Solving ill posed problems: Young measures, K-convergence and Lax equivalence theorem for nonlinear systems

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague Technische Universität Berlin

ENUMATH 2019, Egmond aan Zee, 30 September - 4 October 2019

Prologue - Lax equivalence principle

Peter D. Lax

Formulation for LINEAR problems

- Stability uniform bounds of approximate solutions
- Consistency vanishing approximation error

__

• Convergence - approximate solutions converge to exact solution

Euler system of gas dynamics

Equation of continuity - Mass conservation

$$\partial_t \varrho + \mathrm{div}_x \boldsymbol{m} = 0, \ \boldsymbol{m} = \varrho \boldsymbol{u}$$

Momentum equation - Newton's second law

$$\partial_t \mathbf{m} + \mathrm{div}_x \frac{\mathbf{m} \otimes \mathbf{m}}{\varrho} + \nabla_x p(\varrho) = 0, \ p(\varrho) = a\varrho^{\gamma}$$

Impermeability and/or periodic boundary condition

$$\mathbf{u} \cdot \mathbf{n}|_{\partial\Omega} = 0, \ \Omega \subset R^d, \ \text{or} \ \Omega = \mathbb{T}^d$$

Initial state

$$\varrho(0,\cdot)=\varrho_0,\ \mathbf{m}(0,\cdot)=\mathbf{m}_0$$

Leonhard Paul Euler 1707–1783

Classical solutions

- Local existence. Classical solutions exist locally in time as long as the initial data are regular and the initial density strictly positive
- Finite time blow-up. Classical solutions develop singularity (become discontinuous) in a *finite* time for a fairly generic class of initial data

Mythology concerning Euler equations in several dimensions

- Existence. The long time existence of (possibly weak) solutions is not known
- Uniqueness. The is no (known) selection criterion to identify a unique solution (semiflow)
- Computation. Oscillatory solutions cannot be visualized by numerical simulation (weak convergence)

Weak (distributional) solutions

Jacques Hadamard 1865–1963

Laurent Schwartz 1915–2002

Mass conservation

$$\begin{split} &\int_{\mathcal{B}} \left[\varrho(t_2, \cdot) - \varrho(t_1, \cdot) \right] \mathrm{d}x = - \int_{t_1}^{t_2} \int_{\partial \mathcal{B}} \varrho \mathbf{u} \cdot \mathbf{n} \; \mathrm{d}S_x \mathrm{d}t \\ &\left[\int_{\Omega} \varrho \varphi \; \mathrm{d}x \right]_{t=0}^{t=\tau} = \int_{0}^{\tau} \int_{\Omega} \left[\varrho \partial_t \varphi + \mathbf{m} \cdot \nabla_x \varphi \right] \; \mathrm{d}x \mathrm{d}t, \; \mathbf{m} \equiv \varrho \mathbf{u} \end{split}$$

Momentum balance

$$\begin{split} \int_{\mathcal{B}} \left[\mathbf{m}(t_{2}, \cdot) - \mathbf{m}(t_{1}, \cdot) \right] \, \mathrm{d}x \\ &= - \int_{t_{1}}^{t_{2}} \int_{\partial \mathcal{B}} \left[\mathbf{m} \otimes \mathbf{u} \cdot \mathbf{n} + p(\varrho) \mathbf{n} \right] \, \mathrm{dS}_{x} \, \, \mathrm{d}t \\ & \left[\int_{\Omega} \mathbf{m} \cdot \boldsymbol{\varphi} \, \, \mathrm{d}x \right]_{t=0}^{t=\tau} \\ &= \int_{0}^{\tau} \int_{\Omega} \left[\mathbf{m} \cdot \partial_{t} \boldsymbol{\varphi} + \frac{\mathbf{m} \otimes \mathbf{m}}{\varrho} : \nabla_{x} \boldsymbol{\varphi} + p(\varrho) \mathrm{div}_{x} \boldsymbol{\varphi} \right] \, \, \mathrm{d}x \mathrm{d}t \end{split}$$

Time irreversibility - energy dissipation

Energy

$$\mathcal{E} = \frac{1}{2} \frac{|\mathbf{m}|^2}{\varrho} + P(\varrho), \ P'(\varrho)\varrho - P(\varrho) = p(\varrho)$$

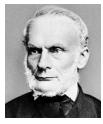
$$p' \geq 0 \Rightarrow [\varrho, \mathbf{m}] \mapsto \begin{cases} \frac{1}{2} \frac{|\mathbf{m}|^2}{\varrho} + P(\varrho) & \text{if } \varrho > 0 \\ P(\varrho) & \text{if } |\mathbf{m}| = 0, \ \varrho \geq 0 \\ \infty & \text{otherwise} \end{cases}$$
 is convex l.s.c

Energy balance (conservation)

$$\partial_t \mathcal{E} + \operatorname{div}_x \left(\mathcal{E} \frac{\mathbf{m}}{\varrho} \right) + \operatorname{div}_x \left(\rho \frac{\mathbf{m}}{\varrho} \right) = 0$$

Energy dissipation

$$\begin{split} \partial_t \mathcal{E} + \mathrm{div}_x \left(\mathcal{E} \frac{\mathbf{m}}{\varrho} \right) + \mathrm{div}_x \left(\rho \frac{\mathbf{m}}{\varrho} \right) \boxed{\leq} \mathbf{0} \\ E = \int_{\Omega} \mathcal{E} \ \mathrm{d}x, \ \partial_t E \leq \mathbf{0}, \ E(\mathbf{0}+) = \int_{\Omega} \left[\frac{1}{2} \frac{|\mathbf{m}_0|^2}{\varrho_0} + P(\varrho_0) \right] \ \mathrm{d}x \end{split}$$



Rudolf Clausius 1822–1888

Wild solutions?

In a letter to Stieltjes

I turn with terror and horror from this lamentable scourge of continuous functions with no derivatives

Charles Hermite [1822-1901]

Known facts concerning global solvability

- Existence of infinitely many weak solution for any continuous initial data (Chiodaroli, DeLellis-Széhelyhidi, EF...)
- Existence of "many" initial data that give rise to infinitely many weak solutions satisfying the energy inequality (Chiodaroli, EF, Luo, Xie, Xin...)
- Existence of smooth initial data that ultimately give rise to infinitely many weak solutions satisfying the energy inequality (Kreml et al)
- Weak-strong uniqueness in the class of admissible weak solutions (Dafermos)

III posedness

Theorem [A.Abbatiello, EF 2019]

Anna Abbatiello (TU Berlin)

Let d = 2, 3. Let ϱ_0 , \mathbf{m}_0 be given such that

$$\varrho_0\in\mathcal{R},\ 0\leq\underline{\varrho}\leq\varrho_0\leq\overline{\varrho},$$

$$\label{eq:m0} \boldsymbol{m}_0 \in \mathcal{R}, \ \operatorname{div}_x \boldsymbol{m}_0 \in \mathcal{R}, \ \boldsymbol{m}_0 \cdot \boldsymbol{n}|_{\partial \Omega} = 0.$$

Let $\{\tau_i\}_{i=1}^\infty\subset (0,T)$ be an arbitrary (countable dense) set of times.

Then the Euler problem admits infinitely many weak solutions ϱ , \mathbf{m} with a strictly decreasing total energy profile such that

$$\varrho \in \mathcal{C}_{\mathrm{weak}}([0,T];L^{\gamma}(\Omega)), \ \mathbf{m} \in \mathcal{C}_{\mathrm{weak}}([0,T];L^{rac{2\gamma}{\gamma+1}}(\Omega;R^d))$$

but

$$t\mapsto [\varrho(t,\cdot),\mathbf{m}(t,\cdot)]$$
 is not strongly continuous at any τ_i

FV numerical scheme

$$\begin{split} (\varrho_h^0, \mathbf{u}_h^0) &= (\Pi_{\mathcal{T}} \varrho_0, \Pi_{\mathcal{T}} \mathbf{u}_0) \\ D_t \varrho_K^k + \sum_{\sigma \in \mathcal{E}(K)} \frac{|\sigma|}{|K|} F_h(\varrho_h^k, \mathbf{u}_h^k) &= 0 \\ D_t (\varrho_h^k \mathbf{u}_h^k)_K + \sum_{\sigma \in \mathcal{E}(K)} \frac{|\sigma|}{|K|} \left(\mathbf{F}_h(\varrho_h^k \mathbf{u}_h^k, \mathbf{u}_h^k) + \overline{p(\rho_h^k)} \mathbf{n} - h^\beta \left[\left[\mathbf{u}_h^k \right] \right] \right) &= 0. \end{split}$$

Mária Lukáčová (Mainz)

Discrete time derivative

$$D_t r_K^k = \frac{r_K^k - r_K^{k-1}}{\Delta t}$$

Upwind, fluxes

$$Up[r, \mathbf{v}] = \overline{r} \ \overline{\mathbf{v}} \cdot \mathbf{n} - \frac{1}{2} |\overline{\mathbf{v}} \cdot \mathbf{n}| \ [[r]]$$

$$F_h(r, \mathbf{v}) = Up[r, \mathbf{v}] - h^{\alpha} \ [[r]]$$

Hana Mizerová (Bratislava)

Consistent approximation

Equation of continuity

$$\int_{0}^{T} \int_{\Omega} \left[\varrho_{n} \partial_{t} \varphi + \mathbf{m}_{n} \cdot \nabla_{\mathbf{x}} \varphi \right] d\mathbf{x} dt = e_{1,n} [\varphi]$$

Momentum equation

$$\int_0^T \int_\Omega \left[\mathbf{m}_n \cdot \partial_t \varphi + \frac{\mathbf{m}_n \otimes \mathbf{m}_n}{\varrho_n} : \nabla_x \varphi + \rho(\varrho_n) \mathrm{div}_x \varphi \right] \mathrm{d}x \mathrm{d}t = e_{2,n}[\varphi]$$

Stability - bounded energy

$$\mathcal{E}(\varrho_n, \mathbf{m}_n) \equiv \int_{\Omega} \left[\frac{1}{2} \frac{|\mathbf{m}_n|^2}{\varrho_n} + P(\varrho_n) \right] dx \stackrel{\leq}{\sim} 1$$

Consistency

$$e_{1,n}[\varphi] \to 0$$
, $e_{2,n}[\varphi] \to 0$ as $n \to \infty$

Weak vs strong convergence

Weak convergence

$$\varrho_n o \varrho$$
 weakly-(*) $L^{\infty}(0, T; L^{\gamma}(\Omega))$

$$\mathbf{m}_n \to \mathbf{m}$$
 weakly-(*) $L^{\infty}(0, T; L^{\frac{2\gamma}{\gamma+1}}(\Omega; R^d))$

Strong convergence (Theorem EF, M.Hofmanová)

Suppose

$$\Omega \subset R^d$$
 bounded

 $\varrho_n \to \varrho$, $\mathbf{m}_n \to \mathbf{m}$ strongly a.a. pointwise in $\mathcal U$ open, $\partial \Omega \subset \mathcal U$

• Then the following is equivalent:

 ϱ, \mathbf{m} weak solution to the Euler system

 $\varrho_n \to \varrho$, $\mathbf{m}_n \to \mathbf{m}$ strongly (pointwise) in Ω

Martina Hofmanová (Bielefeld)

Dissipative solutions - limits of numerical schemes

Dominic Breit (Edinburgh)

Martina Hofmanová (Bielefeld)

Equation of continuity

$$\partial_t \boxed{\varrho} + \mathrm{div}_x \boldsymbol{m} = 0$$

Momentum balance

$$\partial_{t}\mathbf{m} + \operatorname{div}_{x}\left(\frac{\mathbf{m} \otimes \mathbf{m}}{\varrho}\right) + \nabla_{x} \rho(\varrho) = -\operatorname{div}_{x}\left(\mathfrak{R}_{v} + \mathfrak{R}_{\rho}\mathbb{I}\right)$$

Energy inequality

$$\frac{\mathrm{d}}{\mathrm{d}t}E(t) \leq 0, \ E(t) \leq E_0, \ E_0 = \int_{\Omega} \left[\frac{1}{2} \frac{|\mathbf{m}_0|^2}{\varrho_0} + P(\varrho_0) \right] \ \mathrm{d}x$$

$$\boxed{E} \equiv \left(\int_{\Omega} \left[\frac{1}{2} \frac{|\mathbf{m}|^2}{\varrho} + P(\varrho) \right] dx + \int_{\overline{\Omega}} d\frac{1}{2} \operatorname{trace}[\mathfrak{R}_{\nu}] + \int_{\overline{\Omega}} d\frac{1}{\gamma - 1} \mathfrak{R}_{\rho} \right)$$

Turbulent defect measures

$$\mathfrak{R}_{\nu} \in L^{\infty}(0,T;\mathcal{M}^{+}(\overline{\Omega};R_{\mathrm{sym}}^{d\times d})),\ \mathfrak{R}_{\rho} \in L^{\infty}(0,T;\mathcal{M}^{+}(\overline{\Omega}))$$

Basic properties of dissipative solutions

Well posedness, weak strong uniqueness

- Existence. Dissipative solutions exist globally in time for any finite energy initial data
- Limits of consistent approximations Limits of consistent approximations are dissipative solutions, in particular limits of consistent numerical schemes.
- Compatibility. Any C^1 dissipative solution $[\varrho, \mathbf{m}]$, $\varrho > 0$ is a classical solution of the Euler system
- Weak-strong uniqueness. If $[\widetilde{\varrho}, \widetilde{\mathbf{m}}]$ is a classical solution and $[\varrho, \mathbf{m}]$ a dissipative solution starting from the same initial data, then $\mathfrak{R}_v = \mathfrak{R}_n = 0$ and $\varrho = \widetilde{\varrho}$, $\mathbf{m} = \widetilde{\mathbf{m}}$.

Semiflow selection

Set of data

$$\mathcal{D} = \left\{ \varrho, \mathbf{m}, E \mid \int_{\Omega} \frac{1}{2} \frac{|\mathbf{m}|^2}{\varrho} + P(\varrho) \, dx \le E \right\}$$

Set of trajectories

$$\mathcal{T} = \Big\{ arrho(t,\cdot), \mathbf{m}(t,\cdot), E(t-,\cdot) \Big| t \in (0,\infty) \Big\}$$

Solution set

$$\mathcal{U}[\varrho_0, \mathbf{m}_0, E_0] = \Big\{ [\varrho, \mathbf{m}, E] \ \Big| [\varrho, \mathbf{m}, E] \ \text{dissipative solution} \Big\}$$

$$\varrho(0,\cdot) = \varrho_0, \ \mathbf{m}(0,\cdot) = \mathbf{m}_0, \ E(0+) \le E_0$$

Semiflow selection - semigroup

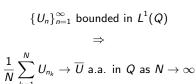
$$\begin{split} & U[\varrho_0, \mathbf{m}_0, E_0] \in \mathcal{U}[\varrho_0, \mathbf{m}_0, E_0], \ [\varrho_0, \mathbf{m}_0, E_0] \in \mathcal{D} \\ & U(t_1 + t_2)[\varrho_0, \mathbf{m}_0, E_0] = U(t_1) \circ \Big[U(t_2)[\varrho_0, \mathbf{m}_0, E_0] \Big], \ t_1, t_2 > 0 \end{split}$$

Andrej Markov (1856–1933)

N. V. Krylov

Strong instead of weak (numerics)

Komlos theorem (a variant of Strong Law of Large Numbers)



Convergence of numerical solutions - EF, M.Lukáčová, H.Mizerová 2018

$$\frac{1}{N}\sum_{k=1}^{N}\varrho_{n_{k}}\rightarrow\varrho\text{ in }L^{1}((0,T)\times\Omega)\text{ as }N\rightarrow\infty$$

$$\frac{1}{N}\sum_{k=1}^{N}\mathbf{m}_{n_k} \to \mathbf{m} \text{ in } L^1((0,T)\times\Omega) \text{ as } N\to\infty$$

$$\frac{1}{N}\sum_{k=1}^{N}\left[\frac{1}{2}\frac{|\mathbf{m}_{n,k}|^{2}}{\rho_{n,k}}+P(\varrho_{n,k})\right]\rightarrow\overline{\mathcal{E}}\in L^{1}((0,T)\times\Omega)\text{ a.a. in }(0,T)\times\Omega$$

Janos Komlos (Ruthers Univ.)

Computing defect - Young measure

Generating Young measure

$$\begin{aligned} \mathbf{U}_n &= [\varrho_n, \mathbf{m}_n] \in R^{d+1} \text{ phase space} \\ \{\mathbf{U}_n\}_{n=1}^{\infty} \text{ bounded in } L^1(Q; R^d) &\approx \nu_{t,x}^n = \delta_{\mathbf{U}_n(t,x)} \\ &\Rightarrow \end{aligned}$$

$$rac{1}{N}\sum_{k=1}^N
u_{t,x}^{n_k}
ightarrow
u_{t,x}$$
 narrowly $a.a.$ in Q as $N
ightarrow \infty$

Young measure

 $(t,x) \in Q \mapsto
u_{t,x} \in \mathcal{P}[R^{d+1}]$ weakly-(*) measurable mapping

Erich J. Balder (Utrecht)

$$\mathfrak{R}_{\rho} \approx \langle \nu; \rho(\varrho) \rangle - \rho(\varrho)$$
$$\mathfrak{R}_{\nu} \approx \left\langle \nu; \frac{\mathbf{m} \otimes \mathbf{m}}{\varrho} \right\rangle - \frac{\mathbf{m} \otimes \mathbf{m}}{\varrho}$$

Computing defect numerically -EF, M.Lukáčová, B.She

Monge-Kantorowich (Wasserstein) distance

$$\left\| \operatorname{dist} \left(\frac{1}{N} \sum_{k=1}^{N} \nu_{t,x}^{n_k}; \nu_{t,x} \right) \right\|_{L^q(Q)} \to 0$$

for some q > 1

Convergence in the first variation

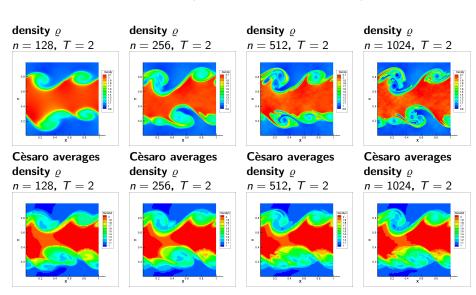
$$\frac{1}{N}\sum_{k=1}^{N}\left\langle \nu_{t,x}^{n_{k}};\left|\widetilde{\mathbf{U}}-\frac{1}{N}\sum_{k=1}^{N}\mathbf{U}_{n}\right|\right\rangle \rightarrow\left\langle \nu_{t,x};\left|\widetilde{\mathbf{U}}-\mathbf{U}\right|\right\rangle$$

in $L^1(Q)$

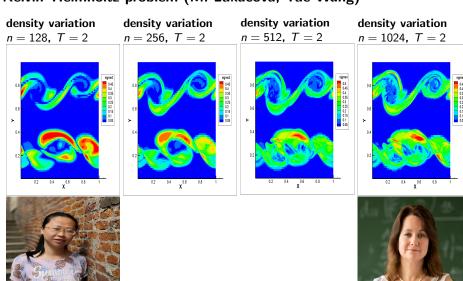
Mária Lukáčová (Mainz)

Bangwei She (CAS Praha)

Experiment I, density for Kelvin-Helmholtz problem (M. Lukáčová, Yue Wang)



Experiment II, density variations for Kelvin–Helmholtz problem (M. Lukáčová, Yue Wang)



Yue Wang, Mainz

Mária Lukáčová, Mainz

