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Abstract

We show that ifu is a weak solution to the Navier—Stokes initial-boundary value problem
with Navier’s slip boundary conditions iQr := Q x (0,T), where(2 is a domain inR?,
then an associated pressprexists as a distribution with a certain structure. Furthermore, we
also show that if2 is a “smooth” domain ifR?® then the pressure is represented by a function
in Q7 with a certain rate of integrability. Finally, we study the regularity of the pressure in
sub-domains of)r, whereu satisfies Serrin’s integrability conditions.
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1 Introduction
1.1. The Navier—Stokes initial-boundary value problem with Navier's boundary conditions.
LetT > 0 andf be a locally Lipschitz domain i3, satisfying the condition

(i) there exists a sequence of bounded Lipschitz donfairs Q, C ... suchtha) = [ J;2, Q,
and(0Q, NQ) C {x € R3; |x| > n}foralln € N.

Note that condition (i) is automatically satisfied e.cQif= R? or Q is a half-space ifR> or Q is a
bounded or exterior Lipschitz domain&®. PutQr := Q x (0,7) andl'r := 9Q x (0,7). We
deal with the Navier—Stokes system

du+u-Vu+Vp = vAu+f in Qr, (1.2)
divu = 0 in Qr (1.2)

with the slip boundary conditions
a) u-n=0, b) [Tq(u) -n}; +yu=0 onl'r (2.3)
and the initial condition

u ‘t:O = uyp. (1.4)
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Equations (1.1), (1.2) describe the motion of a viscous incompressible fluid in démaithe
time interval(0, 7). The unknowns are (the velocity) and (the pressure). Facterin equation
(1.1) denotes the kinematic coefficient of viscosity (it is supposed to be a positive constafit) and
denotes an external body force. The outer normal vector fiefdisrdenoted by, T4(u) denotes
the dynamic stress tensex[4(u) - n is the force with which the fluid acts on the boundaryof
(we put the minus sign in front df4(u) - n because is the outer normal vector and we express
the force acting o) from the interior of(?), subscriptr denotes the tangential component and
~ (which is supposed to be a nonnegative constant) is the coefficient of friction between the fluid
and the boundary d®. The density of the fluid is supposed to be constant and equal to one. In an
incompressible Newtonian fluid, the dynamic stress tensor satikfies = 2vD(u), where the
rate of deformation tensd@b(u) equals(Vu), (the symmetric part o¥/u).

Equations (1.1), (1.2) are mostly studied together with the no—slip boundary condition

u=20 (1.5)

onI'r. However, an increasing attention in recent years has also been given to boundary conditions
(1.3), which have a good physical sense. While condition (1.3a) expresses the impermeability of
01, condition (1.4b) expresses the requirement that the tangential component of the force with
which the fluid acts on the boundary be proportional to the tangential velocity. Conditions (1.3)
are mostly called Navier's boundary conditions, because they were proposed by H. Navier in the
first half of the 19th century.

1.2. Briefly on the qualitative theory of the problem (1.1)—(1.4). As to the qualitative theory

for the problem (1.1)—(1.4), it is necessary to note that it is not at the moment so elaborated as in
the case of the no-slip boundary condition (1.5). Nevertheless, the readers can find the definition
of a weak solution to the problem (1.1)—(1.4) and the proof of the global in time existence of a
weak solution e.g. in the papers [6] (wifth= 0), [20] (in a time-varying domaifi2) and [25] (in

a half-space). We repeat the definition in section 3. Theorems on the local in time existence of
a strong solution are proven e.g. in [6] (fbr= 0) and [15] (in a smooth bounded domém).

Steady problems are studied in [2] and [3].

1.3. On the contents and results of this paperWe shall see in section 3 that the definition of a
weak solution to the problem (1.1)—(1.4) does not explicitly contain the pressure. (This situation is
well known from the theory of the Navier—Stokes equations with the no—slip boundary condition
(1.5).) This is also why we usually understand, under a “weak solution”, only the veloeahd

not the pair(u, p). There arises a question whether one can naturally assign some pressure

a weak solutionu. It is known from the theory of the Navier—Stokes equations with the no—slip
boundary condition (1.5) that the pressure, associated with a weak solution, generally exists only
as a distribution irQr. (See [16], [34], [29], [11], [32], [35] and [22].) The distribution is regular

(i.e. it can be identified with a function with some rate of integrability(Js) if domain 2 is
“smooth”, see [31], [13] and [22]. In section 4 of this paper, we show that one can naturally assign
a pressure, as a distribution, to a weak solution to the Navier—Stokes equations with Navier’'s
boundary conditions (1.3), too. Moreover, we show in section 4 that the associated pressure is not
just a distribution, satisfying together with the weak soluticeuations (1.1), (1.2) in the sense of
distributions inQr (where the distributions are applied to test functions fIGfR(Q 1)), but that

it is a distribution with a certain structure, which can be applied to functions @6aiQ7) with
acompact support if2 x (0,7") and with the normal component equal to zeralgn In section

5, we show that if domaif2 is smooth and bounded then the associated pressure is a function with



a certain rate of integrability itp. Finally, in section 6, we study the regularity of the associated
pressure in a sub-domafl x (¢1,t2) of Qr, whereu satisfies Serrin’s integrability conditions.
We shall see that the regularity depends on boundary conditions, satisfied by the veldgity on
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Notation and auxiliary results

2.1. Notation. We use this notation of functions, function spaces, dual spaces, etc.:

(¢]

(e]

(@]

Qo CC Q means thaf) is a bounded domain iR? such thatf), c .
Vector functions and spaces of vector functions are denoted by boldface letters.

C55,(Q2) denotes the linear space of infinitely differentiable divergence-free vector functions in
2, with a compact support if1.

Let1 < ¢ < oo. We denote byL7 () the closure ofCg%, (Q) in LI(Q2). The subscriptr
means that functions froi? , (2) have the normal component 6§ equal to zero in a certain
weak sense of traces and they are therefore tangentié{2onThe subscript- expresses the
fact that functions fronli ,(Q2) are divergence—free ift in the sense of distributions. (See
e.g. [10] for more information.)

PutG,(Q) := {Vy € LY(Q); ¢ € Wﬁ)’f(Q)}. G,(9) is a closed subspace bf ((2), see [10,
Exercise 111.1.2].

WH(Q) := {ve W4(Q); v-n = 0a.e. oI},

W(Q) == {p € WrI(Q), supp p is a compact set i3},

WEL(Q) := Wh(Q) N L, (Q) = Wr9(Q) N LL,(Q),

W2l o(Q) = WrE(Q) N WL(Q).

The norms inL4(Q2) and inL4(f2) are denoted by . |,. The norms inW*4(Q) and in
WH4(Q) (for k € N) are denoted by . ||z, If the considered domain differs frofa then

we use e.g. the notatidn ||, o Or || . |4 o, €tc. The scalar products it (2) and inL?((2)
are denoted by ., .), and the scalar products iv12(Q) and inW2(Q) are denoted by

(.5 )12

The conjugate exponent is denoted by prime, so thate4g.q/(q¢ — 1). W;l’q'(Q) denotes
the dual space tW1?(Q) andW 57 (Q) denotes the dual space W2 (). The norm in
W; (), respectivelyW; L7 (), is denoted by] . ||/, respectively by . || _1 4o

The duality between elements W, ¢ (Q) andWE%(0) is denoted by . , . ), and the duality
between elements 6V; 17 () andW2(Q) is denoted by . , . ).

WEL(0)L denotes the space of annihilatorsW:4 () in W17 (). i.e. the spacdg €
W2 (Q); Vo € WrL(Q) : (g, )7 = 0}

2.2. L¢(Q) and LL,(Q) as subspaces oW "7 () and W57 (Q), respectively. The
Lebesgue spack? () can be identified with a subspaceWT_l’q'(Q) so that ifg € L7 (Q)
then

(8, p)r == /Qg-sodx (2.1)
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for all ¢ € WE9(Q). Similarly, LZ,,(£2) can be identified with a subspaceWf; > (Q) so that
if g € LY, (Q) then

(& ¢)ne = [ £ dx (2.2)

for all o € WE2(Q). Thus, ifg € LL,(Q) ande € WL%(Q) then the dualitiedg, ), and
(g, p)r o coincide.

Note thatifg € Lq'(Q) then the integral on the right hand side of (2.1) also defines a bounded
linear functional onW >4 (). This, however, does not mean tHa# (Q2) can be identified with

a subspace OW;},"]/(Q). The reason is, for instance, that the spdc€$Q) andW;};q/(Q) do
not have the same zero element.{lis a non-constant function ifi;°(£2) thenV+ is a non-zero

element of.? (Q), but it induces the zero eIementW;};q/(Q).)

2.3. Definition and some properties of operatorP, . Wr1(Q) is a closed subspace of
WL(Q). If g € W17 (Q) (i.e. f is a bounded linear functional W19(2)) then we denote
by P, f the element oTW;};q (€2), defined by the equation

(Pyg, )ro = (g8,p),  forallp e WHi(Q).

Obviously, P, is a linear operator fron’W;l’ql(Q) to W;},’q/(Q), whose domain is the whole
spacew; 17 (Q).

Lemma 2.1. The operatorP, is bounded, its range NV;},’Q/(Q) and?P, is not one-to-one.

Proof. The boundedness of operaf®y directly follows from the definition of the norms in the
spacesW; 17 (Q), Wi L7 (Q) and the definition o, .

Letg € W;};q/(Q). There exists (by the Hahn-Banach theorem) an extensign fodm
WL (Q) to WH9(Q2), which we denote bg. The extension is an element W 17 (Q), satis-
fying [|g]l-1.¢ = lIgll-14:- and

(8, p)r = (&8 P)ro

forall ¢ € Wij?,(Q). This shows thag = P,g. Consequently, the range &%, is the whole
spaceW, -7 (Q).
Finally, considerings = V for ¢ € C§°(2), we get

(Pyg,@)ro = (8 ¥)r = /QVz/J-cpdx =0

forall ¢ € Wij‘é((l). This shows that the operat®y, is not one-to-one. O

2.4. The relation between operatorP,, and the Helmholtz projection. If each functiong €
L7 () can be uniquely expressed in the fogn= v + V1 for somev & LZ:G(Q) andVy €
G, (£2), which is equivalent to the validity of the decomposition

/

LY(Q) = LL,(Q) & Gy (9), (2.3)



then we writev = FP,g. Decomposition (2.3) is called thdelmholtz decompositioand the
operatorP, is called theHelmholtz projection.The existence of the Helmholtz decomposition
depends on exponegt and the shape of domafd. If ¢/ = 2 then the Helmholtz decomposition
exists on an arbitrary domain and P, respectivelyl — P», is an orthogonal projection af?((2)
ontoLZ}U(Q), respectively ont@x2(€2). (See e.g. [10].) 1§ # 2 then various sufficient conditions
for the existence of the Helmholtz decomposition can be found e.qg. in [7], [9], [10], [12], [14] and
[28].

Further on in this paragraph, we assume that the Helmholtz decompositloh(6¥) exists.
Letg € L7 (Q2). Treatingg as an element ow L (Q) in the sense of paragraph 2.2, we have
(Pyg, )ro = (8, ) forall ¢ € W2 (). Writing g = Pyg+ (I — Py)g, we also have

(g ¢)r = (Pyg+ (I —Pplg,¢), = (Pre,e).
for all o € WL%(Q), becausél — Py)g € Gy (). Furthermore,
(Pyg, o), = (Prg.¢).

because’, g € L‘TIiU(Q), p e Wij‘é(Q) and the formulas (2.1) and (2.2) show that the dualities
(Pyg,p)r and(Pyg, @), are expressed by the same integrals. HgfRgeg, p)- ., coincides
with (Py g, ¢) . forall ¢ € Wi;%(Q). ConsequentlyP, g and P,y g represent the same element
of W;},’q/ (). AsPyg € LZﬁU(Q), P, g can also be considered to be an eIemen‘Lfég(Q),
which induces a functional ifW;};q(Q) in the sense of paragraph 2.2. Thtise Helmholtz
projection P, coincides with the restriction g9, to L7 (Q).

2.5. More on the spaceW+%(Q)L. Identifying G, () with a subspace oW; 7 () in
the sense of paragraph 2®e denote by-G, (Q) the linear space{¢ € Wi’q(Q); Vg €
Gy (Q) : (g,¢)r = 0}. Using [10, Lemma I11.2.1], we deduce th&+%(Q) = ~G,(Q).
HenceW 4 (Q)+ = (G, (Q))* and applying Theorem 4.7 in [24], we observe thé}:% (2)+
is a closure oG (12) in the weakx topology ofWT_l’q'(Q). The next lemma tells us more on
elements oW L% (Q)L.

Lemma2.2. LetF € Wijf’,(Q)L and Qo cc Q be a nonempty sub-domain Qf Then there
exists a unique € LY () such thap € L7 (Qp) forall R > 0, Jo,p dx =0 and

loc

IN

IPllg: 0 c¢(R) ||F||=1,4 forall R > 0, (2.4)

(F,) = —/pdmp dx forall ¢ € W4(Q). (2.5)
Q

Proof. Let {,} be the sequence of domains from condition (i). We can assume without the
loss of generality tha®, C ;. Letn € N. Denote byL? _.(,) the space of all functions

mv=0

from L9(S2,), whose mean value if,, is zero. There exists a bounded linear oper&gor.
LT _(Q,) — W9(Q,), such that

mv=0
divB(g) = ¢

forallg € LY _,(,). OperatorB is often called thdogovskijor Bogovskij—Pileckasperator.

mv=0

More information on operatdB, including its construction, can be found e.g. in [10, Sec. II1.3]
orin [5].



Denote byW1(12),,, respectivelyW ;% (0),,, the space of all functions fromV;%(12), re-
spectively fromW X4 (1), that have a support ift,,. Letp € WE?(Q),. Then the restriction
of div ¥ to ,, (which we again denote byiv v in order to keep a simple notation) belongs to
LT _(Q,) andB(divep,) € Wi(Q,). Identifying B(div ¢) with a function fromW%(Q2)
that equals zero if® \ 2,,, we have

P = B(divep) +w,
wherew is an element oWi;‘é(Q), satisfyingw = ¢ = 0in Q \ Q,,. Hence

(F,9)_ = (F,B(divep) . (2.6)

AsF is a bounded linear functional aW:%((2), vanishing on the subspad¥ % (12), its restric-
tion to W?(Q),, is an element oW, 17 (Q2),,, vanishing onWx4%((),,. Furthermore, identi-
fying functions fromWi’q(Q)n with their restrictions td?,,, we can also considdr to be an
element ofW(jl’q/(Qn), vanishing onW(l):g(Qn). Thus, due to Lemma 1.4 in [22], there exists
¢(n) > 0 and a unique functiop,, € L4 (,,) such thatfQO pn dx =0and

IPnllg; 0, < c(n) [Fll-1,g0, < c() [[F]-14, 2.7

<F,C>Qn = —/ pp div ¢ dx (2.8)

n

forall ¢ € W{(£2,). Using identity (2.8) with¢ = 2 (div 1), we obtain

(F,B(divy)) = (F,B(divy)), = —/ pp divB(dive) dx = —/ pp divp dx.
" Qn Qp

As the same identities also hold for+ 1 instead ofn, we deduce that, 1 = p,, in Q,. Hence
we may define functiop in 2 by the formulap := p,, in Q,, and we have

(F,B(divy)) = — / p divp dx. (2.9)
Q
If ¢ € WE%(Q) thenyp € W,?(1),, for sufficiently largen and (2.9) holds as well. Inequality

(2.4) now follows from (2.7). Identities (2.6) and (2.9) imply (2.5). g

Note that if(2 is a bounded Lipschitz domain then the chdize= (2 is also possible in Lemma
2.2.

3 Three equivalent weak formulations of the Navier—Stokes initial-
boundary value problem (1.1)—(1.4)

Recall that) is supposed to be a locally Lipschitz domairiRip.

3.1. The 1st weak formulation of the Navier—Stokes IBVP (1.1)—(1.4)Givenug € LE’J(Q)
andf € L*(0,7; W (). Afunctionu € L=(0, T; L2 () N L2(0, T; W12(2)) is said
to be a weak solution to the problem (1.1)—(1.4) if the traca @h I'7 is in L2(0,T; L2(0Q))
andu satisfies

T
/ / [—0ip-u+u-Vu-¢+2v(Vu),: (Vo) dxdt
0 Q
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+/OT/89W-¢det = /OT<f,¢>Tdt+/UO‘¢(-a0)dX (3.1)

Q

for all vector—functionsp € C5°([0,7); W12 c(2)).

Equation (3.1) follows from (1.1), (1.2) if one formally multiplies equation (1.1) by the test
function ¢ < Cgo([O,T); Wi;?,,c(Q)), applies the integration by parts and uses the boundary
conditions (1.3) and the initial condition (1.4). As the integraMyf - ¢ vanishes, the pressupe
does not explicitly appear in (3.1).

On the other hand, if € L?(Qr) andu is a weak solution with the additional properties
oru € L2(Qr) andu € L?(0,7; W?22(Q)) then, considering the test functiogsin (3.1) of
the form¢(x,t) = ¢(x) ¥(t) wherep € Wi2 () andy € C°((0,T)), and applying the
backward integration by parts, one obtains the equation

/(8tu—|—u-Vu—VAu—f)‘cpdx =0
Q

for a.a.t € (0,7). As Wi2 .(Q) is dense inL2 ,(€2), this equation shows tha®[9u + u -
Vu —rvAu —f] = 0 ata.a. time instantse (0,7"). Consequently, to a.a.c (0,7, there exists
p € W,22(Q) such thatVp = (I — P)[0u + u - Vu — vAu — f] and the functions1 andp
satisfy equation (1.1) (as an equationLif(f2)) at a.a. time instants € (0, 7). It follows from
the boundedness of projectidt in L2(Q2) and the assumed properties of functienandf that
Vp € L?(Qr). Considering afterwards the test functiahgs in (3.1), and integrating by parts in
(3.1), we get

/OT/Q(atquu.vu—uAu—f).¢dx+/0T/8Q([Td(u>.n]+,yu),d)det — 0

The first integral is equal to zero, because the expression in the parentheses-éguals. in
Q7 and the integraVp - ¢ in Q2 equals zero for a.a.€ (0,7). In the second integral, since both
u(.,t)ande¢( .,t) are tangent ons2, we can replacély(u) - n] + yu by [T4(u) - n]; + yu and
we thus obtain

T
/ / ([Ta(u) - n]; +~yu) - ¢ dSdt = 0.
o Joa

As this equation holds for all test functions € C5°([0,7); Wig%yc(Q)), we deduce that
satisfies the boundary condition (1.3b). Recall that this procedure works only under additional
assumptions on smoothness of the weak soluiiamd functionf. On a general level, however, it

is not known whether the existing weak solution is smooth. Nevertheless, we show in subsection
4.4 that there exists a certain pressure, which can be naturally associated with the weak solution
to (1.1)-(1.4). The pressure generally exists only as a distribution, see Theorem 4.2.

3.2. The 2nd weak formulation of the Navier-Stokes IBVP (1.1)—(1.4)We define the operators
A:WH(Q) — W72 (Q) andB - [WH(©)]? — W 1%(Q) by the equations

(Avip), = [[2T) (Vo [ avipds forv.pe W)

Q
(B(v,w), ) _ = /v~Vw-<pdx for v, w, o € W12(Q).
Q



By Korn’s inequality (see e.g. [33, Lemma 4]) and inequality [10, (I.4.5), p. 63], we have
(Av,v) = / v (V)2 dx +/ YIS > e |V (3.2)
Q a0

Furthermorepsing the boundedness of the operator of traces M’ (Q2) to L2(9Q), we can
also deduce that there exists> 0 such that

[AV[-12 < c2[[VV]2 (3.3)

for all v. € Wi?(Q). Thus, A is a bounded one-to—one operator, mappWg*(Q) into
W;2(Q). If k > 0 then the range ofd + kI is the whole spaca; *(Q) (by the Lax—
Milgram theorem) andA + kI)~! is a bounded operator froW; *(€2) ontoW+2(Q). If Qis
bounded then the same statements also holé fer0. The bilinear operatoB satisfies

B ;
IBeow)| e = sup  LECWh o]
»eWlh?(Q), 70 ll1,2
1/2 1/2
_ wp @ Iwoenl VIS 2 Ivlls> 9 wlis llells
ewl?(Q), "#£0 H‘PHL? B ZeWr2(Q), 7#£0 ¢ |172
1/2 1/2
< el IV [V wl. (3.4)

(We have used the imbedding inequality||s < c|/v|/12. Here and further orng denotes the
generic constant.)

Let u be a weak solution of the IBVP (1.1)—(1.4) in the sense of paragraph 3.1. It follows from
the estimates (3.3) and (3.4) that

Au e L2(0,T; W72(Q)) and B(u,u) € LY3(0,7; WZ12(Q)). (3.5)

Consideringe in (3.1) in the forme(x,t) = @(x)J(t), wherep € Wifm(Q) andd €
C§°((0,T)), we deduce that satisfies the equation

d

o
a.e.in (0,7T), where the derivative dfu, )2 means the derivative in the sense of distributions. As
the spacdV12 .(Q) is dense ifW L2 (Q), (3.6) holds for alkp € W12 (Q). It follows from (3.5)
that (Au, @), € L*(0,T) and(B(u,u), p), € L*3(0,T). Since(f, p), € L*(0,T), we obtain
from (3.6) that the distributional derivative ¢f1, ), with respect tat is in L*/3(0,T). Hence
(u, )2 is a.e. in[0, T') equal to a continuous function and the weak solutida (after a possible
redefinition on a set of measure zero) a weakly continuous function[frgffy to L2 ,(2). Now,
one can easily deduce from (3.1) thesatisfies the initial condition (1.4) in the sense that

(w, )2 + (Au, )+ (B(u,u), ) = (f,¢), (3.6)

(11, 90)2 ‘t:O = (u07 ‘10)2 (37)

for all ¢ € W12 (Q). Thus, we come to the 2nd weak formulation of the IBVP (1.1)—(1.4):

Givenuy € L2 ,(Q) andf € L2(0,T; W, "*(Q)). Findu € L=(0,T; L2 (Q)) N L*(0, T;
Wig%(Q)) (called the weak solution) such thatsatisfies equation (3.6) a.e. {9,7") and the
initial condition (3.7) for allp € WEZ(9).



We have shown that ifi is a weak solution of the IBVP (1.1)—(1.4) in the sense of the 1st def-
inition (see paragraph 3.1) then it also satisfies the 2nd definition. Applying standard arguments,
one can also show the opposite, i.euiatisfies the 2nd definition then it also satisfies the 1st
definition.

3.3. The 3rd weak formulation of the Navier-Stokes IBVP (1.1)—(1.4) Equation (3.6) can also
be written in the equivalent form

d
a4 (u, )2 + (P2Au, ®), ot (P2B(u,u), 80>Q7U = (Pof, P) o (3.8)
Let us denote byu’),, the distributional derivative with respecttof u, as a function fronf0, ")
to WT_},’Q(Q). (We explain later why we use the notatiow'), and not justu’.) Equation (3.8)
can also be written in the form

(u,)g + Py Au + PQB(U, u) = Pof, (3.9)
which is an equation iW ;. 5%(9), satisfied a.e. in the time intervél, T'). (This can be deduced
by means of Lemma II1.1.1 in [34].) Due to (3.5) and (3.6)), € L*3(0,T; W{#Q(Q)).
Henceu coincides a.e. irf0, ") with a continuous function fronfn, 7) to W, 4%(Q) and it is
therefore meaningful to prescribe an initial condition foat timet = 0. Thus, we obtain the 3rd
equivalent definition of a weak solution to the IBVP (1.1)—(1.4):

Givenug € LZ (Q) andf € L*(0,T; W; (). Functionu € L>(0,T; L2 ,(Q) N
L2(0,T; WE2(Q)) is called a weak solution to the IBVP (1.1)—(1.4yibatisfies equation (3.9)
a.e. in the interval0, 7") and the initial condition (1.4).

We have explained thatif is a weak solution in the sense of the 2nd definition then it satisfies
the 3rd definition. The validity of the opposite implication can be again verified by means of
Lemma lll.1.1 in [34].

3.4. Remark. Recall thatu'),, is the distributional derivative with respecttof u, as a function
from (0, T') to W5 5%(Q). Itis not the same as the distributional derivative with respetbfou,
as a function from(0, T') to W %(€2), which can be naturally denoted iny. As it is important
to distinguish between these two derivatives, we use the different notation. We can formally write
(u')y = Pou’.

Since(u'), € L*3(0,T; W7 7(2)), u coincides a.e. if0,7") with a continuous function
from[0,7) to WT_},’Q(Q). According to what is said in the first part of this remark, this, however,
does not imply that: coincides a.e. iff0, 7') with a continuous function frorfo, ') to W; -2(1).

4 An associated pressure, its uniqueness and existence

4.1. An associated pressurelLetu be a weak solution to the IBVP (1.1)—(1.4). A distribution
in Q7 is called an associated pressure if the pair, p) satisfies the equations (1.1), (1.2) in the
sense of distributions i@ .

4.2. On uniqueness of the associated pressureet u be a weak solution to the IBVP (1.1)—(1.4)
andp be an associated pressure.

If G is a distribution in(0,T") andy € C5°(Qr) then we define a distributionin Qr by the



formula

<g, : /1/1dx 01 4.1)

where((., . ))q., respectively( ., . ) 1), denotes the action of a distribution@- on a function
from C§° (QT) or C*(Qr), respectlvely the action of a distribution (f, 7) on a function from
C§°((0,T)). Obviously, if¢ € C5°((0,T); Wr2(Q2)) then

(V9. 8) 0, = ~(9.4iv )y, = ~(G, /Qdivgbdx>(0’T) =0, (4.2)

becausef, div¢(.,t) dx = 0forallt € (0,T). Thus,p + g is a pressure, associated with the
weak solutionu to the IBVP (1.1)—(1.4), too.

Forh € C§°((0,T)), define
(@, h>(o,T) = {9, ¥) g, (4.3)

wherety) € C§°(Qr) is chosen so thai(t) = [, ¢(x,t) dx forall t € (0,7). The definition
of the distributionG is independent of the concrete ch0|ce of functibdue to these reasons: let
¥1 and, be two functions fromC§°(Qr) such thath(t) = [ ¥1(x,t) dx = [ a(x,t) dx
fort € (0,7). Denote byG,, respectivelyGs, the dlstrlbutlon deflned by formula (4.3) with

¥ = 1y, respectively) = 1. Sincesupp (¢1 — 12) is a compact subset ¢y and [, [¢1 (., t) —
Pa(.,t)] dx = 0 forallt € (0,T), there exists a functiopp € C5°(Qr) such thatdive¢ =
Y1 — e in Qp. (See e.g. [10, Sec. 111.3] or [5] for the construction of functipn Then

(G~ Go by = (o1~ 2o, = (o div @),

which is equal to zero due to (4.2). Formula (4.3) and the idenfity = |, ¥ (x,t) dx show that
the distributiong has the form (4.1).
We have proven the theorem:

Theorem 4.1. The pressure, associated with a weak solution to the IBVP (1.1)—(1.4), is unique
up to an additive distribution of the form (4.1).

4.3. ProjectionsEx? and E- 2. In this subsection, we introduce orthogonal projectiais
and E; 7 in Wr2(Q) and W5 2(€2), respectively, which further play an important role in the
proof of the existence of an associated pressure.

W,%(Q) is a Hilbert space with the scalar prodct . )12 = (Ao + 1) ., . )_, whereA is
the operatord from paragraph 3.2, correspondingute= 1 and~ = 0. Similarly, WT_I’Q(Q) is a
Hilbert space with the scalar product

(g,h)_12 = (g, (Ao+I)"'h)_ = ((Ao+ 1) g, (AO+I)‘1h)172. (4.4)

Denote byE}? the orthogonal projection ifW1?(Q) that vanishes just oW (€2), which
means that

ker E}? = WL2(Q). (4.5)
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Denote byE; ' the adjoint projection inW; *(2). Applying (4.5), one can verify that the
range of By 1% is WE2(Q)L.

Letg € W "?(Q) andy € Wr?*(Q). Then, due to (4.4) and the orthogonality6f*, we
have

(8 E*¢) = (Ao +1)'g, Ep%),, = (BEP*(Ao+1) '8, %), 5

However, the duality on the left hand side can also be expressed in another way: using again (4.4)
and the fact thaz; % is adjoint toEL%, we get

(8. E%). = (E; g v) = (Ao+ D)7 E7 g 9), 5
Thus, we obtain the important identity
EP( Ao+ D)7 = (Ao + D) ES (4.6)
Applying (4.6), we can now show that the projectii ' is orthogonal inW; *(€2). Indeed,
if g, h e W;%(Q) then
(E-"?g.h)_, = (Ao +1)"'E7 Mg, (Ao + 1) 'h),
= (Br*(Ao+ D)7 'g, (Ao +1)7'h) = ((Ao+1)7'g Ep*(Ao+ 1) Th)

= (Ao +1)'g, (Ao + 1) E7M?h) = (g B 7°h) .

This verifies the orthogonality of projecticﬁ;\;l’2.
Finally, we will show that if¢ € C§°(£2) then

EM*V¢ = Vo  forall¢ € CR(Q). 4.7
Thus, let¢ € C5°(Q). ThenVgy € WEH(Q) and (Ag + 1)V = V(A + I)¢ € Wra(Q)L.

Hence
E-Y2(Ag+ D)Vo = (Ag+ 1)V
Applying (4.6), we also get
B2 Ao+ DV = (Ao + I)EF* V.

Since Ay + I is a one-to-one operator fro€W 12 (Q) to W, (), the last two identities show
that (4.7) holds.

4.4. Existence of an associated pressurén this paragraph, we show that to every weak solution
of the IBVP (1.1)—(1.4), an associated pressure exists and has a certain structure.

Let u be a weak solution to the IBVP (1.1)—(1.4). Due to [34, Lemma Ill.1.1], equation (3.9)
is equivalent to

u(t)—u(O)+/OtP2[Au+B(u,u)—f} dr =0

fora.a.t € (0,7). (As usually, we identifyu( ., #) andu(t).) Sinceu(t) andu(0) are inL2 ,(12),
they coincide withP,u(¢) andP2u(0), respectively. (See paragraph 2.4.) Hence

Ps (u(t) —u(0) + /Ot [Au + B(u,u) — f] d7-> = 0.
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DefineF(t) € W; "%(Q) by the formula
t
F(t) := u(t) —u(0) +/ [Au + B(u,u) — f] dr. (4.8)
0
Since (F(t),%),; = (PyF(t), )., = 0 for all p € Wi2(Q), F(t) belongs toW % (Q)~.
HenceE; "?F(t) = F(t) and(I — E; "*)F(t) = 0. Thus,
(I = E;Y)u(t) — (I — EZ4?)u(0)

+/t(I—ETl’2) [Au+ B(u,u) — f] dr = 0

holds as an equation W;LQ(Q). Applying Lemma 111.1.1 from [34], we deduce that
(I — E-Y?)u]' + (I — E7Y?) [Au + B(u,u) — ] = 0.
This yields
u + Au+ B(u,u) = £
+ E- M2 [d + Au+ B(u,u) — f]. (4.9)

(Here,[(I—E; "*)u]’ andu’ are the distributional derivatives with respect tif (1 — E; **)u and
u, respectively, as functions frof, 7') to W %(Q).) LetQy cC Q be a non-empty domain.

By Lemma 2.2, there exist unique(t), pa1(t), p22(t), p23(t) in L2 () such that

loc

(B ut.w), =~ [ (o) dive dx
(B aut) ), =~ [ pa(t) dive ax,
% (4.10)
(BBt u(0).), = = [ pult) dive dx
(“B72H(), ) = - /Q pas(t) divp dx
fora.a.t € (0,7) and allyy € WE2(Q) and the inequalities
Ipr(®)ll2:0n < c(R) B 2ut)] 12 < ¢(R) [[u@®)][-1,2,
<
= (4.11)

R) |[B(u(t), u(t))l[-1.2,

(R)

21Dz, < e(B)[1B- - Au(t)]|-1.2
(R)
(R) R) |[£(#)[]-1,2

|

(t)
lp2(Dlz0, < e(B) B *Blult),ut)|-12 <

(t)

)
c(R) [Au(t)||-1.2,
)
Ip2s(®)ll2:0n, < c¢(R)|Er 2E(t)] 1.2 )

o(
o(

IA

hold for all R > 0 and a.at € (0,T). Moreover, [, pi(t) dx = [ p2i(t) dx =0 (i = 1,2,3)
fora.a.t € (0,7). Using the inequalityju(t)|| 1,2 < |[u(t)|]2 and estimates (3.5), we get

p1 € L®(0,T; L*(Qr)), pa1 € L*(0,T;5 L*(Qr)),

(4.12)
pa2 € LY3(0,T; L2(QR)),  pos € L*(0,T; L*(Qp))
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forall R > 0.

For a.at € (0,7), the functionsp; (¢) andps;(¢) are harmonic irf2. This follows from the
identities

/Q pi(t) Ap dx = —(Vpi(t),Ve) = (E;"?u(t),Ve) = (u(t),E}*Ve),
= (u(t),Vo)_ = /u(t)-V¢ dx = 0 (forall p € C3°(Q)).

Q

(We have used (4.7).) Hence, by Weyl's lemmat) is a harmonic function if2. The fact that
p21(t) is harmonic can be proved similarly.

Equation (4.9) is an equation WT_I’Q(Q). Applying successively each term in (4.9) to the
function of the typep(x) n(t), wherep € W .(Q2) andn € C5°(0,T), using formulas (4.10),
and denotings := pa1 + p22 + P23, We obtain

T T
/ /[—uwpn’(t)—H/Vu:chn(t)+u-Vu~gon(t)] dxdt+/ /'yu-cpn(t) dsSdt
0o Jo 0o Ja
T T T
= / (f,o)rn(t) dt—/ /p1 div e 1/ (t) dxdt—l—/ /p2 div e n(t) dxdt
0 0o Ja 0o Jo

for all functions € W12(Q) andn € C5°((0,T)). Since the set of all finite linear combina-
tions of functions of the typep(x) n(t), wherep € Wiﬁ(Q) andn € C§°((0,7)), is dense in
Ce°((0,T); Wr2(9)) in the norm ofiv,* (0, T; W1%(Q2)), we also obtain the equation

/OT/Q[—u.atqb-FVVu:V¢+u.Vu-¢} dxdt+/(]T/§27u.¢det

T T T
= / f,0)r dt—/ /p1 div O dxdt—l—/ /p2 div ¢ dx dt (4.13)
0 o Ja 0 Jo

forall ¢ € C3°((0,T); Wig%(Q)). Choosing particularlyp € C3°(Qr) and putting
p = Op1 +p2 = Op1 + pa1 + pa2 + P23 (4.14)

(whered;p; is the derivative in the sense of distributions), we observe(inat) is a distributional
solution of the system (1.1), (1.2) (.

The next theorem summarizes the results of this subsection:

Theorem 4.2. LetT > 0 and Q) be a locally Lipschitz domain ifR?, satisfying condition (i)
from subsection 1.1. Let be a weak solution to the Navier-Stokes IBVP (1.1)—(1.4). Then there
exists an associated pressyrén the form (4.14), whereq, pa1, poe, po3 Satisfy (4.10)—(4.12).
Moreover,

1) if Qo CcC Qthenthe functiong (), p21(t), pa2(t), ps2(t) can be chosen so that they satisfy
the additional conditions

[y = [ puyax = [ pueyax = [ ity ix <0

2) the function®; (t) andp2; (t) are harmonic int2 for a.a.t € (0,7),
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3) the functionas, p; andpy = po1 + poo + po3 Satisfythe integral equation (4.13) for all test
functionsg € C§°((0, T; W12(Q)).

Note that if(2 is a bounded Lipschitz domain then the chdige= 2 is also permitted in statement
1) of Theorem 4.2.

5 The case of a smooth bounded domaif

5.1. Some results from paper [1]. In this section, we assume th@tis a bounded domain in
R? with the boundary of the clags?. We denote by4, (for 1 < ¢ < oo) the linear operator in
L? ,(Q) with the domain defined by the equation

Agyv = —v P Av
for v e D(4,), where
D(4y) = {ve W>(Q)NW1(Q); [Tq(v) - n]; + yv, = 00nIN}

is the domain of operatad,. Recall thatly(v) = 2vD(v) is the dynamic stress tensor, induced

by the vector fieldv, and P, is the Helmholtz projection id.?(£2). OperatorA, is usually called

the Stokes operatoin LY ,(Q). Particularly, ifg = 2 then A, coincides with the restriction of
operator.A, defined in subsection 3.2, 10(As). It is shown in the paper [1] by Ch. Amrouche,

M. Escobedo and A. Ghosh that A,,) generates a bounded analytic semigreufy in L1, (Q).

The next lemma also comes from [1], see [1, Theorem 1.3]. It concerns the solution of the inho-
mogeneous hon-steady Stokes problem, given by the equations

ou+Vr = vAu+g (5.1)

and (1.2) (inQr), by the boundary conditions (1.3) and by the initial condition (1.4). The initial
velocity ug is supposed to be from the spdeg(2), which is defined to be the real interpolation
space[D(A,), LT 5(Q)]1 /- The problem (5.1), (1.2)~(1.3) can also be equivalently written in
the form

du

S Au =g )=, (5.2)

which is the initial-value problem ik, (£2). Although the pressure does not explicitly appear

in (5.2), it can be always reconstructed in the way described in section 4.) The lemma says:

Lemmab.l. Letr,g € (1,00), T > 0, g € L"(0,T; LL,(Q)) anduy € E}(Q2). Then the
Stokes problem (5.1), (1.2), (1.3), (1.4) has a unique solutiornr) in [W'"(0,T; Li,(€2)) N
L7(0,T; W>4(Q))] x L"(0,T; W1(2) /R). The solution satisfies the estimate

T T T T
[ ol e+ [ pulg aes | uwwzthsc*(/o rguzdwuuougg(m). 5.3)

The proof is based on a more general theorem from the paper [13] by Y. Giga and H. Sohr.

5.2. Application of Lemma 5.1. If u is a weak solution to the problem (1.1)—(1.4) then, since
u € L=(0,T; L2 () NL*(0,T; W12(2)), one can verify thatt- Vu € L7 (0, T; LI(Q)) for

14



all <r<2,1<¢q< % satisfying2/r+3/q = 4. In orde; to be consistent with the assumptions

of Lemma 5.1 regarding andr, assume that < ¢ < 5,1 < r < 2and2/r +3/q = 4.
Furthermore, assume thag € Ef(Q)NL2 () and functionf on the right hand side of equation
(1.1) is in L"(0, T; LY(Q)) N L2(0,T; W5 *(Q)). Putg := P,f — P,(u- Vu). Then, due

to the boundedness of projectid) in LY(2), g € L"(0,T; L1 ,(Q)). Assume, moreover, that

ug € E}(©). Now, we are in a position that we can apply Lemma 5.1 and deduce that the
linear Stokes problem (5.1), (1.2)—(1.4) has a unique sol(fidnr) € [W'(0,T; L1 ,(2)) N
L7(0,T; W>1(Q))] x L™(0,T; WhH(Q)/R), satisfying estimate (5.3) withJ instead ofu. In

order to show that the weak solutiarof the nonlinear Navier—Stokes problem (1.1)—(1.4) satisfies
the same estimate, too, we need to identifyith U.

5.3. The identification of U and u. It is not obvious at the first sight thdf = u, because
while U is a unique solution of the problem (5.1), (1.2)—(1.4) in the cl&Ss (0, T; L ,(Q)) N
L7(0,T; W24(9)), uis only known to be inL>(0, T; L2 () N L*(0,T; W12(%2)). Never-
theless, applying the so called Yosida approximation of the identity operaldf (2), defined

by the formuIan(k) = (I + k1A, (for k € N), in the same spirit as in [13] or [31], the
equalityU = u can be established. We explain the main steps of the procedure in greater detail in
the rest of this subsection.

At first, one can deduce from [1, Section 3] that the spectrum o a subset of the interval
(0, 00) on the real axis, which implies thdﬁk) is a bounded operator di ,(Q2) with values in
D(A). Obviously,Jék) commutes with4, and WithJém) (fork,m € N, k # m) andJék) = J®
onLi,(Q)NL;,(Q) (for 1 < s < o0). If ¢ = 2 thenA, is a positive selfadjoint operator in
L%vg, see [4]. Consequently'g(k) is a selfadjoint operator i]’ﬁva(ﬂ), too. Finally, it is proven in
[36, p. 246] that]ék)v — v strongly inLi ,(Q2) for all v € L ,(Q2) andk — oc.

Consider (3.1) with¢(x,t) = [Jq(k)w] (x)9(t), wherek € N, w € Cg,(Q2) andv €
C5°([0,7)). Inthis case, (3.1) yields

T
/0 /Q[—u AW + (u- V) - P w9+ 20(Va), - (VI w),] 9 dxdt

T
+/ / yu- JPw dS dt
0 Joq
T
= / / f- J(gk)wﬁ dxdt —i—/ up - Jq(k)w 9¥(0) dx. (5.4)
0o Jo Q
The integral of{fu - Vu) - Jék)w in ©2 can be rewritten as follows:

/Q(u -Vu) - Jék)w dx = /qu(u -Vu) - Jék)w dx — /qu(u V) - 2(k)W dx

= lim [ JP,u-Vu)-JPwdax= lim [ JPIIP(u- V) - wdx

= lim Jék)Jém)Pq(u -Vu) -wdx = lim Jém) Jék)Pq(u -Vu) - w dx

= /QJék)Pq(u -Vu) - w dx.

This shows, except others, that the integrals/of Jék)vQ and Jq(k)vl - vo in  are equal for
vy, vo € L1,(Q). The integrals oy (Vu); : (Vjék)w)s andyu - Jq(k)w over {2 and 012,
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respectively, can be modified by means of the identities:
/2V(Vu)5 : (Vjék)w)s dx —I—/ ~u - Jg({k)w ds
Q a0
= / 20V : (VIPw), dx + / yu- J®w ds
Q a0

= / 2vu - [(VJék)w)s -n| dS —/ vu - AJ(gk)w dx+/ ya - Jék)w ds
o0 Q oN

= —/QVU-AJ(gk)W dx = /Qu-Aqu(k)w dx = /QAqu.Jq(k)w dx

= —/ J(k)Aqu-wdx = —/AqJ(k)u‘wdx.
Q Q
Thus, we obtain from (5.4):

T
/0 /Q[_Jék)u wi + JF Py Vu) - wi — vA T Pu - w] 9 dxdt

T
= / /ng’f)f.wﬁ dxdt+/QJ[§k)u0~w19(0)dx.
0

As w and4 are arbitrary functions fronCg°, (Q2) and Cg° ([0, T)), respectively, this shows that
Jék)u is a solution of the initial-value problem

(JPa) + AgJu = JWg, JFu(.,0) = JFu, (5.5)
(which is a problem ifL{ ,(Q2)) in the class¥V (0, T; L »(Q)) N L7 (0,T; W24(€2)). Since
Jék)U solves the same problem and belongs to the same class, we obtain the m,@hmyt) =
Jék)u(t) fora.a.t € (0,7"). Consequently{J(t) = u(t) fora.a.t € (0,T).
5.4. The estimate olu and an associated pressurg. Sinceg = P,f — P;(u- Vu), we can also
write equation (5.1) in the form

ou+u-Vu = —-Vr+vAu+f+ (I - P)(—f+u-Vu)
= —V(r+¢) + vAu—+f,

whereV( = (I — P;)(u-Vu—f). (The fact that/ — P,)(u- Vu—f) can be expressed in the form

V¢ follows e.g. from [10, section Ill.1].) We observe that= « + ( is a pressure, associated with
the weak solutiom. Since the paifU, ) satisfies (5.3)u andp satisfy the analogous estimate

T T T
(Awmua+éuw%w+éwwum

T
scé(wu+wuwvmmwﬂ+OWﬂﬁ@. (5.6)

We have proven the theorem:

Theorem 5.1. Let (2 be a bounded domain iR? with the boundary of the clags? and T > 0.
Letl < ¢ <3,1<7r<22/r+3/¢g=4uy € E}(Q)NL2,(Q)andf € L"(0,T; LI () N
L?(0,T; L?(Q)). Letu be a weak solution to the Navier-Stokes IBVP (1.1)—(1.4)abé an
associated pressure. Thenc L"(0,7; W24(Q)) N Wb (0,T; L4(£2)) andp can be identified
with a function fromL" (0, T'; L?%/(3-9)(Q)). The functionsu, p satisfy equations (1.1), (1.2)
a.e. inQr and the boundary conditions (1.3) a.eli@r. Moreover, they also satisfy estimate (5.6).

16



6 An interior regularity of the associated pressure

6.1. On previous results on the interior regularity of velocity and pressure. The next lemma
recalls the well known Serrin’s result on the interior regularity of weak solutions to the system
(1.1), (1.2). (See e.g. [23], [27] or [11].) It concerns weak solutior3iirk (¢1,t2), where); is

a sub-domain of?2, independently of boundary conditions on

Gammar.

Lemma 6.1. Let2; be a sub-domain dR, 0 < ¢; < t9 < T and letu be a weak solution to the
system (1.1), (1.2) with = 0 in Q; x (t1,t2). Letu € L"(t1,t; L*(Q)), wherer € [2,00),

s € (3,00l @and2/r +3/s = 1. Then, ifQy CC Q; and0 < 2e < ty — t1, solutionu has all
spatial derivatives (of all orders) boundedy, x (¢1 + €,t2 — €).

Note that Lemma 6.1 uses no assumptions on boundary conditions, satisfiedrb§<2 x
(0,T). The assumption that is a weak solution to the system (1.1), (1.2XIn x (¢1,t2) means
thatu € L>®(ty,te; L®(1)) N L2(t1,t2; WH2(€21)), divu = 0 holds in the sense of distri-
butions inQ2; x (¢1,t2) andu satisfies (3.1) for all infinitely differentiable divergence—free test
functions ¢ that have a compact support §&y x (¢1,t2). (Then the last integral on the left
hand side and both integrals on the right hand side are equal to zero.) Also note that applying
the results of [26], one can add to the conclusions of Lemma 6.hutieHodlder—continuous in
Qg x (t1 + €,t2 — €). Lemma 6.1 provides no information on the associated pregsarehe
time derivatived,u in Q9 x (t; + €,t2 — €). The known results on the regularity afand; in
Qg X (t1 + €, ta — €), under the assumptions thais a weak solution of (1.1), (1.2) € x (¢1, t2)
satisfying the conditions formulated in Lemma 6.Xin x (¢1,t2), say:

a) If Q = R3 thenp, d,u and all their spatial derivatives (of all orders) areliff (Qz x (t; +
€,ty — €), see [18], [22] [30].

b) If 2 is a bounded or exterior domaR? with the boundary of the clagg®*t(") for someh > 0
andu satisfies the no—slip boundary conditian= 0 on 92 x (0,7') thenp andd,u have all
spatial derivatives (of all orders) ih%(t; + €,t2 — €; L™(Q2)) for anyq € (1,2), see [19],
[18], [22] or [30].

c) If Qis a bounded domaiR? with the boundary of the clags?+(") for someh > 0 andu
satisfies the Navier-type boundary conditions
u-n=0, curluxn=0 onoQ x (t1,t2)
thenp andd;u have the same regularity { x (¢1 + €, t2 — €) as stated in item a), see [21].

In the proofs, it is always sufficient to show that the aforementioned statements held Toe
same statements apu follow from the fact thatVp and 0;u are interconnected through the
Navier—Stokes equation (1.1).

6.2. An interior regularity of p in case of Navier's boundary conditions. We further assume
that2 andT are as in Theorem 5.1 arfid= 0. The main result of this section says:

Theorem 6.1. Let2 andT be as in Theorem 5.1 arfd= 0. Letu be a weak solution to the prob-
lem (1.1)—(1.4). Lef2; be a sub-domain d®, 0 < t; < t, < T and letu € L7 (t1,t2; L¥(4)),
wherer € [2,00), s € (3,00] and2/r+3/s = 1. Finally, letQs; CcC ©Q; and0 < e < to—t1. Then
p can be chosen so that all its spatial derivatives (of all orders) ag’ift; + ¢, t2 —e; L>°(Q3)).
Similarly, 9;u and all its spatial derivatives (of all orders) are X' (t; + €, t2 — e; L>(£23)).
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Proof. Thereexistst, € (0,¢;) such thatu(.,#,) € Wr(Q) c EL(Q) for all r andg,

considered in Theorem 5.1. Henaec L"(t,,T; W24(Q)) N W17 (t,, T; L4(2)) andp can be

chosen sothat € L"(t.,T; L?Y/3-9(Q)). Lete andS2, be the number and domain, respectively,

given by Lemma 6.1. We may assume thatand(23 are chosen so thét#£ Q3 cc Qy, CC Q.
Applying the operator of divergence to equation (1.1), we obtain the equation

Ap = —Vu: (Vu)T, (6.1)

which holds in the sense of of distributions@h-. Taking into account thai is at least locally
integrable in(2; x (¢1,t2), we obtain from (6.1) that

to
/ (9(15)/ [pAp(x) + Vu: (Vu)' p(x)] dxdt = 0
t1 o
forall 8 € C§°((t1,t2)) ande € C5°(21). From this, we deduce that equation (6.1) holds in
2, in the sense of distributions at a.a. fixed time instanés (¢1 + ¢,t2 — €). Let furthert be
one of these time instants and #dte also chosen so that ., t) € W24(Q), d;u( ., t) € LI(Q)
andp(.,t) € L3/B-9(Q). Asp(.,t) € L} .(Q1) and the right hand side of (6.1) (at the fixed
timet) is infinitely differentiable in the spatial variable §&, the functionp( . , ¢) is also infinitely
differentiable in(2,, see e.g. [8].

Letxo € Q3 and0 < p; < po be so small thaB,,(xq) C 9. Define an infinitely differen-
tiable non-increasing cut—off functionin [0, co) by the formula

=1 for0 <o < pyq,
n(o) ¢ €(0,1) forp; <o < po,
=0 for p2 < o.

Letx € B,,(xo) ande be a constant unit vector 3. Then

pr(x7 t) e = U(‘X - XO‘) vxp(xvt) e

1 1
_ —g/m i Av[ally = xol) Byp(y. 1) -¢] dy.

Particularly, this also holds fot = x¢:

1 1
Vap(xt) el =~ | Ay [n(ly —xol) Vyp(y. 1) - €] dy
1 1
= _E/Rs o Ay [n(ly]) Vyp(xo +y.t) -e] dy
= — 1 [PD(x0) + 2P x0) + PO (x0)], 62)

where

PW(xq) = / % Ayn(ly]) [Vyp(x0 + . 1) - €] dy,

By, (0) Y]

1
PP (xg) = / — Vyn(lyl) - Vy [Vyp(x0 + y,t) - €] dy,
By, (0) Yl
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P(g)(XO) = /B ©) o Ay [Vyp(xo + Y7t) : e] dy.
P2

The estimate aP(®) (x(). The estimate of the last term is easy:

/ n(lyl)

’PB) (XO)‘ = - (Vy BN : e) Ayp(xo +y,t) dy

P2

= / (Vy n(‘y|) . e) [VyU(XO + y,t) : (Vyu(xo +Y7t))T] dy
B, (0) ly|
n(lyl)
< C/BPQ(O )V ] e’ dy < ¢ (6.3)

Theestimate ofP(®) (x,). We can write

|?1| Vyn(lyl) = Y F(lyl),

whereF (s — "1/ (0)/o do for s > 0. We observe thaF is constant o0, p1], equal to
zero on[pz, ) andF’(s) = n'(s)/s for s > 0. Thus, we have
PO = | [ Gy Ty [Syptxo +v.0) ¢l dy
By, (0 )
= / Ay]-"(|y|)e-Vyp(x0+y,t) dy‘. (6.4)
By, (0)

The vector functiom\y F (|y|) e can be written in the form

AyF(lyl)e = Vyo(y) + wl(y), (6.5)

where
e(y) =V F(lyl) e, w(y)=AyF(lyl)e— Vy [Vy F(ly]) -€].

The functionsy andw are infinitely differentiable ilR? andy = 0, w = 0in R*\ B, (0). Since
divw = VyAF(yl) -e— Ay [y F () €] = 0.

(6.5) in fact represents the Helmholtz decompositiompl’?-'(|y|) ein B,,(0). Substituting from
(6.5) to (6.4), we obtain

POa)] = | [ o [T W) Vortoa 4,1 dy'
= /B o Vyp(y) - Vyp(xo +y,1) dy'

= / o(y) Ayp(xo +y,t) dy‘
By, (0)

= / o(y) [Vyu(xo +y,1) : (Vyu(xo +y.1)" ] dy'
Bp, (0)
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< / [p(y)ldy < c (6.6)
BPQ(O)
Theestimate ofP(")(x,). Finally, we have

1
PO (xp) = / 1 V) - Wy [yplxa +3.0) - €] dy
By, (0) Y|

—/B o [ﬁ-%n(!y!)} [Vyp(xo+y,t) - e] dy. (6.7)

The first integral coincides with the integral in the formula f0/®) (xq) and it can be therefore
treated in the same way. The second integral on the right hand side of (6.7) - let us denote it by
Pz(l)(xo) - represents the main obstacle, which finally causesyilaaid all its spatial derivatives

are only inL*(t; + e, ta — e; L*(Q3)) and not inL>®(t; + ¢,t3 — e; L>(£3)), as in the cases

from items a) and c) in subsection 6.1. The integral can be written in the form

n'(ly
H) = [ 5D o v, sy + . 1) dy
By, (0)

ly|?
7' (ly — xol)
= [ 222 6.V, p(y, t) dy. 6.8

Now, we use the Helmholtz decomposition

' (ly —xol) o

y—xE ¢ Vy(y) +z(y), (6.9)

in the whole domainf?, where

oy ==xol) N " (ly —x0l) 7' (ly — xol)
Ay¢(Y)—le<We)—< |y7X0|3 - |y—X0|4 )(y_XO)‘e fory € Q,
9
on

As z is divergence—free and its normal componentéhis zero, and the integral 6Fy - O;u is
zero, we get

(y) =0 fory € 99.

POx0) = [ [0 +2(3)] - Vynlyot) dy = [ Gyw(y) - Vynlyt) dy
= /vaw(y) [u+u-Vu—vAu(y,t) dy
= /va¢(y) . [u -Vu — VAu] (y,t) dy (6.10)

We have
'/va@b-(u-Vu) dy‘ = '/va%:(u@u) dy‘ < C/Q|u2dy < ¢ (6.11)
'/Vyw-VAu dy‘ = ’/ Vytp - div Tq(u) dy‘
Q Q
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Vb [Ta(w) -] dS — [ V20 : Ta(w) dy
/s / !

:' / Vyt - yu dS — /v2 dy‘

< c/ lu| dS + ‘/ Vﬁw :vVu dy' = c/ lul dS + '/(&@1/})1/(6}%) dy
oN Q [2/9] Q

= c/aQ lu| dS + ’/ (051) ns v (0ju;) dy’

= / lu| dS + v / 0;(niu;) — (05my) w4 dy‘
= / u\dS—i—I// ) (O5n;) uzdy‘
2 1/2 1/2 1..11/2
<c \u| ds < ¢ |11| ds c(lullz + fully" ullyz)
< c+c\|u||1/2 (6.12)

The right hand side is i * (¢ + ¢, t2 — ¢). We have used the estimate

1" (ly =xol) 7' (ly —xol)
|y — xo? |y — xo*

)(Y—Xo)‘e’ < ¢

0+(h)

|V¢‘1+(h) = c)(

where|. [, () and|. o, (s arethe norms in the Bider space€C!*+ (") (1) and CO+) (1), re-
spectively, see [17]. The integral 6fi|> on 92 has been estimated by means of [10, Theorem
11.4.1].

We have shown that the norm & p(x, t) |x=x, € in L*(t1 +¢, t—e) is finite and independent
of vectore and a concrete position of poigt) in domainQs. HenceVp € L*(0,T; L>(£3)).
From this, one can deduce thatan be chosen so thate L*(0, T; L>(£23)). Similarly, dealing
with D$p(x,t), wherea = (a1, az, a3) is an arbitrary multi-index, instead ofx, ¢), we show
that D®p € L*(0,T; L>(93), too. The proof is completed O

Acknowledgement. The authors have been supported by the Academy of Sciences of the Czech
Republic (RVO 67985840) and by the Grant Agency of the Czech Republic, grant No. 17-01747S.

References

[1] Ch. Amrouche, M. Escobedo, A. Ghosh: Semigroup theory for the Stokes operator with
Navier boundary condition il spaces. ArXiv: 1808.02001v1 [math.AP] 6 Aug 2018.

[2] Ch. Amrouche, A. Rejaibal?-theory for Stokes and Navier—Stokes equations with Navier
boundary condition]. Differential Equation®256 (2014), 1515-1547.

[3] Ch. Amrouche, A. Rejaiba: Navier-Stokes equations with Navier boundary condition.
Math. Meth. Appl. Sci39(2016), 5091-5112.

[4] H. Beirao da Veiga: Remarks on the Navier-Stokes evolution equations under slip type
boundary conditions with linear frictioffort. Math. (N.S.64 (2007), No. 4, 377-387.

[5] W. Borchers, H. Sohr: On the equationstv = ¢ anddivu = f with zero boundary
conditions.Hokkaido Math. J19(1990), 67-87.

21



[6] G. Q. Chen, Z. Qian: A study of the Navier-Stokes equations with the kinematic and Navier
boundaryconditions.Indiana Univ. Math. 359 (2010), no. 2, 721-760.

[7] R. Farwig, H. Kozono, H. Sohr: The Helmholtz decomposition in arbitrary unbounded do-
mains - a theory beyond?. Proc. of Equadiff 11ed. M. Fila et al, Comenius University
Press, ISBN 978-80-227-2624-5, Bratislava 2005, pp. 77-85.

[8] G. Di Fratta, A. Fiorenza: A short proof of local regularity of distributional solutions of
Poisson’a equation. Preprint, ASC Report No. 10/2019, Inst. for Analysis and Scientific
Computing, Vienna University of Technology, ISBN 978-3-902627-00-1.

[9] D. Fujiwara, H. Morimoto: AnL,-theorem of the Helmholtz decomposition of vector fields.

J. Fac. Sci. Univ. Tokyo Sec. IA Ma¥ (1977), no. 3, 685-700.
[10] G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations.
2nd edition, Springer 2011.

[11] G. P. Galdi: An Introduction to the Navier-Stokes initial-boundary value problerRuin
damental Directions in Mathematical Fluid Mechanies,. G. P. Galdi, J. Heywood, R. Ran-
nacher, series “Advances in Mathematical Fluid Mechanics”. Bidder, Basel 2000, pp. 1-

98.

[12] J. Geng, Z. Shen: The Neumann problem and Helmholtz decomposition in convex domains.
J. Funct. Anal259(8), 2010, 2147-2164.

[13] Y. Giga, H. Sohr: AbstracL?-estimates for the Cauchy problem with applications to the
Navier-Stokes equations in exterior domaihs-unct. Anall102(1991), 72-94.

[14] H. Kozono, T. YanagisawaL"-Helmholtz decomposition and its application to the Navier-
Stokes equations. lhectures on the Analysis of Nonlinear Partial Differential Equations,
Part 3, Morningside Lect. Math. 3, Int. Press, Somerville, MA, 2013, pp. 237-290.

[15] P. Kweera, J. Neustupa: On robustness of a strong solution to the Navier—Stokes equations
with Navier’s boundary conditions in the>~norm. Nonlinearity 30 (2017), no. 4, 1564—
1583.

[16] J. L. Lions:Quelques rathodes deésolution des prokimesaux limites non ligaire.Dunod,
Gauthier-Villars, Paris 1969.

[17] G. Nardi: Schauder estimate for solutions of Poisson’s equation with Neumann boundary
condition.L’Ensignement Matbmatiques0 (2014), 2, 421-435.

[18] J. Neustupa: The boundary regularity of a weak solution of the Navier—Stokes equation and
connection with the interior regularity of pressutgpl. of Math.6 (2003), 547-558.

[19] J. Neustupa, P. Penel: Anisotropic and geometric criteria for interior regularity of weak solu-
tions to the 3D Navier-Stokes equationsMathematical Fluid Mechanics, Recent Results
and Open Questiongd. J. Neustupa and P. Penel, Birkhauser, Basel 2001, 237-268.

[20] J. Neustupa, P. Penel: A weak solution to the Navier-Stokes system with Navier's boundary
condition in a time-varying domain. Recent Developments of Mathematical Fluid Mechan-
ics, Series:Advances in Mathematical Fluid Mechaniesl. H. Amann, Y. Giga, H. Kozono,

H. Okamoto, M. Yamazaki, Bitduser-Verlag, Springer, Basel 2016, pp. 375-400.

[21] J. Neustupa, H. Al Baba: The interior regularity of pressure associated with a weak so-
lution to the Navier-Stokes equations with the Navier-type boundary conditioridath.
Anal. Appl.463(2018), No. 1, 222-234.

[22] J. Neustupa: The role of pressure in the theory of weak solutions to the Navier—Stokes equa-
tions. InFluids under Pressuresds. T. Bodar, G. P. Galdi an&. N&aso\, to be published
by Birkhauser Publishing Ltd.

22



[23] T. Ohyama: Interior regularity of weak solutions of the time dependent Navier-Stokes equa-
tions.Proc. Japan. Acad36 (1960), 273-277.

[24] W. Rudin: Functional AnalysisMc Graw-Hill Inc., New York 1973.

[25] J. Saal: Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space.
J. Math. Fluid Mech8 (2006), 211-241.

[26] G. A. Seregin: New version of the Ladyzhenskaya—Prodi—Serrin cond&ioriPetersburg
Math. J.18(2007), no. 1, 89-103.

[27] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations.
Arch. Rat. Mech. AnaPb (1962), 187-195.

[28] Ch. Simader, H. Sohr: A new approach to the Helmholtz decomposition and the Neumann
problem inL4-spaces for bounded and exterior domaindathematical Problems Relating
to the Navier-Stokes Equatiogeries: Adv. Math. Appl. Scill, ed. G. P. Galdi, World
Sci. Publ., River Edge, NJ, 1992, pp. 1-35.

[29] J. Simon: On the existence of pressure for solutions of the variational Navier-Stokes equa-
tions.J. Math. Fluid Mechl1 (1999), no. 3, 225-234.

[30] Z. Skakk, P. Kitera: Regularity of pressure in the neighbourhood of regular points of weak
solutions of the Navier—Stokes equatioAgpl. of Math.6 (2003), 573-586.

[31] H. Sohr, W. von Wahl: On the regularity of the pressure of weak solutions of Navier-Stokes
equationsArch. Math.46 (1986), 428—439.

[32] H. Sohr:The Navier-Stokes Equations. An Elementary Functional Analytic Appr&adh.
hauser Advanced Texts, Basel-Boston-Berlin 2001.

[33] V. A. Solonnikov and V. EStadilov, A certain boundary value problem for the stationary
system of Navier-Stokes equatioimsBoundary Value Problems of Mathematical Physics 8,
Trudy Math. Inst. Steklo¥25(1973), 196—210 (Russian), English translatiorRroc. of the
Steklov Institute of Mathematid¢®5(1973), 186—199.

[34] R. Temam:Navier-Stokes Equationilorth-Holland, Amsterdam-New York-Oxford 1977.

[35] J. Wolf: On the local pressure of the Navier-Stokes equations and related syathmBif-
ferential Equation22 (2017), no. 5-6, 305-338.

[36] K. Yosida: Functional AnalysisSpringer—\Verlag, Berlin—&ttingen—Heidelberg 1965.

23


http://www.tcpdf.org

