Photosynthetica 2019, 57(1):192-201 | DOI: 10.32615/ps.2019.013

Changes in foliar epicuticular wax and photosynthesis metabolism in evergreen woody species under different soil water availability

S. PEREIRA1, K. FIGUEIREDO-LIMA1, A.F. M. OLIVEIRA1, M.G. SANTOS1
1 Universidade Federal de Pernambuco, Departamento de Botânica, Recife, PE 50670-901, Brazil

Epicuticular waxes (EW) are important for plant physiology as a protective barrier against water loss. Thus, the main goal of this study was to evaluate the ecophysiological performance of Cynophalla flexuosa, an evergreen woody species, under different foliar EW contents. The study was conducted during three periods throughout the year in a seasonally dry tropical forest area. The xylem water potential decreased to 70% at midday. The main EW components were n-alkane chains, effective in keeping the cuticle impermeability. We analyzed intact leaves and leaves with EW removed. C. flexuosa did not alter its photosynthetic performance throughout the day in leaves where EW was removed, except under the lowest soil water balance. Furthermore, foliar biochemical metabolism activity also was maintained. Thus, photochemical and gas-exchange values showed a high resilience, although soil water availability decreased. These findings highlight that this evergreen woody species performed under semiarid conditions with high foliar dynamic traits.

Keywords: Additional key words: climate change; cuticle; drought tolerance; leaf metabolism; oxidative stress; water deficit.

Received: February 13, 2018; Accepted: June 14, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
PEREIRA, S., FIGUEIREDO-LIMA, K., OLIVEIRA, A.F.M., & SANTOS, M.G. (2019). Changes in foliar epicuticular wax and photosynthesis metabolism in evergreen woody species under different soil water availability. Photosynthetica57(1), 192-201. doi: 10.32615/ps.2019.013.
Download citation

References

  1. Adachi S., Nakae T., Uchida M. et al.: The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. - J. Exp. Bot. 64: 1061-1072, 2013. Go to original source...
  2. Alexieva V., Sergiev I., Mapelli S. et al.: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. - Plant Cell Environ 24: 1337-1344, 2001. Go to original source...
  3. Attia Z., Domec J.C., Oren R. et al.: Growth and physiological responses of isohydric and anisohydric poplars to drought. - J. Exp. Bot. 66: 4373-4381, 2015. Go to original source...
  4. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  5. Bradford M.: Rapid and quantitative method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal Biochem. 72: 284-252, 1976. Go to original source...
  6. Cakmak I., Horst W.J.: Effect of aluminium on lipid peroxidatios, superoxide dismutase,catalase, and peroxidase activities in root tips of soybean (Glycine max). - Physiol. Plantarum 83: 463-468, 1991. Go to original source...
  7. Chaves M.M., Costa J.M., Zarrouk O. et al.: Controlling stomatal aperture in semi-arid regions - The dilemma of saving water or being cool? - Plant Sci. 251: 54-64, 2016. Go to original source...
  8. Diego N.D., Pérez-Alfocea F., Cantero E. et al.: Physiological response to drought in radiata pine: phytohormone implication at leaf level. - Tree Physiol. 32: 435-449, 2012. Go to original source...
  9. DuBois M., Gilles K.A., Hamilton J.K. et al.: Colorimetric method for determination of sugars and related substances. - Anal. Chem. 28: 350-356, 1956. Go to original source...
  10. Figueiredo K.A., Oliveira M.T., Oliveira A.F.M. et al.: Epicuticular-wax removal influences gas exchange and water relations in the leaves of an exotic and native species from a Brazilian semiarid region under induced drought stress. - Aust. J. Bot. 60: 685-692, 2012. Go to original source...
  11. Figueiredo K.V., Oliveira M.T., Arruda E.C.P. et al.: Changes in leaf epicuticular wax, gas exchange and biochemistry metabolism between Jatropha mollissima and Jatropha curcas under semiarid conditions. - Acta Physiol. Plant. 37: 108, 2015. Go to original source...
  12. Foreman D., Gaylor L., Evans E. et al.: A modification of the roe procedure for determination of fructose in tissues with increased specificity. - Anal Biochem. 56: 584-590, 1973. Go to original source...
  13. Franklin G.: Preparation of thin sections of synthetic resins and wood-resin composities and a new macerating method of wood. - Nature 155: 51, 1945. Go to original source...
  14. Giannopolitis C.N., Reis S.K.: Superoxide dismutase I. Occurrence in higher plants. - Plant Physiol. 59: 309-314, 1977. Go to original source...
  15. Grant R.H., Heisler G.M., Gao W. et al.: Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. - Agr. Forest Meteorol. 120: 127-139, 2003. Go to original source...
  16. Guha A., Reddy A.R.: Leaf gas exchange, water relations and photosystem-II functionality depict anisohydric behavior of drought-stressed mulberry (Morus indica, cv. V1) in the hot semi-arid steppe agroclimate of Southern India. - Flora 209: 142-152, 2014. Go to original source...
  17. Guhling O., Kinzler C., Dreyer M. et al.: Surface composition of myrmecophilic plants: cuticular wax and glandular trichomes on leaves of Macaranga tanarius. - J. Chem. Ecol. 31: 2323-2341, 2005. Go to original source...
  18. Handel E.V.: Direct microdetermination of sucrose. - Anal. Biochem. 22: 280-283, 1968. Go to original source...
  19. Havir E.A., McHale N.A.C.: Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. - Plant Physiol. 84: 450-455, 1987. Go to original source...
  20. Hetherington A.M., Woodward F.I.: The role of stomata in sensing and driving environmental change. - Nature 424: 901-908, 2003. Go to original source...
  21. Hu W., Huang C., Deng X. et al.: TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. - Plant Cell Environ. 36: 1449-1464, 2013. Go to original source...
  22. IPCC: Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 1535. Cambridge University Press, Cambridge and New York, 2013.
  23. Jetter R., Schäffer S.: Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. - Plant Physiol. 126: 1725-1737, 2001. Go to original source...
  24. Kerstiens G.: Signalling across the divide: a wider perspective of cuticular structure -function relationships. - Trends Plant Sci. 1: 125-129, 1996. Go to original source...
  25. Kramer P.J., Boyer J.S.: Water Relations of Plants and Soils. Pp. 495. Academic Press, San Diego 1995. Go to original source...
  26. Lichtenthaler H.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382, 1987. Go to original source...
  27. Lima A.L.A., Sampaio E.V.S.A.B., Castro C.C. et al.: Do the phenology and functional stem attributes of woody species allow for the identification of functional groups in the semiarid region of Brazil? - Trees 26: 1605-1616, 2012. Go to original source...
  28. Liu C., Liu Y., Guo K. et al.: Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. - Environ. Exp. Bot. 71: 174-183, 2011. Go to original source...
  29. Mafakheri A., Siosemardeh A., Bahramnejad B. et al.: Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars. - Aust. J. Crop Sci. 5: 1255-1260, 2011.
  30. Maxwell K., Johnson G.: Chlorophyll fluorescence - a pratical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  31. Medeiros C.D., Falcão, H.M., Almeida-Cortez J. et al.: Leaf epicuticular wax content changes under different rainfall regimes, and its removal affects the leaf chlorophyll content and gas exchanges of Aspidosperma pyrifolium in a seasonally dry tropical forest. - S. Afr. J. Bot. 111: 267-274, 2017. Go to original source...
  32. Mohammadian M.A., Watling J.R., Hill R.S.: The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). - Acta Oecol. 31: 93-101, 2007. Go to original source...
  33. Moore S., Stein W.: A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. - J. Biol. Chem. 221: 907-913, 1954.
  34. Morales M., Garcia Q.S., Munné-Bosch S.: Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea. - Tree Physiol. 35: 253-265, 2015. Go to original source...
  35. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidases in spinach chloroplast. - Plant Cell Physiol. 22: 867-880, 1981.
  36. Ni Y., Xia R., Li J.: Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. - Acta Physiol. Plant. 36: 2481-2490, 2014. Go to original source...
  37. Ni Y., Sun Z., Huang X. et al.: Variations of cuticular wax in mulberry trees and their effects on gas exchange and post-harvest water loss. - Acta Physiol. Plant. 37: 112, 2015. Go to original source...
  38. Oliveira A.F.M., Salatino A.: Major constituents of the foliar epicuticular waxes of species from the Caatinga and Cerrado. - Z. Natuforsch. C 55: 688-692, 2000. Go to original source...
  39. Oliveira A.F.M., Meirelles S.T., Salatino, A.: Epicuticular waxes from Caatinga and Cerrado species and their efficiency against water loss. Anais Acad. Bras. Ciênc. 75: 431-439, 2003.
  40. Oliveira K.N., Espírito-Santo M.M., Silva J.O. et al.: Ontogenetic and temporal variations in herbivory and defense of Handroanthus spongiosus (Bignoniaceae) in a Brazilian tropical dry forest. - Environ. Entomol. 41: 541-550, 2012. Go to original source...
  41. Oliveira M.T., Medeiros C.D., Frosi G. et al.: Different mechanisms drive the performance of native and invasive woody species in response to leaf phosphorus supply during periods of drought stress and recovery. - Plant Physiol. Bioch. 82: 66-75, 2014. Go to original source...
  42. Oliveira M.T., Souza G.M., Pereira S. et al.: Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest. - Tree Physiol. 37: 326-337, 2017. Go to original source...
  43. Poorter L., Markesteijn L.: Seedling traits determine drought tolerance of tropical tree species. - Biotropica 40: 321-341, 2008. Go to original source...
  44. Purvis M.J., Collier D.C., Walls D.: Laboratory Techniques in Botany. Pp. 371. Butterworths, London 1964.
  45. Racovita R.C., Jetter R.: Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides. - Phytochemistry 130: 252-261, 2016. Go to original source...
  46. Riederer M., Schreiber L.: Protecting against water loss: analysis of the barrier properties of plant cuticles. - J. Exp. Bot. 52: 2023-2032, 2001. Go to original source...
  47. Riederer M.: Introduction: biology of the plant cuticle. - In: Riederer M.; Müller C. (ed.): Biology of the Plant Cuticle. Publishing Ltd., Würzburg, Germany 2006. Go to original source...
  48. Robbins N.S., Pharr D.M.: Effect of restricted root growth on carbohydrate metabolism and whole plant growth of Cucumis sativus L. - Plant Physiol. 87: 409-413, 1988. Go to original source...
  49. Rolim G.S., Sentelhas P.C., Barbieri V.: [Spreadshets in ExcelTM environment to calculation of water balance: normal, sequencial, culture, and potential, real produtivity.] - Rev. Bras. Agrometeorol. 6: 133-137, 1998. [In Portuguese]
  50. Roman D.T., Novick K.A., Brzostek E.R. et al.: The role of isohydric and anisohydric species in determining ecosystem‑scale response to severe drought. - Oecologia 179: 641-654, 2015. Go to original source...
  51. Sack L., Scoffoni C.: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. - New Physiol. 198: 983-1000, 2013.
  52. Sales C.R.G., Ribeiro R.V., Silveira J.A.G. et al.: Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. - Plant Physiol. Bioch. 73: 326-336, 2013. Go to original source...
  53. Samdur M.Y., Manivel P., Jain V.K. et al.: Genotypic differences and waterdeficit induced enhancement in epicuticular wax load in peanut. - Crop Science 43: 1294-1299, 2003. Go to original source...
  54. Santos M.G., Oliveira M.T., Figueiredo K.V. et al.: Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? - Theor. Exp. Plant Physiol. 26: 83-99, 2014. Go to original source...
  55. Skelton R.P., Brodribb T.J., McAdam S.A.M. et al.: Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. - New Phytol. 215: 1399-1412, 2017. Go to original source...
  56. Tardieu F., Simonneau T.: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. - J. Exp. Bot. 49: 419-432, 1998. Go to original source...
  57. Tomlinson K.W., Poorter L., Sterck F.J. et al.: Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. - J. Ecol. 101: 430-440, 2013. Go to original source...
  58. Torrecilla P., Castro M., Lapp M.: [Foliar morphoanatomy in specimens of Capparis flexuosa (L.) L. (Capparaceae) growing in three different localities of Aragua state (Venezuela).] - Ernstia 19: 35-54, 2008. [In Castilian]
  59. Trethewey R.N., Geigenberger P., Riedel K. et al.: Combined expression of glucokinase and invertase in Potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. - Plant J. 15: 109-118, 1998. Go to original source...
  60. Vemmos S.N., Petri E., Stournaras V.: Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.). - Sci. Hortic.-Amsterdam 160: 198-207, 2013.