Photosynthetica 2019, 57(2):590-598 | DOI: 10.32615/ps.2019.084

Acetylcholine mechanism of action to enhance tolerance to salt stress in Nicotiana benthamiana

C. QIN1, Y.Y. SU1, B.S. LI1, Y.Q. CHENG1, C.C. WEI2, S. YUAN3, N. AHMED5, M. ASHRAF6, L.X. ZHANG1
1 College of Life Sciences, Northwest A&F University, 712100 Yangling, China
2 Tobacco Science Institution of Shaanxi Province, 710061 Xi'an, China
3 Technology Center of China Tobacco Shaanxi Industrial Co., Ltd., 710065 Xi'an, China
5 Institute of Molecular Biology and Biotechnology, The University of Lahore, 54590 Lahore, Pakistan

Acetylcholine (ACh) is one of the important neurotransmitters, involved in signal transduction function in human and animal brain. However, the influence of ACh treatment on salt-stress tolerance in plants is yet unknown. Salt stress caused a reduction in gas-exchange parameters, chlorophyll content, antioxidant enzyme activities, and leaf relative water content of Nicotiana benthamiana plants. However, the above inhibitions could be significantly alleviated by application of leaf spray or root application of ACh. Exogenous ACh reduced the accumulation of malondialdehyde by enhancing activities of antioxidant enzymes such as peroxidase and superoxide dismutase. In addition, enhanced accumulation of organic osmolytes including soluble sugars and proline possibly regulated the signal mechanisms related to stress. Application of ACh could also improve gas-exchange parameters and photosynthetic pigment accumulation in leaves of salt-stressed plants. These effects of ACh were beneficial for maintaining better water status in plants, the concentration of 10 µM ACh applied both in the form of leaf spray or root application was the most effective. Therefore, our findings provided a stronger evidence for a physiological role of ACh and its potential use at optimal concentration by leaf or root application to alleviate damage caused by salt-stress in plants.

Keywords: antioxidant system; leaf gas exchange; reactive oxygen species; salinity stress.

Received: July 2, 2018; Accepted: November 28, 2018; Prepublished online: April 17, 2019; Published: May 16, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
QIN, C., SU, Y.Y., LI, B.S., CHENG, Y.Q., WEI, C.C., YUAN, S., ... ZHANG, L.X. (2019). Acetylcholine mechanism of action to enhance tolerance to salt stress in Nicotiana benthamiana. Photosynthetica57(2), 590-598. doi: 10.32615/ps.2019.084.
Download citation

Supplementary files

Download file1985 Table 1S.docx

File size: 12.29 kB

References

  1. Abbas T., Balal R.M., Shahid M.A. et al.: Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. - Acta Physiol. Plant. 37: 6, 2015. Go to original source...
  2. Ahmad P., Abdel Latef A.A., Hashem A. et al.: Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. - Front. Plant Sci. 7: 347, 2016. Go to original source...
  3. Ali E., Maodzeka A., Hussain N. et al.: The alleviation of cadmium toxicity in oilseed rape (Brassica napus) by the application of salicylic acid. - Plant Growth Regul. 75: 641-655, 2015. Go to original source...
  4. Ashraf M., Foolad M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. - Environ. Exp. Bot. 59: 206-216, 2007. Go to original source...
  5. Ashraf M., Harris P.J.C.: Potential biochemical indicators of salinity tolerance in plants. - Plant Sci. 166: 3-16, 2004. Go to original source...
  6. Bae E.J., Lee K.S., Huh M.R., Lim C.S.: Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive 'Perfection' and 'Midnight' Kentucky bluegrass (Poa pratensis L.). - Hortic. Environ. Biote. 53: 477-483, 2012. Go to original source...
  7. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  8. Braga I., Pissolato M.D., Souza G.M.: Mitigating effects of acetylcholine supply on soybean seed germination under osmotic stress. - Braz. J. Bot. 40: 617-624, 2017.
  9. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot. 103: 551-560, 2009. Go to original source...
  10. Ewins A.J.: Acetylcholine, a new active principle of ergot. - Biochem. J. 8: 44-49, 1914. Go to original source...
  11. Feng Z.T., Deng Y.Q., Fan H. et al.: Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. - Photosynthetica 52: 313-320, 2014. Go to original source...
  12. Fluck R.A., Jaffe M.J.: The acetylcholine system in plants. - In: Smith H. (ed.): Commentaries in Plant Science. Pp. 119-136. Pergamon Press, Oxford 1976. Go to original source...
  13. Gao J.F.: Experimental Guidance for Plant Physiology. Higher Education Press, Beijing 2006.
  14. Gao Y., Lu Y., Wu M. et al.: Ability to remove Na+ and retain K+ correlates with salt tolerance in two maize inbred lines seedlings. - Front. Plant Sci. 7: 1716, 2016. Go to original source...
  15. García A.C., Santos L.A., de Souza L.G.A. et al.: Alleviation of osmotic stress deleterious effects in rice by vermicompost-humic acids involves the modulation of ROS accumulation and metabolism in roots. - J. Plant Physiol. 192: 56-63, 2016. Go to original source...
  16. Hayat S., Yadav S., Wani A.S. et al.: Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. - Hortic. Environ. Biote. 53: 362-367, 2012. Go to original source...
  17. Hernandez M., Fernandez-Garcia N., Diaz-Vivancos P., Olmos E.: A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. - J. Exp. Bot. 61: 521-535, 2010. Go to original source...
  18. Hodges D.M., Delong J.M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. - Planta 207: 604-611, 1999. Go to original source...
  19. Hu M., Shi Z., Zhang Z. et al.: Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. - Plant Growth Regul. 68: 177-188, 2012. Go to original source...
  20. Iqbal N., Nazar R., Khan N.A.: Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Pp. 170. Springer , New Delhi 2016. Go to original source...
  21. Ismail A.M., Horie T.: Genomics, physiology, and molecular breeding approaches for improving salt tolerance. - Annu. Rev. Plant Biol. 68: 405-434, 2017. Go to original source...
  22. Khan M.N., Siddiqui M.H., Mohammad F., Naeem M.: Inter-active role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. - Nitric Oxide 27: 210-218, 2012. Go to original source...
  23. Lahive F., Hadley P., Daymond A.J.: The impact of elevated CO2, and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). - Photosynthetica 56: 911-920, 2018. Go to original source...
  24. Lei P., Xu Z., Liang J. et al.: Poly(γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L. - Plant Growth Regul. 78: 233-241, 2016. Go to original source...
  25. Li H., Chang J., Chen H. et al.: Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. - Front. Plant Sci. 8: 295, 2017a. Go to original source...
  26. Li S., Jin H., Zhang Q.: The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. - Front. Plant Sci. 7: 1221, 2016. Go to original source...
  27. Li Z.G., Duan X.Q., Min X., Zhou Z.H.: Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes. - Protoplasma 254: 1995-2006, 2017b.
  28. Mahlooji M., Seyed Sharifi R., Razmjoo J. et al.: Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. - Photosynthetica 56: 549-556, 2018. Go to original source...
  29. Matuszak-Slamani R., Bejger R., Cieśla J. et al.: Influence of humic acid molecular fractions on growth and development of soybean seedlings under salt stress. - Plant Growth Regul. 83: 465-477, 2017.
  30. Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. - Plant Cell Environ. 33: 453-467, 2010. Go to original source...
  31. Moradi F., Ismail A.M.: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. - Ann. Bot. 99: 1161-1173, 2007. Go to original source...
  32. Munns R., Gilliham M.: Salinity tolerance of crops - what is the cost? - New Phytol. 208: 668-673, 2015. Go to original source...
  33. Naeem M.S., Jin Z.L., Wan G.L. et al.: 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). - Plant Soil 332: 405-415, 2010. Go to original source...
  34. Nelson D.E., Repetti P.P., Adams T.R. et al.: Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. - P. Natl. Acad. Sci. USA 104: 16450-16455, 2007. Go to original source...
  35. Parvaiz A., Abdel Latef A.A., Hashem A. et al.: Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. - Front. Plant Sci. 7: 347, 2016.
  36. Radwan D.E.M., Fayez K.A.: Photosynthesis, antioxidant status and gas-exchange are altered by glyphosate application in peanut leaves. - Photosynthetica 54: 307-316, 2016. Go to original source...
  37. Rasool S., Ahmad A., Siddiqi T.O., Ahmad P.: Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. - Acta Physiol. Plant. 35: 1039-1050, 2013. Go to original source...
  38. Sagane Y., Nakagawa T., Yamamoto K. et al.: Molecular characterization of maize acetylcholinesterase: a novel enzyme family in the plant kingdom. - Plant Physiol. 138: 1359-1371, 2005. Go to original source...
  39. Sarkar R.K., Mahata K.R., Singh D.P.: Differential responses of antioxidant system and photosynthetic characteristics in four rice cultivars differing in sensitivity to sodium chloride stress. - Acta Physiol. Plant. 35: 2915-2926, 2013. Go to original source...
  40. Sastry B.V., Sadavongvivad C.: Cholinergic systems in non-nervous tissues. - Pharmacol. Rev. 30: 65-132, 1978.
  41. Shahbaz M., Ashraf M., Akram N.A. et al.: Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). - Acta Physiol. Plant. 33: 1113-1122, 2011. Go to original source...
  42. Sikder S., Foulkes J., West H. et al.: Evaluation of photosynthetic potential of wheat genotypes under drought condition. - Photosynthetica 53: 47-54, 2015. Go to original source...
  43. Singh S.K., Reddy V.R., Fleisher D.H., Timlin D.J.: Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2. - Photosynthetica 55: 421-433, 2017. Go to original source...
  44. Spiro R.G.: Analysis of sugars found in glycoprotein. - In: Neufeld E.S., Ginsburg V. (ed.): Methods in Enzymology, vol. VIII. Complex Carbohydrates. Pp. 3-26. Academic Press, New York 1966. Go to original source...
  45. Sugiyama K., Tezuka T.: Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus. - Plant Signal. Behav. 6: 1545-1553, 2011. Go to original source...
  46. Tretyn A., Kendrick R.E.: Acetylcholine in plants: presence, metabolism and mechanism of action. - Bot. Rev. 57: 33-73, 1991. Go to original source...
  47. Wang Y., Weide R., Govers F., Bouwmeester K.: L-type lectin receptor kinases in Nicotiana benthamiana and tomato and their role in Phytophthora resistance. - J. Exp. Bot. 66: 6731-6743, 2015. Go to original source...
  48. Wessler I., Kilbinger H., Bittinger F., Kirkpatrick C.J.: The biological role of non-neuronal acetylcholine in plants and humans. - Jpn. J. Pharmacol. 85: 2-10, 2001. Go to original source...
  49. Wu X., Li X., Zha D.: Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. - Acta Physiol. Plant. 34: 2105-2114, 2012. Go to original source...
  50. Xi Z.M., Wang Z.Z. Fang Y.L. et al.: Effects of 2,4-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. - Plant Growth Regul. 71: 57-65. 2013. Go to original source...
  51. Yamamoto K., Sakamoto H., Momonoki Y.S. et al.: Maize acetylcholinesterase is a positive regulator of heat tolerance in plants. - J. Plant. Physiol. 168: 1987-1992, 2011.
  52. Yang Y., Guo Y.: Elucidating the molecular mechanisms mediating plant salt-stress responses. - New Phytol. 217: 523-539, 2018. Go to original source...
  53. Zhang N., Sun Q., Zhang H. et al.: Roles of melatonin in abiotic stress resistance in plants. - J. Exp. Bot. 66: 647-656, 2015. Go to original source...
  54. Zhao B., Liu Z., Ata-Ul-Karim S.T. et al.: Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements. - Field Crop Res. 185: 59-68, 2016. Go to original source...
  55. Zhen X.H., Xu J.G., Shen W.J. et al.: Photosynthetic characteristics of flag leaves in rice white stripe mutant 6001 during senescence process. - Rice Sci. 21: 335-342, 2014. Go to original source...
  56. Zhu J.K.: Regulation of ion homeostasis under salt stress. - Curr. Opin. Plant Biol. 6: 441-445, 2003. Go to original source...
  57. Zlobin I.E., Ivanov Y.V., Kartashov A.V. et al.: Impact of weak water deficit on growth, photosynthetic primary processes and storage processes in pine and spruce seedlings. - Photosyn. Res. 139: 307-323, 2019. Go to original source...