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2/ Description of CELM -
CELM explicitly describes the electrification of a thundercloud;
it explicitly treats the ion motion including the interaction of ions
with six kinds of hydrometeors (vapor, ice, graupel, rain, snow and
hail). Charge concentration of the hydrometeors as well as the
change of the concentration are both computed by CELM within

~ the cloud microphysical scheme of COSMO. Basically, in CELM
the charging mechanism is due to the non-inductive mechanism

Fig. 4 Normalized difference in (top) mean and (bottom) standard deviation
for schemes: (a) TAK, (b) SP98, and (c) GZ16.

3/ Methods & Results

(Table 1), which leads to the charge separation and transfer,
though the inductive charging mechanism is also considered in the

| — model. Similar to cloud electrification, the lightning is also explicitly oot e o =560 N Simulations of CELM using an arth“icially induced thundercloud, the warm
Charge redistribution treated in CELM. We use the bidirectional concept of flash leader air bubble (Weisman and Klemps' profiles, 1982), previously showed a
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good ability of the model to simulate realistic charge structure of the
thundercloud.

Thus, we could study the dependence of the resulting charge structure on
one of CELM input parameter; the ion generation rate by cosmic rays (G).
We tested four G functions (Fig. 2). The charge structure for one of it is
displayed in Fig. 3. We obtained various results while using the three non-
inductive charging schemes and four G functions, and sought whether the

for modelling the lightning and the dielectric breakdown scheme for
probabilistic branching of the leader (Barthe et al., 2012). Fig. 1
schematically depicts the processes that are treated in CELM
explicitly, while Table 1 displays the simulation parameters.

Fig. 3 Distribution of (a) positive and (b) negative

Calculation of electric field

Fig. 1 Modelled processes in CELM and COSMO.

charges for GZ16 scheme and G3 at 45 simulated min.

_ o various results are more related to the selected G or selected scheme. To

Table 1 Time step (CELM):1 s 4I CO"CIUS'O"S and neXt? answer the question, we conducted a sensitivity analysis: we subtracted

Integration time (COSMOQO): 6 s the electric charge of one simulation using a G from that of another

*lon equation Simulation time: 1 hour In CELM, the charge structure significantly depends on G: simulation using another G, we computed mean and standard deviation of

s the differences and normalized the results using the size of individual
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