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Abstract: Artificial oscillations in contact force due to non-smooth contact surface are treated by isogeo-

metric analysis (IGA). After brief overview of B-splines and Non-Uniform Rational B-Splines (NURBS) rep-

resentation, the mortar-based contact algorithm is presented in the frictionless small deformation regime.

Contact constraints are regularized by penalty method. The contact algorithm is tested by means of contact

patch test.
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1. Introduction

The main difficulty in contact analysis is non-smoothness. It arises from inequality constraint as well

as the geometric discontinuities inducted by spatial discretization. Contact analysis based on traditional

finite elements utilizes element facets to describe a contact surface. The facets are C0 continuous so that

surface normal can experience jump across facet boundaries leading to artificial oscillations in contact

force.

There were attempts to treat the geometric discontinuities by smoothing the contact surfaces using

splines interpolation. These remedies introduce an additional geometry on the top of the existing finite

element mesh. This adds an additional layer of data management and increasing computational overhead.

Details and further references can be found in Wriggers (2006).

Another remedy to the geometric discontinuity provides isogeometric analysis (IGA). The fundamen-

tal idea is to accurately describe a physical domain of interest by proper representation (e.g. NURBS) and

then utilize the same basis for analysis. This is in contrast with the classical finite element method where

the basis is given in advance by the element type and so that the physical domain could be approximated

inaccurately. More detailed description could be found in Cottrell et al. (2009).

Isogeometric NURBS-based contact analysis has some additional advantages: preserving geometric

continuity, facilitating patch-wise contact search, supporting a variationally consistent formulation, and

having a uniform data structure for the contact surface and the underlying volumes.

Geometric basis and formulation for frictionless isogeometric contact has been given in Lu (2010).

Sharp corners or C0 edges that can exist on the interface of patches present a challenge to contact de-

tection. A strategy to seamlessly deal with sharp corners has been proposed in this reference. Herein,

the contact constraints are regularized by penalty method and contact virtual work is discretized by finite

strain surface-to-surface contact element. Both one-pass and two-pass algorithm are tested.

In Temizer et al. (2011), finite deformation frictionless quasi-static thermomechanical contact prob-

lems are considered. Two penalty-based contact algorithms are studied herein. The former is called

knot-to-surface (KTS) algorithm. It is the straightforward extension of the classical node-to-surface

(NTS) algorithm. Since NURBS control points are not interpolatory, contact constraints are enforce di-

rectly at the physical points of the quadrature points. It is shown in this reference that this approach is
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over-constrained and therefore not acceptable if a robust formulation with accurate tractions is desired.

The latter is called mortar-KTS algorithm. In this algorithm a mortar projection to control pressures is

employed to obtain the correct number of constraints.

The penalty-based mortar-KTS algorithm has been extended to frictional contact in Lorenzis et al.

(2011) and Temizer et al. (2012). The mortar-KTS algorithm has been also studied in conjugation with

augmented Lagrangian method in Lorenzis et al. (2012). Isogeometric frictionless contact analysis using

non-conforming mortar method in two-dimensional linear elasticity regime has been presented in Kim

(2011).

In this paper, we present mortar-based frictionless isogeometric contact algorithm in small deforma-

tion regime. The main contribution of this work is to prepare an implementation of the IGA procedures

for further investigation. After brief overview of B-Splines and NURBS representation in section 2., the

isogeometric contact algorithm is presented in section 3. The robustness of the algrithm is chacked by

means of contact patch test in section 4.

2. B-splines and NURBS

This section gives a brief overview of the main concerns of B-splines and NURBS. For more detailed

description as well as efficient algorithms see Piegl and Tiller (1997). Throughout this paper we use p to

indicate the polynomial degree, n to indicate the number of basis functions, dp to indicate the number of

parametric dimensions, and ds to indicate the number of spatial dimensions.

Let Ξi, i = 1, . . . dp be the open non-uniform knot vector associated with ith parametric dimension

of a patch

Ξ
i =







ξi1, . . . , ξ
i
pi+1

︸ ︷︷ ︸

pi+1 equal terms

, ξipi+2, . . . , ξ
i
ni
, ξini+1, . . . , ξ

i
ni+pi+1

︸ ︷︷ ︸

pi+1 equal terms







. (1)

The knot vector is a non-decreasing sequence of parametric coordinates. The knot vector is said to be

non-uniform if the knots are unequally spaced in the parametric space. If the first and the last knot value

appears pi + 1 times, the knot vector is called open. Open knot vectors are interpolatory at the corners

of patches. It means that the boundary of a B-spline object with dp parametric dimensions is itself a

B-spline object of dp − 1.

The B-spline basis functions are defined by Cox-de Boor recursion formula. For p = 0

Nj,0(ξ) =

{

1 ξ ∈ [ξj , ξj+1) , j = 1 . . . n

0 otherwise,
(2)

and for p > 0

Nj,p(ξ) =
ξ − ξj

ξj+p − ξj
Nj,p−1(ξ) +

ξj+1+p − ξ

ξj+1+p − ξj+1

Nj+1,p−1(ξ). (3)

B-splines are known to be unable to exactly describe some curves, whereas rational functions can.

NURBS (Non-Uniform Rational B-Splines) was developed to extend interpolatory capability of the B-

splines. The extension originates from projection geometry of conic sections. A pth degree NURBS

basis function is defined by

Rp
j (ξ) =

Nj,p(ξ)wj
∑n

ĵ=1
Nĵ,p(ξ)wĵ

, (4)

where wj is referred to as the jth weight.

Multivariate NURBS objects can be constructed simply by tensor product of univariate NURBS basis

functions (4). For dp = 2

Rp1,p2
j1,j2

(ξ1, ξ2) = Rp1
j1
(ξ1)⊗Rp2

j2
(ξ2) =

Nj1,p1(ξ
1)Nj2,p2(ξ

2)wj1,j2
∑n1

ĵ1=1

∑n2

ĵ2=1
Nĵ1,p1

(ξ1)Nĵ2,p2
(ξ2)wĵ1,ĵ2

(5)
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and similarly for the higher parametric dimension. With NURBS basis functions at hand we can finally

introduce surface discretization by

x(ξ1, ξ2) =

n1∑

j1=1

n2∑

j2=1

Rp1,p2
j1,j2

(ξ1, ξ2)Pj1,j2 , (6)

where Pj1,j2 ∈ R
ds is the control net, i.e., array of coordinates of control points. Adopting the isoge-

ometric concept, an analogous interpretation is used for unknown displacement field and its variation.

Utilizing proper connectivity arrays according to Cottrell et al. (2009), one can write

x(ξ) =

ncp∑

A=1

NA(ξ)xA u(ξ) =

ncp∑

A=1

NA(ξ)uA δu(ξ) =

ncp∑

A=1

NA(ξ)δuA, (7)

where ξ = (ξ1, ξ2) ∈ R
dp , A is the index of global basis function and ncp is the number of control

points. It is also useful to consider local mappings defined over one individual knot span which can be

interpreted as a finite element

x(ξ) =

nec∑

a=1

Na(ξ)xa u(ξ) =

nec∑

a=1

Na(ξ)ua δu(ξ) =

nec∑

a=1

Na(ξ)δua, (8)

where a is the number of local basis function, and nec is the number of element control points.

3. Isogeometric contact treatment

In this section we present isogeometric treatment of small displacement frictionless contact between

two elastic deformable bodies. We adopt mortar-KTS algorithm according to Temizer et al. (2011) and

customize it for the small displacement regime. For more detailed description of computational contact,

the reader is referred to Wriggers (2006).

3.1. Contact kinematics

Consider two elastic bodies Ω1 and Ω2 in contact without friction. The size and the location of the

contact boundary Γc = ∂Ω1 ∩ ∂Ω2 is unknown. For its determination, a function which measures the

distance between the bodies is introduced

d(ξ) := ‖xs − xm(ξ)‖ , xm ∈ ∂Ω1, xs ∈ ∂Ω2. (9)

With the aid of this function one can assign to each slave point xs ∈ ∂Ω2 a master point x̄m ∈ ∂Ω1 by

the closest point projection

∇d(ξ) =
∂xm(ξ)

∂ξ
· [xs − x̄m(ξ)] = 0. (10)

This is a system of non-linear algebraic equations with respect to ξ = (ξ1, . . . , ξdp). Different methods

for its numerical solution were studied in Gabriel et al. (2011). Customizing to the isogeometric analysis

is straightforward. It consists in replacing basis functions and its derivatives. The closest projection point

as well as related variables will be indicated by the bar symbol further in this paper (e.g. x̄m, ξ̄).

With the closest point, x̄m, at hand we can define the normal gap as

gN = (xs − x̄m) · n̄m = (us − ūm) · n̄m + g0, (11)

and its variation

δgN =
(
δu1 − δū2

)
· n̄m, (12)

where us and ūm are displacements of the slave and master points respectively, and g0 is the initial

normal gap.
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3.2. Contact constraints

Non-penetration condition dictates that normal gap has to be non-negative. If the gap is closed, it has

to generate pressure. These two natural criteria can be written as Karush-Kuhn-Tucker (KKT) condition

for contact

gN ≥ 0 (13)

tN ≤ 0 on Γc, (14)

tNgN = 0 (15)

where the third equality is called complementary condition. It states that either the gap or the contact

traction has to be zero. One of the possibilities how to regularized the KKT conditions is the penalty

method. The regularized normal contact constraint reads as

tN = ǫ 〈gN〉 , 〈gN〉 =

{

gN if gN ≤ 0

0 otherwise
, (16)

where ǫN is the penalty parameter.

3.3. Weak form

Contact boundary value problem can be formulated in a weak sense by

δΠ(u, δu) = δΠint(u, δu) + δΠext(u, δu) + δΠc(u, δu) = 0, (17)

subjected to (13). The terms on the right hand side denote virtual work due to internal forces, virtual

work due to external forces and virtual work due to contact forces respectively. Assuming the validity of

the action-reaction principle, contact virtual work can be expressed as

δΠc(u, δu) =

∫

Γc

ǫNgNδgN dΓ (18)

3.4. Discretized form

By substituting (8) into (11) and (12), the normal gap and its variation becomes

gN =





ns
ec∑

a=1

Rs
a(ξ

s)us
a −

nm
ec∑

a=1

Rm
a (ξ̄)u

m
a



 · n̄m + g0(ξ̄), (19)

δgN =





ns
ec∑

a=1

Rs
a(ξ

s)δus
a −

nm
ec∑

a=1

Rm
a (ξ̄)δu

m
a



 · n̄m. (20)

Defining the vectors

u =













us1
...

usns
ec

um1
...

umnm
ec













δu =













δus1
...

δusns
ec

δum1
...

δumnm
ec













N =













Rs
1(ξ

s)n̄m

...

Rs
ns
ec
(ξs)n̄m

−Rm
1 (ξ̄)n̄m

...

−Rm
nm
ec
(ξ̄)n̄m













, (21)

equations (19) and (20) can be cast in matrix form as

gN = N
T
u+ g0, (22)

δgN = δuT
N. (23)
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3.5. Mortar-KTS contact algorithm

In the spirit of the mortar method, the the contact virtual work is expressed as

δΠc(u, δu) =
∑

A

ǫNgNA
δgNA

AA, (24)

where summation is extended to the active control points. The control point normal gap and its variation

are defined as the weighted average, with the basis functions as weights

gNA
=

∫

Γc
RAgN dΓ

∫

Γc
RA dΓ

δgNA
=

∫

Γc
RAδgN dΓ

∫

Γc
RA dΓ

. (25)

An active control point is one for which gNA ≤ 0. The ’area of competence’ of a control point is defined

as

AA =

∫

Γc

RA dΓ. (26)

Substituting (25) and (26) into (24) yields

δΠc =
∑

A

ǫN
∫

Γc
RA dΓ

∫

Γc

RAgN dΓ

∫

Γc

RAδgN dΓ. (27)

Substituting (22) and (23) into (27)

δΠc = δuT
∑

A

ǫN
∫

Γc
RA dΓ

(∫

Γc

RAN dΓ

∫

Γc

RAN
T dΓu+

∫

Γc

RAg0 dΓ

∫

Γc

RAN dΓ

)

. (28)

Finally, the contact residual vector is immediately obtained from (28)

Gc = Kc + Fc, (29)

where by gauss integration

Kc =
∑

A

ǫN
∑ngp

g=1RA(ξg)wgjg

ngp∑

g=1

RA(ξg)Nwgjg

ngp∑

g=1

RA(ξg)N
Twgjg, (30)

Fc =
∑

A

ǫN
∑ngp

g=1RA(ξg)wgjg

ngp∑

g=1

RA(ξg)g0(ξg)wgjg

ngp∑

g=1

RA(ξg)Nwgjg, (31)

where wg are Gauss-Legendre weights, jg are the Jacobian determinant, both evaluated at Gaussian

quadrature point g = 1, . . . , ngp.

4. Contact patch test

In this section we present a three-dimensional version of the contact patch test acoording to Taylor and

Papadopoulos (1991). Dimensions are depicted in the Fig. 1. Both blocks are subjected to a pressure

p = 1F/UL2. The same material with ν = 0.3 and E = 1000F/UL2 is used for both blocks. The

analytical solution is σz = −1F/UL2.

Either of the blocks is discretized by one trivariate NURBS patch of order p = 1 in each parametric

dimension. The knot vectors are

Ξ
i =

{
0 0 0.25 0.5 0.75 1 1

}
, i = 1, . . . , 3. (32)

There are four nonzero knot spans which are depicted by the black grid in the Fig. 2. There are contours

of the z-displacement field in the Fig. 2. The constant partial derivative with respect to z implies constant

pressure in both blocks. The same results has been obtained for tri-quadratic and tri-cubic NURBS

patches.
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Fig. 1: The contact patch test according to Taylor and Papadopoulos (1991). UL is the unit length,

p = 1F/UL2 is the presuure.
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Fig. 2: Z-displacement field. The constant partial derivative with respect to z implies constant pressure.

5. Conclusions

The frictionless mortar-based isogeometric contact algorithm in small deformation regime has been out-

lined. The correct implementation of the contact algorithm has been successfully tested by means of

contact patch test. Indeed, one cannot make serious conclusins based on one numerical example. There-

fore, we will continue in the assessment of the algorithm in the further work.
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Gabriel, D., Kopačka, J., Plešek, J., Ulbin, M. (2010), Assesment of methods for calculating the normal contact

vector in local search. In: In ECCM 2010, Computational Structural Mechanics Association, Paris, 2 pp..

Taylor, R. L., Papadopoulos, P. (1991) On a patch test for contact problems in two dimensions. Nonlinear Compu-

tational Mechanics, pp 690-702, Springer, Berlin.
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