Photosynthetica 2018, 56(3):832-840 | DOI: 10.1007/s11099-017-0735-y

Effect of high light intensity on the photosynthetic apparatus of two hybrid lines of Paulownia grown on soils with different salinity

M. Stefanov1, E. Yotsova1, Y. Markovska2, E. L. Apostolova1,*
1 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
2 Faculty of Biology, University of Sofia, Sofia, Bulgaria

The objective of this investigation was to evaluate the simultaneous action of light stress and salinity. Pulse amplitude modulated chlorophyll fluorescence, P700 redox state, and pigment analysis were used to assess the impact of high light intensity on Paulownia tomentosa × fortunei and Paulownia elongata × elongata grown on soils with different salinity. It was found that light stress reduced the amount of pigments and the efficiency of photochemical energy conversion, inhibited the maximum and the effective quantum yields of PSII photochemistry, decreased photochemical quenching and photosynthetic rate. Data also showed influence on the primary quinone acceptor (QA) reoxidation, which led to the restriction of the electron flow from QA to plastoquinone and stimulation of the cyclic electron flow. The possible reasons for the increased effects of the light stress under conditions of high salt concentration in soil for Paulownia tomentosa × fortunei are discussed.

Keywords: leaf; light sensitivity; photoinhibition; rate constant; salt tolerance

Received: February 10, 2017; Accepted: April 11, 2017; Prepublished online: September 1, 2018; Published: August 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Stefanov, M., Yotsova, E., Markovska, Y., & Apostolova, E.L. (2018). Effect of high light intensity on the photosynthetic apparatus of two hybrid lines of Paulownia grown on soils with different salinity. Photosynthetica56(3), 832-840. doi: 10.1007/s11099-017-0735-y.
Download citation

References

  1. Adams W., Zarter C., Mueh K.E. et al.: Energy dissipation and photoinhibition: A continuum of photoprotection.-In: Demmig-Adams B., Adams W., Mattoo A. (ed.): Photoprotection, Photoinhibition, Gene Regulation and Environment. Pp. 49-64. Springer, Dordrecht 2006. Go to original source...
  2. Akram A., Ashraf M.: Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid.-Agrochimica 55: 94-104, 2011.
  3. Albertsson P.: The structure and function of the chloroplast photosynthetic membrane-a model for the domain organization.-Photosynth. Res. 46: 141-149, 1995. Go to original source...
  4. Allakhverdiev S., Nishiyama Y., Miyairi S. et al.: Salt stress inhibits the repair of photodamaged photosystem IIby suppressing the transcription and translation of psbA genes in Synechocystis.-Plant Physiol. 130: 1443-1453, 2002. Go to original source...
  5. Apostolova E.: Effect of high-light on photosynthetic apparatus with different content of anionic lipids and organization of light-harvesting complex of photosystem II.-Acta Physiol. Plant. 35: 975-978, 2013. Go to original source...
  6. Apostolova E., Dobrikova A., Ivanova P. et al.: Relationship between the organization of the PSII supercomplex and the functions of the photosynthetic apparatus.-J. Photoch. Photobio. B 83: 114-122, 2006. Go to original source...
  7. Aro E., McCaffery S., Anderson J.M.: Photoinhibition and D1 degradation in peas acclimated to different growth irradiation.-Plant Physiol. 103: 835-843, 1993a. Go to original source...
  8. Aro E., Virgin I., Andersson B.: Photoinhibition of photosystem II.Inactivation, protein damage and turnover.-Biochim. Biophys. Acta 1143: 113-134, 1993b. Go to original source...
  9. Ashraf M., Harris P.: Photosynthesis under stressful environments: an overview.-Photosynthetica 51: 163-190, 2013. Go to original source...
  10. Barth C., Krause G., Winter K.: Responses of photosystem I compared with photosystem IIto high-light stress in tropical shade and sun leaves.-Plant Cell Environ. 24: 163-176, 2001. Go to original source...
  11. Bukhov N., Egorova E., Carpentier R.: Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.-Planta 215: 812-820, 2002. Go to original source...
  12. Bukhov N., Samson G., Carpentier R.: Non photosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. The pool size of stromal reductants.-Photochem. Photobiol. 74: 438-443, 2001. Go to original source...
  13. Dabrowski P., Baczewska A.H., Pawluskiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass.-J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  14. Dabrowski P., Kalaji H., Baczewska A.H. et al.: Delayed chlorophyll a fluorescence, MR820, and gas exchange changes in perennial ryegrass under salt stress.-J. Lumin. 183: 322-333, 2016.
  15. Dabrowski P., Pawluskiewicz B., Baczewska A.H. et al.: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade.-Zemdirbyste 102: 305-312, 2015. Go to original source...
  16. Dankov K., Busheva M., Stefanov D., Apostolova E.: Relationship between the degree of carotinoid depletion and function of photosynthetic apparatus.-J. Photochem. Photobiol. B. 96: 49-56, 2009. Go to original source...
  17. Dankov K., Dobrikova A., Ughy B. et al.: LHCII organization and thylakoid lipids affect the sensitivity of the photosynthetic apparatus to high-light treatment.-Plant Physiol. Bioch. 49: 629-635, 2011. Go to original source...
  18. Genty B., Briantais G., Baker N.: The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  19. Goh T., Joi S., Mimura T., Fukaki H.: The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins.-Development 139: 883-893, 2012. Go to original source...
  20. Gong H., Tang Y., Wang J. et al.: Characterization of photosystem IIin salt stress cyanobacterial Spirulina platensis cells.-Biochim. Biophys. Acta 1777: 488-495, 2008. Go to original source...
  21. Grieve C., Suarez D.: Purslane (Portulaca oleracea L.): a halophytic crop for drainage water reuse systems.-Plant Soil 192: 277-283, 1997. Go to original source...
  22. Hakala M., Tuominen I., Keränen M. et al.: Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II.-Biochim. Biophys. Acta 1706: 68-80, 2005. Go to original source...
  23. Hasanuzzaman M., Nahar K., Fujita M.: Plant response to salt stress and role of exogenous protectants to mitigate saltinduced damages.-In: Ahmed P., Azooz M., Prasad M. (ed.): Ecophysiology and Responses of Plants Under Salt Stress. Pp. 25-87. Springer, New York 2013. Go to original source...
  24. Hasanuzzaman M., Fujita M., Islam M. et al.: Performance of four irrigated rice varieties under different levels of salinity stress.-Int. J. Integr. Biol. 6: 85-90, 2009.
  25. Ioannidis N., Ortigosa M., Veramendi J. et al.: Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase.-Biochim. Biophys. Acta 1787: 1215-1222, 2009. Go to original source...
  26. Ivanova K., Dimitrova V., Georgieva T., Markovska Y.: Effect of soil salinity on growth, gas exchange and antioxidant defense of two Paulownia lines.-Gen. Plant Physiol. 4: 163-173, 2014.
  27. Jiang Y., Dinga X., Zhang D. et al.: Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants.-Environ. Exp. Bot. 133: 70-77, 2017. Go to original source...
  28. Kalaji H., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel.-Photosynth. Res. 132: 13-66, 2017. Go to original source...
  29. Kingsbury R., Epstein E., Pearcy R.: Physiological responses to salinity in selected lines of wheat.-Plant Physiol. 74: 417-423, 1984. Go to original source...
  30. Kirchhoff H.: Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts.-Philos. T. R. Soc. B. 369: 20130225, 2014. Go to original source...
  31. Kitajima M., Butler W.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.-Biochim. Biophys. Acta 376: 105-115, 1975. Go to original source...
  32. Lichtenthaler H.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.-Method. Enzymol. 148: 350-382, 1987. Go to original source...
  33. Lichtenthaler K., Langsdorf G., Lenk S., Buschmann C.: Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system.-Photosynthetica 43: 355-369, 2005. Go to original source...
  34. Loreto F., Centritto M., Chartzoulakis K.: Photosynthetic limitations in olive cultivars with different sensitivity to salt stress.-Plant Cell Environ. 26: 595-601, 2003. Go to original source...
  35. Lu C., Jiang B., Wang B., Kuang T.: photosystem IIphotochemistry and photosynthetic pigment composition in salt adapted chalophyte Artemisia anethifolia grown under outdoor conditions.-J. Plant Physiol. 160: 403-408, 2003. Go to original source...
  36. Lu C., Qiu N., Lu Q. et al.: Does salt stress lead to increased susceptibility of photosystem IIto photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors?-Plant Sci. 163: 1063-1068, 2002. Go to original source...
  37. Masojídek J., Hall D.: Salinity and drought stress are amplified by high irradiance in sorghum.-Photosynthetica 27: 159-171, 1992.
  38. Misra A.N., Sahu S., Misra M. et al.: Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars.-Biol. Plantarum 39: 257-262, 1997. Go to original source...
  39. Misra A., Sahu S., Meera I. et al.: Root growth of salt susceptible and a salt resistant rice (Oryza sativa L) during seedling establishment under NaCl salinity.-J. Agr. Crop Sci. 178: 9-14, 1997. Go to original source...
  40. Misra S.K., Subrahmanyam D., Singhal G.: Interrelationship between salt and light stress on primary processes on photosynthesis.-J. Plant Physiol. 138: 92-96, 1991. Go to original source...
  41. Murata N., Takahashi S., Nishiyama Y., Allakhvedriev S.: Photoinhibition of photosystem IIunder environmental stress.-Biochim. Biophys. Acta 1767: 414-421, 2007. Go to original source...
  42. Nishiyama Y., Allakhverdiev S., Murata N.: A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II.-Biochim. Biophys. Acta 1757: 742-749, 2006. Go to original source...
  43. Parida A., Das A.: Salt tolerance and salinity effects on plants: a review.-Ecotoxicol. Environ. Safe. 60: 324-349, 2005. Go to original source...
  44. Rohácek K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships.-Photosynthetica 40: 13-29, 2002. Go to original source...
  45. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51-62, 1986. Go to original source...
  46. Sharma P., Hall D.: Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum.-J. Plant Physiol. 138: 614-619, 1991. Go to original source...
  47. Shirao M., Kuroki S., Kaneko K. et al.: Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms.-Plant Cell Physiol. 54: 1152-1163, 2013. Go to original source...
  48. Shu S., Guo R., Sun J., Yuan Y.: Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine.-Physiol. Plantarum 146: 285-296, 2012. Go to original source...
  49. Sonoike K.: Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: Possible involvement of active oxygen species.-Plant Sci. 115: 157-164, 1996. Go to original source...
  50. Stefanov M., Yotsova K., Rashkov G. et al.: Effects of salinity on the photosynthetic apparatus of two Paulownia lines.-Plant Physiol. Bioch. 101: 54-59, 2016. Go to original source...
  51. Stoichkova K., Busheva M., Apostolova E., Andreeva A.: Changes in the energy distribution in mutant thylakoid membranes of pea with modified pigment content II. Changes due to magnesium ions concentration.-J. Photoch. Photobio. B. 83: 11-20, 2006. Go to original source...
  52. Takahashi S., Badger M.: Photoprotection in plants: a new light on photosystem IIdamage.-Trends Plant Sci. 16: 53-60, 2011. Go to original source...
  53. Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition?-Trends Plant Sci. 13: 178-182, 2008. Go to original source...
  54. Vass I.: Molecular mechanisms of photodamage in the photosystem IIcomplex.-Biochim. Biophys. Acta 1817: 209-217, 2012. Go to original source...
  55. Wang R., Hua C., Zhou F., Zjou C.: Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and salt-sensitive rice cultivar.-Photosynthetica 47: 125-127, 2009. Go to original source...