Photosynthetica 2018, 56(3):942-952 | DOI: 10.1007/s11099-017-0753-9

Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings

B. B. Liu1, M. Li2, Q. M. Li1,2,3,*, Q. Q. Cui2, W. D. Zhang2, X. Z. Ai1,2, H. G. Bi1,2
1 State Key Laboratory of Crop Biology, Tai'an, Shandong, China
2 College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
3 Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, Shandong, China

Drought stress is one of the main environmental factors limiting plant growth and productivity of many crops. Elevated carbon dioxide concentration (eCO2) can ameliorate, mitigate, or compensate for the negative impact of drought on plant growth and enable plants to remain turgid and functional for a longer period. In order to investigate the combined effects of eCO2 and drought stress on photosynthetic performance and leaf structures, we analyzed photosynthetic characteristics and structure and ultrastructure of cucumber leaves. The decline in net photosynthetic rate under moderate drought stress occurred due to stomatal limitation alone, while under severe drought stress, it was the result of stomatal and nonstomatal limitations. Conversely, eCO2 improved photosynthetic performance under moderate drought stress, increased the lengths of the palisade cells and the number of chloroplasts per palisade cell under severe drought stress, and significantly increased the grana thickness under moderate drought stress. Additionally, eCO2 significantly decreased stomatal density, stomatal widths and stomatal aperture on the abaxial surface of leaves under moderate drought stress. In conclusion, eCO2 can alleviate the negative effects of drought stress by improving the drought resistance of cucumber seedlings through stomatal modifications and leaf structure.

Keywords: abiotic stress; chloroplasts; electron microscopy; mesophyll; starch accumulation; stomata

Received: August 17, 2016; Accepted: May 29, 2017; Prepublished online: September 1, 2018; Published: August 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Liu, B.B., Li, M., Li, Q.M., Cui, Q.Q., Zhang, W.D., Ai, X.Z., & Bi, H.G. (2018). Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. Photosynthetica56(3), 942-952. doi: 10.1007/s11099-017-0753-9.
Download citation

Supplementary files

Download filephs-201803-0019_S10.pdf

File size: 173.78 kB

Download filephs-201803-0019_S1.pdf

File size: 258.36 kB

Download filephs-201803-0019_S2.pdf

File size: 223.54 kB

Download filephs-201803-0019_S3.pdf

File size: 488.93 kB

Download filephs-201803-0019_S4.pdf

File size: 143.02 kB

Download filephs-201803-0019_S5.pdf

File size: 249.58 kB

Download filephs-201803-0019_S6.pdf

File size: 175.48 kB

Download filephs-201803-0019_S7.pdf

File size: 113.51 kB

Download filephs-201803-0019_S8.pdf

File size: 113.38 kB

Download filephs-201803-0019_S9.pdf

File size: 113.09 kB

References

  1. Araus J.L., Slafer G.A., Reynolds M.P. et al.: Plant breeding and drought in C3 cereals: what should we breed for?-Ann. Bot.-London 89: 925-940, 2002. Go to original source...
  2. Arp W.J.: Effects of source-sink relations on photosynthetic acclimation to elevated CO2.-Plant Cell Environ. 14: 869-875, 1991. Go to original source...
  3. Bai L.P., Zhou G.S.: [Research of effect of global environment change on agricultural crops.]-Chin. J. Appl. Environ. Biol. 10: 394-397, 2004. [In Chinese]
  4. Baker J.T., Allen L.H.: Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus.-Vegetatio 104: 239-260, 1993. Go to original source...
  5. Berryman C.A., Eamus D., Duff G.A.: Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment.-J. Exp. Bot. 45: 539-546, 1994. Go to original source...
  6. Centritto M.: Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2].-Agr. Ecosyst. Environ. 106: 233-242, 2005. Go to original source...
  7. Centritto M., Magnani F., Lee H.S.J. et al.: Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations.-New Phytol. 141: 141-153, 1999. Go to original source...
  8. Chaves M.: Water stress in the regulation of photosynthesis in the field.-Ann. Bot.-London 89: 907-916, 2002. Go to original source...
  9. Chen G.Y., Yong Z.H., Liao Y. et al.: Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.-Plant Cell Physiol. 46: 1036-1045, 2005. Go to original source...
  10. Cheng S., Moore B.D., Seemann J.R.: Effects of short-and longterm elevated CO2 on the expression of rubulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh.-Plant Physiol. 116: 715-723, 1998. Go to original source...
  11. Curtis P.S., Wang X.: A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology.-Oecologia 3: 299-313, 1998. Go to original source...
  12. Donnelly P.M., Bonetta D., Tsukaya H. et al.: Cell cycling and cell enlargement in developing leaves of Arabidopsis.-Dev. Biol. 2: 407-419, 1999. Go to original source...
  13. Douville H., Planton S., Royer J.F. et al.: Importance of vegetation feedbacks in doubled-CO2 climate experiments.-J. Geophys. Res. 105: 841-861, 2000. Go to original source...
  14. Drake B.G., Gonzalez-Meler M.A., Long S.P.: More efficient plants: A consequence of rising atmospheric CO2?-Annu. Rev. Plant Phys. 48: 609-639, 1997. Go to original source...
  15. Flexas J., Diaz-Espejo A., Gago J. et al.: Photosynthetic limitations in Mediterranean plants: a review.-Environ. Exp. Bot. 103: 12-23, 2014. Go to original source...
  16. Franks P.J., Drake P.L., Beerling D.J.: Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus.-Plant Cell Environ. 32: 1737-1748, 2009. Go to original source...
  17. Godfray H.C.J., Garnett T.: Food security and sustainable intensification.-Philos. T. R. Soc. B 369: 2012-2073, 2014.
  18. Gray J.E., Holroyd G.H., van der Lee F.M. et al.: The HIC signalling pathway links CO2 perception to stomatal development.-Nature 408: 713-716, 2000. Go to original source...
  19. Guan Y.X., Dai J.Y., Lin Y.: [The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress.]-Plant Physiol. Co. 31: 293-297, 1995. [In Chinese]
  20. Hetherington A.M., Woodward F.I.: The role of stomata in sensing and driving environmental change.-Nature 424: 901-908, 2003. Go to original source...
  21. Kitao M., Lei T.T., Koike T.: Interaction of drought and elevated CO2 concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability.-Tree Physiol. 27: 727-735, 2007. Go to original source...
  22. Leakey A.D.B., Ainsworth E.A., Bernacchi C.J. et al.: Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE.-J. Exp. Bot. 60: 2859-2876, 2009. Go to original source...
  23. Levitt J.: Responses of Plants to Environmental Stresses. Pp. 322-323. Academic Press, New York 1980.
  24. Li Q.M., Liu B.B., Wu Y. et al.: Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings.-J. Integr. Plant Biol. 50: 1307-1317, 2008
  25. Lin J.X., Hu Y.X.: [Structural response of soybean leaf to elevated CO2 concentration.]-Acta Bot. Sin. 38: 31-34, 1996. [In Chinese]
  26. Liu Z.J., Guo Y.K., Bai J.G.: Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress.-J. Plant Growth Regul. 29: 171-183, 2010. Go to original source...
  27. Long S.P., Ainsworth E.A., Rogers A. et al.: Rising atmospheric carbon dioxide: plants FACE the future.-Annu. Rev. Plant Biol. 55: 591-628, 2004. Go to original source...
  28. Moore B.D., Cheng S.H., Sims D. et al.: The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2.-Plant Cell Environ. 22: 567-582, 1999. Go to original source...
  29. NOAA: National Oceanic and Atmospheric Administration. Global Climate Report. Available at: http://www.esrl.noaa.gov/gmd/ccgg/trends/, 2015.
  30. Parry M., Rosenzweig C., Iglesias A. et al.: Effects of climate change on global food production under SRES emissions and socio-economic scenarios.-Glob. Environ. Chang. 14: 53-67, 2004. Go to original source...
  31. Paul M.J., Foyer C.H.: Sink regulation of photosynthesis-J. Exp. Bot. 52: 1383-1400, 2001. Go to original source...
  32. Pritchard S.G., Rogers H.H., Prior S.A. et al.: Elevated CO2 and plant structure: a review.-Glob. Change Biol. 5: 807-837, 1999. Go to original source...
  33. Radoglou K.M., Jarvis P.G.: The effects of CO2 enrichment and nutrient supply on growth morphology and anatomy of Phaseolus vulgaris L. seedlings.-Ann. Bot.-London 70: 245-256, 1992. Go to original source...
  34. Robredo A., Pérez-López U., Lacuesta M. et al.: Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations.-Biol. Plantarum 54: 285-292, 2010. Go to original source...
  35. Robredo A, Pérez-López U., Sainz de la Maza H. et al.: Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis.-Environ. Exp. Bot. 59: 252-263, 2007. Go to original source...
  36. Sage R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective.-Photosynth. Res. 39: 351-368, 1994. Go to original source...
  37. Sato S., Yanagisawa S.: Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis.-Plant Cell Physiol. 55: 306-319, 2014. Go to original source...
  38. Sharkey T.D., Bernacchi C.J., Farquhar G.D. et al.: Fitting photosynthetic carbon dioxide response curves for C3 leaves.-Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  39. Sims D.A., Luo Y., Seemann J.R.: Comparison of photosynthetic acclimation to elevated CO2 and limited nitrogen supply in soybean.-Plant Cell Environ. 21: 945-952, 1998. Go to original source...
  40. Stitt M.: Nitrate regulation of metabolism and growth.-Curr. Opin. Plant Biol. 2: 178-186, 1999. Go to original source...
  41. Stitt M., Krapp A.: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background.-Plant Cell Environ. 22: 583-621, 1999. Go to original source...
  42. Vu J.C.V., Allen Jr L.H., Bowes G.: Leaf ultrastructure, carbohydrates and protein of soybeans grown under CO2 enrichment.-Environ. Exp. Bot. 29: 141-147, 1989. Go to original source...
  43. Wang M.Y., Zhao T.H., Zhang W.W. et al.: [Effects of interactions between elevated CO2 concentration and temperature, drought on physio-ecological processes of plants.]-Agri. Res. Arid Areas 25: 99-103, 2007. [In Chinese]
  44. Wei M., Xin Y.X., Wang X.F. et al.: [Effects of CO2 enrichment on the microstructure and ultrastructure of leaves in cucumber.]-Acta Hortic. Sin. 29: 30-34, 2002. [In Chinese]
  45. Woodward F.I.: Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels.-Nature 327: 617-618, 1987. Go to original source...
  46. Wu Y.Y., Li D.Q.: [Effects of soil water stress on osmotic adjustment and chloroplast ultrastructure of winter wheat leaves.]-Acta Agri. Boreal. Sin. 16: 87-93, 2001. [In Chinese]
  47. Wulff R.D., Strain B.R.: Effects of CO2 enrichment on growth and photosynthesis in Desmodium paniculatum.-Can. J. Bot. 60: 1084-1091, 1982.
  48. Yang S.T., Li Y.F., Hu Y.X. et al.: Effect of CO2 concentration doubling on the leaf morphology and structure of 10 species in Gramineae.-Acta Bot. Sin. 39: 856-868, 1997. [In Chinese]
  49. Yelle S., Beeson R.C., Trudel M.J. et al.: Acclimation of two tomato species to high atmospheric CO2. I. Sugar and starch concentrations.-Plant Physiol. 90: 1465-1472, 1989. Go to original source...
  50. Yuan H.M., Zhou J.M., Duan Z.Q. et al.: [Effects of elevated CO2 and potassium on cucumber growth.]-Soil 41: 869-874, 2009. [In Chinese]
  51. Zhang D.Y., Chen G.Y., Chen J. et al.: Photosynthetic acclimation to CO2 enrichment related to ribulose-1,5-bisphosphate carboxylation limitation in wheat.-Photosynthetica 47: 152-154, 2009. Go to original source...
  52. Zuo B.Y., Jiang G.Z., Bai K.Z. et al.: Effect of doubled-CO2 concentration on the ultrastructure of chloroplasts from Medicago sativa and Setaria italica.-Acta Bot. Sin. 38: 72-76, 1996. [In Chinese]