Photosynthetica 2018, 56(1):306-315 | DOI: 10.1007/s11099-018-0776-x

Characterization of isolated photosystem I from Halomicronema hongdechloris, a chlorophyll f-producing cyanobacterium

Y. Li1, N. Vella1, M. Chen1,*
1 School of Life and Environmental Science, University of Sydney, NSW, Australia

Halomicronema hongdechloris is a chlorophyll (Chl) f-producing cyanobacterium. Chl f biosynthesis is induced under far-red light, extending its photosynthetically active radiation range to 760 nm. In this study, PSI complexes were isolated and purified from H. hongdechloris, grown under white light (WL) and far-red light (FR), by a combination of density gradient ultracentrifugation and chromatographic separation. WL-PSI showed similar pigment composition as that of Synechocystis 6803, using Chl a in the reaction center. Both Chl a and f were detected in the FR-PSI, although Chl f was a minor component (~8% of total Chl). The FR-PSI showed a maximal fluorescence emission peak of 750 nm at 77 K, which is red-shifted ~20 nm compared to the 730 nm recorded from the WL-PSI. The absorption peaks of P700 for WLPSI and FR-PSI were 699 nm and 702 nm, respectively. The function of Chl f in FR-PSI is discussed.

Keywords: cyanobacteria; far-red light photoacclimation; oxygenic photosynthesis; red-shifted chlorophyll

Received: September 21, 2017; Accepted: November 5, 2017; Published: March 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Li, Y., Vella, N., & Chen, M. (2018). Characterization of isolated photosystem I from Halomicronema hongdechloris, a chlorophyll f-producing cyanobacterium. Photosynthetica56(1), 306-315. doi: 10.1007/s11099-018-0776-x.
Download citation

Supplementary files

Download filephs-201801-0030_S1.pdf

File size: 137.74 kB

Download filephs-201801-0030_S2.pdf

File size: 134.4 kB

Download filephs-201801-0030_S3.pdf

File size: 94.1 kB

References

  1. Airs R.L., Temperton B., Sambles C. et al.: Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and nearinfrared radiation.-FEBS Lett. 588: 3770-3777, 2014. Go to original source...
  2. Akutsu S., Fujinuma D., Furukawa H. et al.: Pigment analysis of a chlorophyll f-containing cyanobacterium strain KC1isolated from Lake Biwa.-Photochem. Photobiol. 33: 35-40, 2011.
  3. Amunts A., Toporik H., Borovikova A. et al.: Structure determination and improved model of plant photosystem I.-J. Biol. Chem. 285: 3478-3486, 2010. Go to original source...
  4. Barber J.: Photosynthetic generation of oxygen.-Philos. T. R. Soc. B 363: 2665-2674, 2008. Go to original source...
  5. Barth P., Lagoutte B., Sétif P.: Ferredoxin reduction by photosystem I from Synechocystis sp. PCC 6803: toward an understanding of the respective roles of subunits PsaD and PsaE in ferredoxin binding.-Biochemistry 37: 16233-16241, 1998. Go to original source...
  6. Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I.-Nature 426: 630-635, 2003. Go to original source...
  7. Chen M., Blankenship R.: Expanding the solar spectrum used by photosynthesis.-Trends Plant Sci. 16: 427-431, 2011. Go to original source...
  8. Chen M., Li Y., Birch D. et al: A cyanobacterium that contains chlorophyll f-a red-absorbing photopigment.-FEBS Lett. 586: 3249-3254, 2012. Go to original source...
  9. Chen M., Schliep M., Willows R. et al: A red-shifted chlorophyll.-Science 329: 1318-1319, 2010. Go to original source...
  10. Croce R., van Amerongen H.: Light-harvesting in photosystem I.-Photosynth. Res. 116: 153-166, 2013. Go to original source...
  11. El-Khouly M.E., El-Mohsnawy E., Fukuzumi S.: Solar energy conversion: From natural to artificial photosynthesis.-J. Photoch. Photobio. C 31: 36-83, 2017. Go to original source...
  12. El-Mohsnawy E., Kopczak M.J., Schlodder E. et al.: Structure and function of intact photosystem I monomers from the cyanobacterium Thermosynechococcus elongatus.-Biochemistry49: 4740-4751, 20
  13. Fromme P., Jordan P., Krauß N.: Structure of photosystem I.-BBA-Bioenergetics 1507: 5-31, 2001. Go to original source...
  14. Gan F., Bryant D.A.: Adaptive and acclimative responses of cyanobacteria to far-red light.-Environ. Microbiol. 17: 3450-3465, 2015. Go to original source...
  15. Gan F., Zhang S., Rockwell N.C. et al.: Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.-Science 345: 1312-1317, 2014. Go to original source...
  16. Golbeck, J.H.: Photosystem I in cyanobacteria.-In: Bryant D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 319-360. Springer, Dordrecht 1994. Go to original source...
  17. Golub M., Hejazi M., Kölsch A. et al.: Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering.-Photosynth. Res. 133: 163-173, 2017. Go to original source...
  18. Goodwint W.: Biochemistry of pigments.-In Waterman T.H. (ed.): The Physiology of Crustacea. Pp. 101-140. Academic Press, New York and London 1960.
  19. Grotjohann I., Fromme P.: Structure of cyanobacterial photosystem I.-Photosynth. Res. 85: 51-72, 2005. Go to original source...
  20. Hiyama T., Ke B.: Difference spectra and extinction coefficients of P 700.-BBA-Bioenergetics. 267: 160-171, 1972. Go to original source...
  21. Hou H.J., Allakhverdiev S.I., Najafpour M.M. et al.: Current challenges in photosynthesis: from natural to artificial.-Front Plant Sci. 5: 232, 2014. Go to original source...
  22. Hu Q., Miyashita H., Iwasaki I. et al: A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis.-P. Natl. Acad. Sci. USA 95: 13319-13323, 1998. Go to original source...
  23. Jordan P., Fromme P., Witt H.T. et al.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution.-Nature 411: 909-917, 2001. Go to original source...
  24. Kruip J., Boekema E.J., Bald D. et al.: Isolation and structural characterization of monomeric and trimeric photosystem I complexes (P700. FA/FB and P700. FX) from the cyanobacterium Synechocystis PCC 6803.-J. Biol. Chem. 268: 23353-23360, 1993.
  25. Li M, Semchonok D.A., Boekema E.J., Bruce B.D.: Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821.-Plant Cell 26: 1230-1245, 2014. Go to original source...
  26. Li Y., Cai Z.-L. Chen M.: Spectroscopic properties of chlorophyll f.-J. Phys. Chem. B 117: 11309-11317, 2013.
  27. Li Y., Chen M.: Novel chlorophylls and new directions in photosynthesis research.-Funct. Plant Biol. 42: 493-501, 2015.
  28. Li Y., Lin Y., Garvey C.J. et al.: Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.-BBABioenergetics 1857: 107-114, 20
  29. Li Y., Lin Y., Loughlin P. et al.: Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris-a filamentous cyanobacterium containing chlorophyll f.-Front. Plant Sci. 5: 67, 2014.
  30. Li Y., Scales N., Blankenship R. E. et al.: Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f.-BBA-Bioenergetics 1817: 1292-1298, 2012.
  31. Miyashita H., Ikemoto H., Kurano N. et al.: Chlorophyll d as a major pigment.-Nature 383: 402, 1996. Go to original source...
  32. Mühlenhoff U., Zhao J., Bryant D.A.: Interaction between photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 as revealed by chemical crosslinking.-Eur. J. Biochem. 235: 324-331, 1996.
  33. Nelson N., Junge W.: Structure and energy transfer in photosystems of oxygenic photosynthesis.-Annu. Rev. Biochem. 84: 659-683, 2015. Go to original source...
  34. Nyhus K.J., Ikeuchi M., Inoue Y. et al.: Purification and characterization of the photosystem I complex from the filamentous cyanobacterium Anabaena variabilis ATCC 29413.-J. Biol. Chem. 267: 12489-12495, 1992.
  35. Ohkubo S., Miyashita H.: A niche for cyanobacteria producing chlorophyll f within a microbial mat.-ISME J. 11: 2368-2378, 2017. Go to original source...
  36. Rögner M., Nixon P.J., Diner B.A.: Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803.-J. Biol. Chem. 265: 6189-6196, 1990.
  37. Schluchter W.M., Shen G., Zhao J., Bryant D.A.: Characterization of psal and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria.-Photochem. Photobiol. 64: 53-66, 1996. Go to original source...
  38. Sivakumar V., Wang R., Hastings G.: Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina.-Biophys. J. 85: 3162-3172, 20
  39. Tomo T., Kato Y., Suzuki T. et al.: Characterization of highly purified photosystem I complexes from the chlorophyll ddominated cyanobacterium Acaryochloris marina MBIC 11017.-J. Biol. Chem. 283: 18198-18209, 2008. Go to original source...
  40. Xu Q., Hoppe D., Chitnis V.P. et al.: Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL.-J. Biol. Chem. 270: 16243-16250, 1995. Go to original source...
  41. Xu W., Chitnis P., Valieva A. et al.: Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX.-J. Biol. Chem. 278: 27864-27875, 2003. Go to original source...