principle GIi (Skelley and Thapen [36]) is reducible

to GIi−1.

Proof: The conservativity of T i
2 over Si

2 is a consequence of the characterization of BTC 0 +

Π̂b
i -INDR from Corollary 5.15 (vii) (or (v) if i = 0). Then (i) and (ii) follow by a standard

argument: T i
2, hence Si

2 and T i−1
2 by assumption, proves RFNi−1(Gi). Thus, BTC 0 proves

that the tautologies [[RFNi−1(Gi)]]n have TC0-constructible proofs in G∗i and Gi−1, which in

turn implies that these two proof systems p-simulate Gi-proofs of Σq
i−1 sequents. Similarly,

(iii) follows from the fact that GIi is complete for the class of NP-search problems provably

total in T i
2. 2

Recall that FPΣP
i [O(g(n)),wit] denotes the class of total search problems computable by a

polynomial function that makes O(g(n)) queries to a witnessing ΣP
i oracle, meaning that for

any positive answer, the oracle also has to produce a witness to the outermost existential

quantifier. For any i > 0, the Σ̂b
i+1-definable search problems provably total in Si

2 com-

prise exactly FPΣP
i [O(logn),wit], and the Σ̂b

i+1-definable search problems provably total in T i−1
2

comprise exactly FPΣP
i [O(1),wit] (see e.g. [17, Thm. VIII.7.17]; the original results are due to

Kraj́ıček, Pudlák, and Takeuti [34] and Kraj́ıček [31]).

Theorem 7.5

(i) If Π̂b
1-IND− ` T 0

2 , then P = TC0.

(ii) If Π̂b
i+1-IND− ` Si

2 for some i > 0, then FPΣP
i [O(logn),wit] = FPΣP

i [O(1),wit], and PH =

B(ΣP
i+1).

Proof: First, observe that Π̂b
i+1-IND− follows from the set of all true ∀Σ̂b

i sentences: it is

axiomatized by sentences of the form ϕ→ ψ, where ϕ ∈ ∀Σb
∞, and ψ ∈ ∀Σ̂b

i . If ϕ is false, ¬ϕ
(and a fortiori ϕ→ ψ) is provable in BTC 0, being a true Σ1 sentence. Otherwise, ψ is true,

hence included in Th∀Σ̂b
i
(N).

(i): Every poly-time function f has a provably total Σ̂b
1-definition in T 0

2 , hence by as-

sumption, in Th∀Σ̂b
0
(N), i.e., in the set of true universal sentences of LTC0 . By Herbrand’s

theorem (and closure under definitions by cases), f is definable by an LTC0-term, i.e., it is a

TC0-function. In particular, every poly-time predicate is computable in TC0.

(ii): Every FPΣP
i [O(logn),wit] search problem has a Σ̂b

i+1-definition provably total in Si
2,

hence by assumption, in Th∀Σ̂b
i
(N). We claim that, just like for T i−1

2 , the provably total

Σ̂b
i+1-definable search problems of Th∀Σ̂b

i
(N) are in FPΣP

i [O(1),wit]: if

∀uψ(u) ` ∀x ∃y ϕ(x, y),

32



where ψ ∈ Σ̂b
i , ϕ ∈ Σ̂b

i+1, and N � ∀uψ(u), we have

T i−1
2 ` ∀x ∃y

(
¬ψ(y) ∨ ϕ(x, y)

)
(the T i−1

2 is not really doing anything for us here). We may bound the y using Parikh’s

theorem, and then by the above-mentioned characterization of ∀Σ̂b
i+1 consequences of T i−1

2 ,

we obtain

T i−1
2 ` ∀x

(
¬ψ(f(x)) ∨ ϕ(x, f(x))

)
for some search problem f ∈ FPΣP

i [O(1),wit], Σ̂b
i+1-definable in T i−1

2 ; but the first disjunct

cannot happen in the real world:

N � ∀xϕ(x, f(x)).

Thus, FPΣP
i [O(logn),wit] = FPΣP

i [O(1),wit]. This implies PΣP
i [O(logn)] = PΣP

i [O(1)] = B(ΣP
i ),

as predicates (i.e., {0, 1}-valued functions) in FPΣP
i [O(1),wit] are in PΣP

i [O(1)] (cf. [32, 6.3.4–5]).

This in turn implies the collapse of PH to B(ΣP
i+1) by Chang and Kadin [11]. 2

Remark 7.6 The second point of Theorem 7.5 is a variant of the well-known result that

T i−1
2 = Si

2 implies the collapse of PH, originally proved in [34], and subsequently improved

in [8, 38, 16, 23]. The current state of the art is that T i−1
2 = Si

2 implies T i−1
2 ` PH = B(ΣP

i )

[23, Cor. 4.7], which is a one whole level deeper collapse than in Theorem 7.5.

While we did not attempt to check the details, it is not implausible that these improve-

ments also work in the presence of additional true ∀Σ̂b
i axioms; if correct, this would strengthen

the conclusion of Theorem 7.5 (ii) to PH = B(ΣP
i ).

Question 7.7 Can we disprove (21) or (21′) under a credible hypothesis?

7.2 Relativized separations

Rather than relying on unproven hypotheses, we may want to look at unconditional separa-

tions of relativized theories. All theories we work with may be relativized in the standard

way: we include a new predicate symbol α(x) in the language, and extend all schemes to

allow the use of α along with other atomic formulas, but do not include any axioms to fix its

particular values.

Relativization is commonly employed in bounded arithmetic to obtain separation results,

exploiting the fact that we can unconditionally separate various complexity classes in the

relativized setting. The usefulness of this technique of course hinges on our belief that for

the classes in question (e.g., levels of the polynomial hierarchy), noninclusions between their

relativized versions truly reflect properties of the original unrelativized classes. (Relativized

bounded arithmetic is also useful in connection with bounded-depth propositional proof sys-

tems, as the Paris–Wilkie translation only makes sense for relativized theories.)

Relativization of parameter-free schemes may seem somewhat more dubious than in the

case of usual theories of bounded arithmetic, as it goes against the spirit of parameter removal:

similar to parameters, the oracle provides access to additional black-box information that is
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shared by antecedents and succedents of induction axioms. This worry is for the most part

unsubstantiated, as there is a crucial difference in that the oracle is arbitrary but fixed,

whereas parameters of a scheme are universally quantified, and as such represent all numbers

in the domain even in the context of a single statement. Nevertheless, we will see that the

idea that an oracle can simulate parameters works out in certain situations, and some of our

relativized separation results rely on it.

Perhaps the best way to argue that relativized separations are useful is that they show

unprovability of inclusions or reductions between rules by means of the techniques we em-

ployed elsewhere in this paper, as all positive results we proved earlier do relativize. This is

easy to observe4 for the results in Sections 3–5. For Section 6, we may relativize the proof

systems by expanding the propositional language with a new unbounded fan-in connective

representing α, and then everything works out.

Theorem 7.8 Π̂b
1(α)-IND− 0 T 0

2 (α), and Π̂b
i+1(α)-IND− 0 Si

2(α) for i > 0.

Proof: If we fix an oracle A ⊆ ω, then Π̂b
i+1(α)-IND− follows from the set of all ∀Σ̂b

i(α)

sentences true in 〈N, A〉. The same argument as in the proof of Theorem 7.5 then shows that

if Π̂b
i+1(α)-IND− ` Si

2(α), then the relativized polynomial hierarchy PHA collapses. However,

it is well known that we can find A such that this does not happen [37, 22].

Similarly, Π̂b
1(α)-IND− ` T 0

2 (α) implies PA = (TC0)A for every A ⊆ ω. The proper notion

of relativized TC0 corresponding to ∀Σ̂b
1(α)-witnessing of universal extensions of BTC 0 is

explained in Aehlig, Cook, and Nguyen [2], where they also exhibit an oracle separating NLA

(hence (TC0)A) from PA. 2

Theorem 7.9 BTC 0(α) + Π̂b
i+1(α)-INDR 0 Π̂b

i(α)-PIND− for i > 0, and BTC 0(α) +

Π̂b
1(α)-INDR 0 Σ̂b

0(α)-IND−.

Proof: Assume for contradiction that BTC 0(α) + Π̂b
i+1(α)-INDR ` Π̂b

i(α)-PIND−, where

i > 0. We will argue that parameters of the PIND scheme can be encoded into the oracle.

Given a term t(x), let us fix a proof π of PIND for the parameter-free Π̂b
i(α) formula

(22) ∀x1 ≤ t(x) ∃x1 ≤ t(x) · · ·Qxi ≤ t(x)α(〈x, x1, . . . , xi〉)

in BTC 0(α) + Π̂b
i+1(α)-INDR, and let ϕ(x, y) be a Π̂b

i(α) formula of the form

(23) ∀x1 ≤ t(x) ∃x1 ≤ t(x) · · ·Qxi ≤ t(x) θ(x, y, x1, . . . , xi),

where θ ∈ Σ̂b
0(α). We may assume without loss of generality that y does not occur in π. If we

substitute θ
(
(z)0, y, (z)1, . . . , (z)i

)
for α(z) everywhere in the proof, the result is still a valid

BTC 0(α) + Π̂b
i+1(α)-INDR proof as INDR allows parameters, hence the theory proves PIND

for ϕ(x, y).

4The one possible exception is that we used a couple of times the fact that every bounded sentence is

provable or refutable in the base theory. This is not literally true in the relativized setting, but it may

be replaced by the weaker property that every bounded sentence is equivalent to a Boolean combination of

sentences of the form α(k) for standard constants k.
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This is not yet a general instance of Π̂b
i(α)-PIND , as all quantifiers in ϕ have to be bounded

by a term in the induction variable. However, this restriction is immaterial: if ϕ(x, y) ∈ Π̂b
i(α)

is arbitrary, PIND for ϕ follows from PIND for the formula |x| < |y| ∨ ϕ(bx/2|y|c, y), which

may be equivalently rewritten so that all quantifiers are bounded by a term in x alone.

Thus, BTC 0(α) + Π̂b
i+1(α)-INDR ` Si

2(α), but this contradicts Theorem 7.8.

Likewise, BTC 0(α)+Π̂b
1(α)-INDR ` Σ̂b

0(α)-IND− would imply BTC 0(α)+Π̂b
1(α)-INDR `

T 0
2 (α). 2

We do not have an unconditional disproof of (19) in its full generality, but several partial

results that come close:

Theorem 7.10 Let i ≥ 0.

(i) If i > 0, Si
2(α) 0 BTC 0(α) + Σ̂b

i(α)-INDR = BTC 0(α) + Π̂b
i+1(α)-PINDR.

(ii) S2
2(α) 0 BTC 0(α) + Π̂b

2(α)-INDR.

(iii) Si
2(α) 0 Π̂b

i(α)-IND−.

(iv) Π̂b
i(α)-INDR � Si

2(α).

Proof: (i): In view of Corollary 5.15, the claim is equivalent to the fact that T i
2(α) is not

∀Σ̂b
i(α)-conservative over Si

2(α) due to Buss and Kraj́ıček [10].

(ii): This amounts to the ∀Σ̂b
1(α)-non-conservativity of T 2

2 (α) over S2
2(α), proved by Chiari

and Kraj́ıček [12] (see also [13]).

(iii): Assume that Si
2(α) ` Π̂b

i(α)-IND−; we will argue that Si
2(α) ` Π̂b

i(α)-IND , con-

tradicting Si
2(α) 6= T i

2(α). As in the proof of Theorem 7.9, if ϕ(x, y) is a formula of the

form (23), we construct a proof of ϕ-IND in Si
2(α) by taking a proof (not containing y) of

IND for the formula (22), and substituting θ
(
(z)0, y, (z)1, . . . , (z)i

)
for α(z). If ϕ(x, y) is an

arbitrary Π̂b
i formula, then ϕ-IND (with x being the induction variable, and y a parameter)

follows from IND for the formula x < y ∨ ϕ(x− y, y), which is equivalent to a formula of the

form (23).

(iv) follows from (iii) using the deduction theorem. 2

Remark 7.11 By inspection of critical pairs of PR and PT , the net effect of Theorems 7.8,

7.9, and 7.10 is that in the relativized setting:

• all valid reductions between the rules from Definition 3.1 follow from Theorem 3.5;

• all valid inclusions between theories generated by these rules follow from Theorem 3.5

and Corollary 5.13, except possibly

BTC 0(α) ` BTC 0(α) + Σ̂b
0(α)-INDR,(24)

or

T ` BTC 0(α) + Π̂b
i(α)-INDR(25)
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for some i ≥ 1, i 6= 2, and a theory T between BTC 0(α) + Σ̂b
i−1(α)-INDR and Si

2(α)

(apart from the two indicated, these are Σ̂b
i−1(α)-IND−, T i−1

2 (α), Π̂b
i -PIND−, and Σ̂b

i -

PIND−).

Note that for any given i, (25) holds either for all the theories T , or for none of them; that

is, the following are equivalent:

(i) Si
2(α) ` BTC 0(α) + Π̂b

i(α)-INDR,

(ii) BTC 0(α) + Σ̂b
i−1(α)-INDR = BTC 0(α) + Π̂b

i(α)-INDR,

(iii) T i
2(α) is ∀Σ̂b

i−1(α)-conservative over Si
2(α) (or equivalently, over T i−1

2 (α)).

Moreover, Chiari and Kraj́ıček [13] proved that for i > 2, the following is also equivalent to

the above:

(iv) T2(α) is ∀Σ̂b
i−1(α)-conservative over Si

2(α) (or over T i−1
2 (α)).

Likewise, (24) is equivalent to the ∀Σ̂b
0(α)-conservativity of T 0

2 (α) over BTC 0(α).

Even though it is commonly believed that T i
2(α) is not ∀Σ̂b

0(α)-conservative over Si
2(α)

for any i ≥ 0, it is a major open problem to improve the above-quoted results of [10, 12] even

just by one level, thus (24) and (25) are open.

In this connection, we mention a possibly interesting consequence of Theorem 7.10 (iv):

Corollary 7.12 For any i ≥ 1, there is a ∀Σ̂b
i(α) sentence ϕ such that T i

2(α) + ϕ is not

∀Σ̂b
i−1(α)-conservative over Si

2(α) + ϕ. 2

8 Conclusion

We have undertaken a comprehensive investigation of parameter-free and inference-rule vari-

ants of the Σ̂b
i and Π̂b

i induction and polynomial induction axioms. We found which rules and

axioms reduce to other rules, and which do not. We have seen conservation results among the

systems; in particular, each of our theories can be characterized as the Γ-fragment of some Si
2

for a suitable class of sentences Γ. We also found equivalent expressions for our axioms and

rules in terms of reflection principles for axiomatic extensions of the quantified propositional

calculi Gi, and we proved a few other results, in particular concerning nesting depth of rules.

In some respects, the properties of our systems resemble the situation of strong theories

of arithmetic IΣ−n and IΠ−n : the Π̂b
i schemes and rules are weaker than their Σ̂b

i counterparts,

there are conservation results connecting the systems to the usual theories Si
2, the parameter-

free schemes do not seem to be finitely axiomatizable, and our systems correspond to reflection

principles and rules (albeit of different nature) of similar overall shape as for the strong

systems.

On the other hand, there are also notable differences. Most importantly, the hierarchies

fit together in different ways: IΠ−n+1 is equiconsistent with (and B(Σn+1)-conservative over)

IΣ−n and IΣn, whereas in our case, Π̂b
i -(P)IND− is M(∃Π̂b

i ∪ ∀Π̂b
i)-conservative under Σ̂b

i -

(P)IND− and Σ̂b
i -(P)IND . On a related note, the systems IΠ−n+1 and IΣn on the same level
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of the hierarchy are incomparable, and their join IΠ−n+1+IΣn has strictly stronger consistency

strength—it proves the consistency of IΣn (cf. [4]); no such phenomenon is possible in our

setup, as all the systems on each level of our hierarchy are included in the largest one among

them, namely Si
2.

Analogously to IΣ−n and IΠ−n , it seems likely that our theories Σ̂b
i -(P)IND− and Π̂b

i -

(P)IND− are not finitely axiomatizable, but we do not have any evidence for this (Ques-

tion 5.24). Another problem that we left open is if T i
2 is ∃∀Π̂b

i -conservative over Π̂b
i -IND−,

and similarly for Si
2 and Π̂b

i -PIND− (Question 5.19); it would be also desirable to prove un-

relativized separation of Π̂b
i -PIND− from BTC 0 + Π̂b

i+1-INDR (Question 7.7) under plausible

assumptions.

We tried our best to conduct an in-depth examination of parameter-free and inference-rule

versions of the IND and PIND schemes, that also applies, by the results of Section 4, to their

common variants like LIND and minimization schemes. However, we left out other schemes

of interest in bounded arithmetic: in particular, the choice (aka replacement or bounded

collection) scheme BB (which was studied in [19]), and analogues of LIND with induction up

to bounds given by more general classes of terms (including LLIND , etc.). Related to BB ,

we might be interested in variants of (P)IND and other schemes for the non-strict Σb
i and Πb

i

formula classes: it is well known that with parameters, the strict and non-strict (P)IND

schemes are equivalent—both define the familiar theories Si
2 and T i

2. It is however likely

that the situation will get more complicated without parameters. We also left out various

combinations of our base systems such as Si
2 + Π̂b

i -IND− + Σ̂b
i -INDR.

The reason we decided not to discuss any of these potentially interesting topics is sheer

complexity: we have 10 systems per each level of the hierarchy as is, which already leads to a

complex network of relations among them. If we added more schemes and rules to the mix, the

number of combinations would multiply, rendering the global picture unmanageable. That is

to say, there are certainly many aspects of these systems that are worth further investigation,

but we deem them out of scope of this paper.
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