Photosynthetica 2018, 56(4):1019-1030 | DOI: 10.1007/s11099-018-0821-9

Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit

W. A. Ansari2,3, N. Atri3, B. Singh1, P. Kumar3, S. Pandey1,*
1 ICAR-Indian Institute of Vegetable Research, P.O.-Jakhani (Shahanshahpur), Varanasi (Uttar Pradesh), India
2 Department of Botany, M.M.V, Banaras Hindu University, Varanasi (Uttar Pradesh), India
3 ICAR-Central Arid Zone Research Institute, Jodhpur (Rajasthan), India

Morpho-physiological and biochemical analyses were carried out in eight diverse indigenous muskmelon (Cucumis melo L.) genotypes exposed to different degrees of water deficit (WD). The ability of genotypes MM-7, and especially MM-6, to counteract better the negative effect of WD was associated with maintaining higher relative water content (RWC), photosynthetic rate, efficiency of PSII, and photosynthetic pigments compare to other genotypes. Furthermore, MM-6 showed a better ability to maintain cellular homeostasis than the others. It was indicated by a stimulated antioxidative defense system, i.e., higher activities of antioxidant enzymes, accumulation of nonenzymatic antioxidants together with lower concentration of reactive oxygen species and malondialdehyde. However, the genotypes MM-2 and MM-5 suffered greatly due to WD and showed reduced RWC, photosynthetic rates, pigment content, and exhibited higher oxidative stress observed as lower antioxidant enzyme activities.

Keywords: antioxidant enzyme; muskmelon; photosynthesis; proline; reactive oxygen species

Received: June 19, 2017; Accepted: November 22, 2017; Prepublished online: December 1, 2018; Published: November 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ansari, W.A., Atri, N., Singh, B., Kumar, P., & Pandey, S. (2018). Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica56(4), 1019-1030. doi: 10.1007/s11099-018-0821-9.
Download citation

References

  1. Adibah M.S.R., Ainuddin AN.: Epiphytic plants responses to light and water stress.-Asian J. Plant Sci. 10: 97-107, 2011.
  2. Ahmadi-Mirabad A., Lotfi M., Roozban M.R.: Growth, yield, yield components and water-use efficiency in irrigated cantaloupes under full and deficit irrigation.-Electron. J. Biol. 10: 79-84, 2014.
  3. Ahmadi-Mirabad A., Lotfi M., Roozban M.R.: Impact of waterdeficit stress on growth, yield and sugar content of cantaloupe (Cucumis melo L.).-Int. J. Agric. Crop Sci. 5: 2778-2782, 2013.
  4. Ansari W.A., Atri M., Singh B. et al.: Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress.-Biol. Plantarum 61: 333-341, 2017. Go to original source...
  5. Arora A., Sairam R.K., Srivastava G.C.: Oxidative stress and antioxidative system in plants.-Curr. Sci. 82: 1227-1238, 2002.
  6. Ashraf M., Foolad M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance.-Environ. Exp. Bot. 59: 206-216, 2007. Go to original source...
  7. Bates L.S., Walden R.P., Teare I.D.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205-207, 1973. Go to original source...
  8. Boyer J.S.: Measurement of the water status of plants.-Annu. Rev. Plant Physiol. 9: 351-363, 1968.
  9. Cabello M.J., Castellanos M.T., Romojaro F. et al.: Yield and quality of melon grown under different irrigation and nitrogen rates.-Agr. Water Manage. 96: 866-874, 2009. Go to original source...
  10. Carvalho M.H.C.: Drought stress and reactive oxygen species.-Plant Signal Behav. 3: 156-165, 2008. Go to original source...
  11. Cha-um S., Nhung N.T.H., Kirdmanee C.: Effect of mannitol and salt-induced iso-osmotic stress on proline accumulation, photosynthetic abilities and growth characters of rice cultivars (Oryza sativa L. spp. indica).-Pak. J. Bot. 42: 927-941, 2010.
  12. Cha-um S., Samphumphuang T., Kirdmanee C.: Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes.-Aust. J. Crop Sci. 7: 213-218, 2013.
  13. Cha-um S., Supaibulwatana K., Kirdmanee C.: Glycinebetaine accumulation, physiological characterizations and growth efficiency in salt tolerant and salt sensitive lines of indica rice (Oryza sativa L. spp. indica) response to salt stress.-J. Agron. Crop. Sci. 193: 157-166, 2007.
  14. Chaves M.M., Pereira J.S., Maroco J. et al.: How plants cope with water stress in the field? Photosynthesis and growth.-Ann. Bot.-London 89: 907-916, 2002. Go to original source...
  15. Colla G., Rouphael Y., Jawad R. et al.: The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber.-Sci. Hortic.-Amsterdam 164: 380-391, 2013.
  16. Deeba F., Pandey A.K.., Ranjan S. et al.: Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress.-Plant Physiol. Bioch. 53: 6-18, 2012. Go to original source...
  17. Deng X., Hu Z.A., Wang H.X. et al.: A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotricha in response to dehydration and rehydration.-Plant Sci. 165: 851-861, 2003. Go to original source...
  18. Dhillon N.P., Monforte A.J., Pitrat M. et al.: Melon landraces of India: contributions and importance.-Plant Breed. Rev. 35: 85-150, 2011. Go to original source...
  19. Esfandiari E., Shakiba M.R., Mahboob S.A. et al.: The effect of water stress on the antioxidant content, protective enzyme activities, proline content and lipid peroxidation in wheat seedling.-Pak. J. Biol. Sci. 11: 1916-1922, 2008.
  20. Feng X.H., Wu D.K.: Planting cucurbits in gravel mulched land.-China Cucurb. Veget. 1: 57-58, 2007.
  21. Fleury D., Jefferies S., Kuchel H. et al.: Genetic and genomic tools to improve drought tolerance in wheat.-J. Exp. Bot. 61: 3211-3222, 2010. Go to original source...
  22. Foyer C.H., Descourvières P., Kunert K.J.: Protection against oxygen radicals: an important defense mechanism studied in transgenic plants.-Plant Cell Environ. 17: 507-523, 1994. Go to original source...
  23. Gill S.S., Tuteja A.N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.-Plant Physiol. Bioch. 48: 909-930, 2010. Go to original source...
  24. Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stechiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189-198, 1968. Go to original source...
  25. Hessini K., Martinez J.P., Gandour M. et al.: Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora.-Environ. Exp. Bot. 67: 312-319, 2009. Go to original source...
  26. Huang Z., Zou Z., He C. et al.: Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit.-Plant Soil 339: 391-399, 2011. Go to original source...
  27. Ibrahim E.A.: Variability, heritability and genetic advance in Egyptian sweet melon (Cucumis melo var. Aegyptiacus L.) under water stress condition.-Int. J. Plant Breed. Genet. 6: 238-244, 2012.
  28. Jaleel C.A., Gopi R., Panneerselvam R.: Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment.-C. R. Biol. 331: 272-277, 2008. Go to original source...
  29. Jana S., Choudhuri M.A.: Glycolate metabolism of three submerged aquatic angiosperm during aging.-Aquat. Bot. 12: 345-354, 1981. Go to original source...
  30. Kausar A., Ashraf M.Y., Ali I. et al.: Evaluation of sorghum varieties/lines for salt tolerance using physiological indices as screening tool.-Pak. J. Bot. 44: 47-52, 2012.
  31. Khare N., Goyary D., Singh N.K et al.: Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance.-Plant Cell Tiss. Org. Cult. 103: 267-277, 2010. Go to original source...
  32. Kravic N., Markovic K., Andelkovic V. et al.: Growth, proline accumulation and peroxidase activity in maize seedlings under osmotic stress.-Acta Physiol. Plant. 35: 233-239, 2013.
  33. Kumar P., Lucini L., Rouphael Y. et al.: Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato.-Front. Plant Sci. 6: 477, 2015a.
  34. Kumar P., Rouphael Y., Cardarelli M. et al.: Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato.-J. Plant Nutr. Soil Sci. 178: 848-860, 2015b. Go to original source...
  35. Kusvuran S.: Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.).-Afr. J. Agr. Research 7: 775-781, 2012. Go to original source...
  36. Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: Stomatal metabolism and the role of ATP.-Ann. Bot.-London 89: 871-885, 2002. Go to original source...
  37. Lee B.R., Jin Y.L., Avice J.C. et al.: Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens).-New Phytol. 182: 654-663, 2009. Go to original source...
  38. Lichtenthaler H.K., Buschmann C.: Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy.-In: Wrolstad R.E., Acree T.E., An H. et al. (ed.): Current Protocols in Food Analytical Chemistry. Pp. F4.3.1-F4.3.8. John Wiley & Sons, New York 2001. Go to original source...
  39. Lowry O.H, Rosebrough J.J, Farr A.L. et al.: Estimation of protein with the folin-phenol reagent.-J. Biol. Chem. 193: 265-275, 1951.
  40. Matsui T., Singh B.B.: Root characteristics in cowpea related to drought tolerance at the seedling stage.-Exp. Agr. 39: 29-38, 2003. Go to original source...
  41. Maxwell K., Johnson G.N.: Chlorophyll fluorescence-a practical guide.-J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  42. McKersie B.D., Bowley S.R., Jones K.S.: Winter survival of transgenic alfalfa over expressing superoxide dismutase.-Plant Physiol. 119: 839-848, 1999. Go to original source...
  43. Mo Y., Yang R., Liu L. et al.: Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering.-Plant Growth Regul. 79: 229-241, 2016. Go to original source...
  44. Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate specific peroxides in spinach chloroplast.-Plant Cell Physiol. 22: 867-880, 1981.
  45. Ober E.S, Sharp R.E.: Regulation of root growth responses to water deficit.-In: Jenks M.A., Hasegawa P.M., Jain S.M. (ed.): Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Pp. 33-53. Springer, Dortrecht 2007. Go to original source...
  46. Pandey S., Ansari W.A., Atri N. et al.: Standardization of screening technique and evaluation of muskmelon genotypes for drought tolerance.-Plant Genet. Resour.-C. DOI:10.1017/S1479262116000253, 2016. Go to original source...
  47. Pandey S., Ansari W.A., Jha A. et al.: Evaluation of melons and indigenous Cucumis spp. genotypes for drought tolerance.-Acta Hortic. 979: 335-339, 2013. Go to original source...
  48. Pandey S., Rai M., Prasanna H.C. et al.: 'Kashi Madhu': a new muskmelon cultivar with high total soluble solids.-HortScience 43: 245-246, 2008. Go to original source...
  49. Penella C., Nebauer S.G., Bautista A.S. et al.: Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.-J. Plant Physiol. 171: 842-851, 2014. Go to original source...
  50. Petridis A., Therios I., Samouris G. et al.: Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars.-Plant Physiol. Bioch. 60: 1-11, 2012. Go to original source...
  51. Rai A.C, Singh M., Shah K.: Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants.-Plant Physiol. Bioch. 61: 108-114, 2012.
  52. Rai G.K., Rai N.P., Rathaur S.: Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates droughtinduced oxidative stress by regulating key enzymatic and nonenzymatic antioxidants.-Plant Physiol. Bioch. 69: 90-100, 2013. Go to original source...
  53. Ranjbarfordoei A., Samson R., Damme P.V.: Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl.-Photosynthetica 44: 513-522, 2006. Go to original source...
  54. Ratnayaka H., Molin W.T., Sterling T.M.: Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought.-J. Exp. Bot. 54: 2293-2305, 2003. Go to original source...
  55. Ryser P.: Intra-and interspecific variation in root length, root turnover and the underlying parameters.-In: Lambers H, Poorter H, van Vuuren M.M.I. (ed.): Inherent Variation in Plant Growth. Physiological Mechanism and Ecological Consequences. Pp. 441-465. Backhuys Publishers, Leiden 1998.
  56. Sánchez-Rodríguez E., Rubio-Wilhelmi M.M., Cervilla L.M. et al.: Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants.-Plant Sci. 178: 30-40, 2010. Go to original source...
  57. Serraj R., Krishnamurthy L., Kashiwagi J. et al.: Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought.-Field Crop. Res. 88: 115-127, 2004. Go to original source...
  58. Shah K., Kumar R.G., Verma S. et al.: Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings.-Plant Sci. 161: 1135-1144, 2001. Go to original source...
  59. Shao H.B., Jiang S.Y., Li F.M. et al.: Some advances in plant stress physiology and their implications in the systems biology era.-Colloid. Surface B 54: 33-36, 2007. Go to original source...
  60. Simova-Stoilova L., Vaseva I., Grigorova B. et al.: Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery.-Plant. Physiol. Bioch. 48: 200-206, 2010. Go to original source...
  61. Singh B.K., Sharma S.R., Singh B.: Antioxidant enzymes in cabbage: variability and inheritance of superoxide dismutase, peroxidase and catalase.-Sci. Hortic.-Amsterdam 124: 9-13, 2010. Go to original source...
  62. Sofo A., Tuzio A.C., Dichio B. et al.: Influence of water deficit and rewatering on the components of the ascorbate glutathione cycle in four interspecific Prunus hybrids.-Plant Sci. 169: 403-412, 2005. Go to original source...
  63. Tahi H., Wahbi S., Modafar C.E. et al.: Changes in antioxidant activities and phenol content in tomato plants subjected to partial root drying and regulated deficit irrigation.-Plant Biosyst. 142: 550-562, 2008. Go to original source...
  64. Valentovic P., Luxová M., Kolarovic L. et al.: Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars.-Plant Soil Environ. 52: 186-191, 2006.
  65. Wang C.Q., Li R.C.: Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress.-Acta Physiol. Plant. 30: 841-847, 2008.
  66. Wang H., Zhang L., Ma J. et al.: Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage.-Agr. Sci. China 9: 633-641, 2010. Go to original source...
  67. Zhang J., Jia W., Yang J., Ismail A.M.: Role of ABA in integrating plant responses to drought and salt stresses.-Field Crops Res. 97: 111-119, 2006. Go to original source...