Photosynthetica 2019, 57(3):841-849 | DOI: 10.32615/ps.2019.098

Sensitivity of wild and domesticated Rhododendron chrysanthum to different light regime (UVA, UVB, and PAR)

J. LYU1, C. WANG1, D.Y. LIANG1, L. LIU1, L.K. PANDEY2, H.W. XU1, X.F. ZHOU1
1 Jilin Provincial Key Laboratory of Plant Spectral Regions Science and Green Production, Jilin Normal University, 136000 Siping, China
2 Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, 243006 Bareilly, India

Effects of UV radiation on photosynthetic capacity of wild and domesticated Rhododendron chrysanthum were compared by applying PAR (P), P + UVA (PA), and P + UVA + UVB (PAB) radiation for 3 d, respectively. Results showed that photosynthetic activity of two R. chrysanthum types was not affected by UVA but inhibited by UVB, and the inhibitory effects of UVB were dose-dependent. Changes in nonphotochemical quenching suggest that the range of photosynthetic capacity is ranked as follows: 24-48 h of UVB dose < wild type < 72 h of UVB dose < domesticated type, indicating that the wild type initiated photoprotective function in response to UVB stress due to its lower photosynthetic capacity, while domesticated type did not due to its higher photosynthetic capacity. Taken all the given data together, the wild type was more sensitive to UV stress, but it showed more effective mechanisms of counteracting it.

Received: August 28, 2018; Accepted: May 21, 2019; Prepublished online: July 9, 2019; Published: July 23, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LYU, J., WANG, C., LIANG, D.Y., LIU, L., PANDEY, L.K., XU, H.W., & ZHOU, X.F. (2019). Sensitivity of wild and domesticated Rhododendron chrysanthum to different light regime (UVA, UVB, and PAR). Photosynthetica57(3), 841-849. doi: 10.32615/ps.2019.098.
Download citation

References

  1. Albert K.R., Mikkelsen T.N., Ro-Poulsen H.: Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll a fluorescence parameters from fluorescence transients. - Physiol. Plantarum 124: 208-226, 2005. Go to original source...
  2. Albert K.R., Mikkelsen T.N., Ro-Poulsen H. et al.: Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica. - Environ. Exp. Bot. 72: 439-447, 2011. Go to original source...
  3. Alonso R., Berli F.J., Bottini R., Piccoli P.: Acclimation mecha-nisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines. - Plant Physiol. Bioch. 91: 56-60, 2015.
  4. Beer S., Björk M., Gademann R., Ralph P.J.: Measurement of photosynthesis in seagrasses. - In: Short F.T., Coles R. (ed.): Global Seagrass Research Methods. Pp. 183-198. Elsevier Science, The Netherlands 2001. Go to original source...
  5. Bernal M., Verdaguer D., Badosa J. et al.: Effects of enhanced UV radiation and water availability on performance, biomass production and photoprotective mechanisms of Laurus nobilis seedlings. - Environ. Exp. Bot. 109: 264-275, 2015. Go to original source...
  6. Dehariya P., Kataria S., Guruprasad K.N., Pandey G.P.: Photo-synthesis and yield in cotton (Gossypium hirsutum L.) var. Vikram after exclusion of ambient solar UV-B/A. - Acta Physiol. Plant. 34: 1133-1144, 2012. Go to original source...
  7. Glenn D.M.: Effect of ultraviolet radiation environment on leaf quantum efficiencies and photosynthesis for tropical and temperate species. - Int. J. Fruit Sci. 18: 37-44, 2018. Go to original source...
  8. Guidi L., Brunetti C., Fini A. et al.: UV radiation promotes flavonoid biosynthesis, while negatively affecting the biosyn-thesis and the de-epoxidation of xanthophylls: Consequence for photoprotection? - Environ. Exp. Bot. 127: 14-25, 2016. Go to original source...
  9. Guruprasad K., Bhattacharjee S., Kataria S. et al.: Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves. - Photosynth. Res. 94: 299-306, 2007.
  10. Henley W.J.: Measurement and interpretation of photosynthesis light-response curves in algae in the context of photoinhibition and diel changes. - J. Phycol. 29: 729-739, 1993. Go to original source...
  11. Hideg E., Jansen M.A., Strid A.: UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? -Trends Plant Sci. 18: 107-115, 2013. Go to original source...
  12. Hou X.J., Hou H.J.M.: Roles of manganese in photosystem II dynamics to irradiations and temperatures. - Front. Biol. 8: 312-322, 2013. Go to original source...
  13. Huang W., Yang Y.-J., Hu H., Zhang S.-B.: Moderate photo-inhibition of photosystem II protects photosystem I from photodamage at chilling stress in tobacco leaves. - Front. Plant Sci. 7: 182, 2016. Go to original source...
  14. Kolb C.A., Kaser M.A.et al.: Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. - Plant Physiol. 127: 863-875, 2001. Go to original source...
  15. Li F.C., Wang J., Wu M.M. et al.: Mitogen-activated protein kinase phosphatases affect UV-B-induced stomatal closure via controlling NO in guard cells. - Plant Physiol. 173: 760-770, 2017. Go to original source...
  16. Jansen M.A.K., Gaba V., Greenberg B.M.: Higher plants and UV-B radiation: balancing damage, repair and acclimation. - Trends Plant Sci. 3: 131-135, 1998. Go to original source...
  17. Jansen R.P., Dowzer C., Michaelis C. et al.: Mother cell-specific HO expression in budding yeast depends on the unconventional myosin and other cytoplasmic proteins. - Cell 84: 687-697, 1996. Go to original source...
  18. Joshi P., Gartia S., Pradhan M.K. et al.: Acclimation of clusterbean cotyledon to UV-B radiation in the presence of UV-A: partial restoration of photosynthetic energy balance and redox homeostasis. - Acta Physiol. Plant. 35: 2323-2328, 2013. Go to original source...
  19. Kataria S., Jajoo A., Guruprasad K.N.: Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. -J. Photoch. Photobio. B 137: 55-66, 2014. Go to original source...
  20. Klem K., Ač A., Holub P. et al.: Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. - Environ. Exp. Bot. 75: 52-64, 2012. Go to original source...
  21. Klem K., Holub P., Štroch M. et al.: Ultraviolet and photo-synthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. - Plant Physiol. Bioch. 93: 74-83, 2015.
  22. Kreslavski V.D., Lyubimov V.Y., Shabnova N.I. et al.: Heat-induced impairments and recovery of photosynthetic machi-nery in wheat seedlings. Role of light and prooxidant-anti-oxidant balance. - Physiol. Mol. Biol. Pla. 15: 115-122, 2009.
  23. Kosobryukhov A.A., Lyubimov V.Y., Kreslavski V.D.: Adaptive mechanisms of photosynthetic apparatus to UV radiation. - In: Tripathi B.N., Müller M. (ed.): Stress Responses in Plants. Pp. 59-78. Springer, Cham 2015. Go to original source...
  24. Majer P., Hideg E.: Developmental stage is an important factor that determines the antioxidant responses of young and old grapevine leaves under UV irradiation in a green-house. - Plant Physiol. Bioch. 50: 15-23, 2012. Go to original source...
  25. Melis A., Nemson J.A., Harrison M.A.: Damage to functional components and partial degradation of PS II reaction center proteins upon chloroplast exposure to ultraviolet-B radiation. -BBA-Bioenergetics 1100: 312-320, 1992. Go to original source...
  26. Murali N.S., Teramura A.H.: Insensitivity of soybean photo-synthesis to ultraviolet-B radiation under phosphorus defi-ciency. - J. Plant Nutr. 10: 501-515, 1987. Go to original source...
  27. Neugart S., Schreiner M.: UVB and UVA as eustressors in horti-cultural and agricultural crops. - Sci. Hortic.-Amsterdam 234: 370-381, 2018.
  28. Quesada A., Mouget J.-L., Vincent W.F.: Growth of Antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition. - J. Phycol. 31: 242-248, 1995. Go to original source...
  29. Ralph P.J., Gademann R.: Rapid light curves: a powerful tool to assess photosynthetic activity. - Aquat. Bot. 82: 222-237, 2005. Go to original source...
  30. Rastogi R.P., Richa, Kumar A. et al.: Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. - J. Nucleic Acid. 2010: 592980, 2010. Go to original source...
  31. Reddy K.R., Kakani V.G., Zhao D. et al.: Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth development and hyperspectral reflectance. - Photochem. Photobiol. 79: 416-427, 2004. Go to original source...
  32. Schoedl K., Schuhmacher R., Forneck A.: Correlating physio-logical parameters with biomarkers for UV-B stress indicators in leaves of grapevine cultivars Pinot noir and Riesling. - J. Agr. Sci. 151: 189-200, 2013. Go to original source...
  33. Schreiber U.: Pulse-amplitude (PAM) fluorometry and saturation pulse method: An overview. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 279-319. Springer, Dordrecht 2004. Go to original source...
  34. Skórska E.: The effect of UV-B radiation on the chlorophyll fluorescence parameters of the husked and naked oat. - Acta Agrobot. 52: 149-152, 1999. Go to original source...
  35. Sullivan J.H., Teramura A.H.: Field study of the interaction between solar ultraviolet-B radiation and drought on photo-synthesis and growth in soybean. - Plant Physiol. 92: 141-146, 1990. Go to original source...
  36. Štroch M., Materová Z., Vrábl D. et al.: Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment. - Plant Physiol. Bioch. 96: 90-96, 2015.
  37. Takeuchi Y., Ikeda S., Kasahara H.: Dependence on wavelength and temperature of growth inhibition induced by UV-B irradiation. - Plant Cell Physiol. 34: 913-917, 1993.
  38. Tohidi-Moghadam H.R., Ghooshchi F., Jamshidpour F., Zahedi H.: Effect of UV radiation and elevated CO2 on physiological attributes of canola (Brassica napus L.) grown under water deficit stress. - Pol. J. Environ. Stud. 21: 1417-1427, 2012.
  39. Tossi V., Lamattina L., Jenkins G.I., Cassia R.O.: Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism. - Plant Physiol. 164: 2220-2230, 2014. Go to original source...
  40. Turcsányi E., Vass I.: Inhibition of photosynthetic electron transport by UV-A radiation targets the PSII complex. - Photochem. Photobiol. 72: 513-520, 2000. Go to original source...
  41. Turnbull T.L., Barlow A.M., Adams M.A.: Photosynthetic benefits of ultraviolet-A to Pimelea ligustrina, a woody shrub of sub-alpine Australia. - Oecologia 173: 375-385, 2013. Go to original source...
  42. Tyystjarvi E.: Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. - Coordin. Chem. Rev. 252: 361-376, 2008. Go to original source...
  43. Vass I., Sass L., Spetea C. et al.: UV-B induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. - Biochemistry 35: 8964-8973, 1996. Go to original source...
  44. Vidović M., Morina F., Milić S. et al.: Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumula-tion in variegated Plectranthus coleoides leaves depending on background light. - Plant Cell Environ. 38: 968-979, 2015.
  45. Visser A.J., Tosserams M., Groen M.W. et al.: The combined effects of CO2 concentration and solar UV-B radiation on faba bean grown in open-top chambers. - Plant Cell Environ. 20: 189-199, 1997. Go to original source...
  46. Wei Z., Cady C.W., Brudvig G.W., Hou H.J.M.: Photodamage of a Mn(III/IV)-oxo mixed-valence compound and photosystem II: Evidence that high-valent manganese species is responsible for UV-induced photodamage of oxygen-evolving complex in photosystem II. - J. Photoch. Photobio. B 104: 118-125, 2011. Go to original source...
  47. Widel M., Krzywon A., Gajda K. et al.: Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. - Free Radical Bio. Med. 68: 278-287, 2014. Go to original source...
  48. Yang Y.Q., Yao Y.: Photosynthetic responses to solar UV-A and UV-B radiation in low- and high-altitude populations of Hippophae rhamnoides. - Photosynthetica 46: 307-311, 2008. Go to original source...
  49. Yang S.H., Wang L.J., Li S.H. et al.: The effects of UV-B radiation on photosynthesis in relation to Photosystem II photochemistry, thermal dissipation and antioxidant defenses in winter wheat (Triticum aestivum L.) seedlings at different growth temperatures. - Funct. Plant Biol. 34: 907-917, 2007. Go to original source...
  50. Zhou X., Chen S., Wu H. et al.: Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall. - Biol. Direct 12: 10, 2017. Go to original source...