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Abstract
The work deals with the numerical solution of contact problems by the finite element
method. The symmetry preserving contact formulation is improved on two levels. Firstly,
the stability and robustness of the BFGS algorithm for constrained systems is increased.
And secondly, a new efficient and robust method for local contact search for finite elements
of higher order is proposed. This symmetry-preserving contact formulation based on
the penalty method is also used as a basis for development of an isogeometric contact
formulation. Isogeometric analysis is a modern method for spatial discretization based on
the finite element method. This new isogeometric contact formulation is further extended
to solve dynamic problems utilizing an explicit, conditionally stable, temporal integration
scheme. Special attention is paid to the influence of the mass matrix lumping on the
oscillations of the contact pressure. The negative impact of the penalty parameter on the
critical time step is treated by employing the bipenalty method.
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Abstrakt
Práce se zabývá numerickým řešením kontaktních úloh metodou konečných prvků. Symetrii
zachovávající kontaktní formulace je vylepšena na dvou úrovních. Za prvé je zvýšena
stabilita a robustnost BFGS algorithm pro systémy s vázaným extrémem. A za druhé
je navržená nová efektivní a robustní metoda pro lokální vyhledávání kontaktu na
konečných prvcích vyššího řádu. Tato symetrii zachovávající kontaktní formulace založená
na penaltové metodě byla dále využita k návrhu kontaktní formulace pro isogeometrickou
analýzu, což je moderní metoda prostorové diskretizace na bázi metody konečných
prvků. Tato nová isogeometrická kontaktní formulace byla dále rozšířena pro řešení
dynamických úloh pomocí explicitní, podmíněně stabilní, časové integrace. Zvláštní
pozornost je věnována vlivu diagonalizace matice hmotnosti na oscilace kontaktního
tlaku. Negativní vliv pokutového parametru na kritický časový krok je řešen použitím
bipenaltové metody.

Klíčová slova: výpočtová mechanika kontaktu, kvazinewtonské metody, lokální
vyhledávání kontaktu, isogeometrická analýza, bipenaltová metoda

Překlad názvu: Efektivní a robustní numerické řešení kontaktních problémů metodou
konečných prvků
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Chapter 1
Introduction

It would seem that finite element analysis involving contact is now commonplace. However,
it is reported that up to half of the tasks encountered in engineering practice has problems
with convergence. Therefore, the development of robust and stable contact algorithms is still in
the forefront of researcher’s interest in the field of computational mechanics. Witness the fact
that the contact analysis has been earmarked as a separate branch of computational science —
computational contact mechanics.

Nails, bolds, clamp connections, limited slip mechanism, in all these contact applications, and
uncountable others, we rely on the contact with friction. On the other hand, consider for instance
bearings, ball screw, linear guides, these are examples where we would like to completely get rid
of friction. There are also applications where we would like to control contact and friction. Let us
consider an everyday life example — automobile tires. An ideal tire should primarily generate
sufficient adhesion to avoid sliding when braking or turning. Next, the rolling resistance should
be minimal, because it directly affects fuel consumption, which we want to be as low as possible.
Further, the rate of abrasion of the tread should be adequate to achieve reasonable durability.
Last but not least, the noise of rolling tire should be minimized. These contradictory requirements
have to be simultaneously met in order to obtain an optimal design. The computational contact
mechanics is one of the tools without which these challenging tasks would be hardly achievable.

The main purpose of a contact algorithm is to enforce a natural physical fact that bodies in
motion can only touch their surfaces but their mutual penetration cannot occur. A specific way in
which the contact algorithm enforces the impenetrability condition is called a contact formulation.
Types of contact formulations can be classified according to various criteria: according to the
dimensions of the problem on the two-dimensional (2D) and three-dimensional (3D); according
to inertial forces on quasi-static and dynamic, which can be further subdivided according to
temporal integration scheme into implicit and explicit formulations; by considering the friction
on the frictionless and frictional; according to the magnitude of relative movement between the
contact boundaries on the small sliding and finite sliding; by the type of contact discretization
on the node-to-node (NTN), node-to-segment (NTS) Gauss-point-to-segment (GPTS), segment-
to-segment (STS); by the methods for contact constraints enforcement on formulations based on
the penalty method, barrier method, method of Lagrange multipliers, Augmented Lagrangian
method, perturbed Lagrangian method; by the treatment of contact bias on the one-pass, two-pass,
two-half-pass; by the geometric description of the contact boundary to C0-continuous elements
with p-th order Lagrange polynomials as shape functions, Cp-continuous hierarchical-type elements,
contact boundaries smoothed by different types of splines.

A general contact algorithm consists of several procedures. Firstly, it is necessary to detect
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1. Introduction ................................................
whether bodies are in contact for a given displacement field and if so, by which parts of boundaries.
A subroutine called global contact search is the procedure that is responsible for this task. Secondly,
it is necessary to evaluate the contact residual vector and, optionally, the contact tangent stiffness
matrix. An integral part of this procedure is to address the problem of closest point projection at
a discrete set of points of contact boundaries. A subroutine that is responsible for the resolution
of the closest point projection problem is called local contact search. Third, the contact residual
vector and the contact tangent matrix are employed within one iteration of the non-linear solver.
If convergence criteria are not achieved or contact constraints are violated, the whole process is
repeated for a new displacement field.

The reason why so many quasi-static contact problems have difficulties with convergence, as
mentioned at the beginning, lies in the instability of non-linear solver. Contact algorithms of
conventional finite element analysis (FEA) softwares utilize non-linear solvers based on the Newton-
Raphson method and, therefore, depend on the consistent linearization of the contact formulation.
This work is motivated by the contact formulation proposed in [1], which was implemented in
the FEA softwate PMD [2]. It is a symmetry-preserving GPTS penalty-based frictionless large
deformations contact formulation. The contact algorithm of FEA software PMD obviates the
need for consistent tangent matrix with non-linear solver from the class of quasi-Newton methods,
namely the Broyden-Fletcher-Goldfarb-Shenno (BFGS) method. This method is based on a
rank-two update of the previous secant matrix, which is significantly faster then calculation of the
consistent tangent matrix. The updates must be preceded by the initial choice of secant matrix. In
the work [1, p. 2625] it was proposed to use as an initial secant matrix the elastic stiffness matrix,
which seems to be the natural choice. Practical experience, however, revealed that this choice of
the initial matrix leads the approximation of the solution away from the final solution or worse the
calculation can even diverge. The similar problem may be encountered even in conventional FEA
softwares, where this problem is resolved by an automatic load sub-incrementation. In this work
we propose to stabilize the BFGS based non-linear solver by adding an approximative linearization
of the contact tangent matrix to the initial elastic stiffness matrix.

Another issue that was revealed by solving problems of engineering practice is divergence of
the local contact search procedure for a specific type of finite elements; in particular, the 8-node
quadratic serendipity square element. A detailed analysis showed that the reason lies in the applied
method for the problem of closest point projection — the Newton-Raphson method. In this work,
a set of unconstrained optimization methods will by critically assessed and then, based on this
assessment, a new procedure for the local contact search will be proposed.

In classical FEA, the problem of closest point projection is complicated by the fact that after
discretization, contact boundaries are only C0-continuous which leads to ambiguous definition of
normal vectors. In practice, this means that one must algorithmically treat the case when the
projected closest point lies close to the common boundary of two elements. This lack of smoothness
has also an impact on the accuracy of calculation of the contact pressure. In the past, this problem
was solved by the so called contact smoothing techniques, where the C0-continuous FE contact
boundary is replaced by a special parameterization with greater smoothness. The disadvantage of
this procedure is that it leads to an additional data layer. In this work, we propose to use the
isogeometric finite element analysis, a modern method of spatial discretization, which utilizes as
basis functions various types of splines, most frequently NURBS (abbreviation for Non-Uniform
Rational B-Splines).

The newly developed isogeometric contact algorithm based on the symmetry-preserving contact
formulation will be further extended into the explicit contact-impact algorithm for the numerical
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solution of dynamic problems and wave propagation. A particular attention will be paid to the
influence of the mass matrix lumping on the contact pressure oscillations.

The explicit temporal integration schemes are known to be conditionally stable. Furthermore,
it is well known that the penalty method has a negative effect on the critical time step. This
problem will be addressed by the bipenalty method.

1.1 Historical remarks

To find the roots of computational contact mechanics, one must go back to the late 19th Century,
when a German physicist Heinrich Rudolf Hertz was attempting to understand how the optical
properties of multiple, stacked lenses might change with the force holding them together. He
considered frictionless contact between two linearly elastic ellipsoidal bodies undergoing small
deformations. He published his findings in a paper entitled "On contact between elastic bodies"
in 1881 [3], and so laid the foundations for contact mechanics. To this day Hertz’s formulas for
contact stress have still served as a basis for the evaluation of load capabilities and fatigue life in
bearings and gears. But analytical solution is achievable solely for a few simple geometries and,
therefore, only rough approximation for complex engineering problems was possible.

It was only in 1933 when an Italian mathematician Antonio Signorini outlined a problem which
he called ”the problem with ambiguous boundary conditions” [4]. He considered frictionless static
contact between a rigid surface and an anisotropic non-homogeneous elastic body subjected only
to its mass forces. What made this problem so challenging were contact constraints in the form of
inequalities and the fact that the active contact boundary was a priori unknown. In [5], Signorini
explicitly invited young analysts to study the problem and to answer the question of existence
and uniqueness of the solution. His student, Gaetano Fichera, came with positive answer exactly
a week before Signorini’s death. Fichera published his proof of the "Signorini problem", as he
entitled it to honor his teacher, in 1964 [6]. Signorini and Fichera thus gave rise to a new branch of
mathematics called variational inequalities. A pioneering work which opened the door for intensive
research in this field was the paper of Lions and Stampacchia [7]. In the book of Duvaut and Lions
[8] contact with Coulomb friction, dynamic contact problems or contact problems in viscoelasticity
were formulated. A comprehensive text on the topic are books of Kinderlehler and Stampacchia
[9] or Kikuchi and Oden [10].

Variational inequalities serves as a rigorous mathematical framework for computational contact
mechanics. But without its numerical resolution, an analysis of complex industrial contact problems
were still unachievable. Fortunately, there was one particular numerical method that has gained
considerable popularity with the development of computer technology. It was the finite element
method (FEM). FEM is a spatial discretization method which enables to compute numerical
approximations of the real solutions to partial differential equations (PDE) formulated in the week
sense. An introduction to the finite element analysis one can find for example in monographs
[11, 12, 13, 14]. By coincidence, first finite element programs were founded at the same time as
variational inequalities were formulated, i.e. at the end of 1950s and early 1960s. One of the first
widely accepted FE program was ”SAP” (an abbreviation for Structural Analysis Package) [15]
developed at Berkeley by E.L. Wilson at the end of 1950s. The first general purpose finite element
software was NASTRAN (an acronym for NASA STRucture ANalysis) released to NASA in 1968
and to public in 1971.

Motivated by the turbine blade fastenings, Chan and Tuba from Westinghouse Research
Laboratories were probably the first who, in 1971, developed a general purpose finite element
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1. Introduction ................................................
quasi-static contact algorithm [16, 17]. It was two dimensional small strain frictional contact
formulation based on the method of Lagrange multipliers. An interesting fact is that their contact
formulation belongs to the note-to-segment category, which is considered to be more complex
than the node-to-node discretization. The first node-to-node contact discretization for quasi-
static problems was published by Francavilla and Zinkiewitcz [18] in 1975 and for contact-impact
problems one year later by Hughes et al. [19]. All the aforementioned contact formulations
were based on the Lagrange multiplier method. 2D node-to-node discretization by the so called
finite element gaps was developed by Stadler and Weiss [20] in 1979. This formulation could be
understood as the penalty method, described more rigurously by Oden [21] in 1980.

The short history excursion of the computational contact mechanics will end in 1985, during
which it was published several important works that were heading further development. The
milestone in the development of contact algorithms was the inclusion of large deformations and
frictional conditions. Bathe and Chaudhary [22] and Hallquist et al. [23] were the first who
published it. The first named used Lagrange multipliers and the second the penalty method. Both
of them utilized node-to-segment contact discretization. Last but not least, Simo et al. [24] came
up with a new type of contact discretization — segment-to-segment — and laid the foundation for
further development, which lasts until today.

1.2 Outline of the thesis

The thesis is organized in the following way. The state of the art of numerical solution of contact
problems by the finite element method is presented in Chapter 2. Based on the critical overview in
Chapter 2, the aims and objectives of the thesis are formulated in Chapter 3. Chapter 4 explains in
detail the methods mentioned in the state of the art which have been selected as the basis for the
improvement of the general finite element contact algorithm. Chapter 5 describes and discusses
improvements and newly proposed methods, followed by Chapter 6 where these improvements are
clearly demonstrated on the numerical examples. Finally, theoretical and practical outcomes of the
thesis are summarized in Chapter 7, and some conclusions are drawn in Chapter 8, summarizing
results and pointing to further research.
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Chapter 2
State of the Art

The intent of this chapter is to provide the comprehensive up-to-date information about the field
of computational contact mechanics. After reviewing the basic concepts of continuum mechanics
and the definition of contact kinematic variables, the normal and tangential contact conditions are
formulated. Then, the contact initial-boundary value problem is formulated first, in the strong
and next, in the weak sense, to provide the basis for further spatial discretization by the finite
element method, with particular attention being paid to the enforcement of contact constraints. In
particular the penalty method, the Lagrange multipliers method, and the Augmented Lagrangian
method are described. Also, the linearization of the resulting system of nonlinear ordinary
differential equations is addressed. The chapter closes the section on specific procedures, which
are necessary for the numerical solution of the contact problems.

2.1 Contact kinematics

Without loss of generality, let us consider two deformable bodies B(i), i = {1, 2} in nsd dimensional
Euclidean space Rnsd coming into contact, which are depicted in Figure 2.1. The position of a
particle P (i) of the body B(i) at time t = 0 is described by the position vector X(i) ∈ Ω̄(i)

0 ⊂ Rnsd .
Further, let us consider existence of a regular mapping χ(i) : Ω̄(i)

0 × T 7→ Ω̄(i)
t , which will be called

motion [25, p. 61]. Its image is the position vector x(i) ∈ Ω̄(i)
t ⊂ Rnsd of the particle P (i) at time

t ∈ T = [0, T ]. The displacement field is defined as

u(i)(X(i), t) := χ(i)(X(i), t)−X(i). (2.1)

The boundary of domains Ω(i)
0 and Ω(i)

t are covered by disjoint sets

∂Ω(i)
0 = Γ(i)

u ∪ Γ(i)
σ ∪ Γ(i)

c , (2.2)
∂Ω(i)

t = γ(i)
u ∪ γ(i)

σ ∪ γ(i)
c (2.3)

where Γ(i)
u , γ

(i)
u and Γ(i)

σ , γ
(i)
σ are those portions of the boundary in the initial and current configu-

ration where displacements and tractions are prescribed, respectively. The sets Γ(i)
c , γ

(i)
c represent

the unknown part of the boundary in the initial and current configuration where contact can
possibly take place. Its determination is a part of the solution.

The physical fact that two bodies cannot penetrate each other during the motion can be
expressed by the principle of impenetrability [26, p. 244]

Ω(1)
t ∩ Ω(2)

t = ∅, ∀t ∈ T. (2.4)
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Figure 2.1: Two deformable bodies coming into contact depicted in the initial and current configuration.

This certainly elegant term, however, is not suitable for numerical purposes and therefore, it will
be useful to reformulate it slightly. To generalize the notation, let us introduce another body
index, •(k), as

k = {1, 2} \ i, (2.5)

i.e. •(k) is the complement body to the body •(i). The closest point X̄(k) ∈ Γ(k)
c is assigned to

each point X(i) ∈ Γ(i)
c in the sense

X̄(k)(X(i), t) := arg min
X(k)∈Γ(k)

c

∥∥∥x(i)(X(i), t)− x(k)(X(k), t)
∥∥∥ , (2.6)

where ‖•‖ is the Euclidean norm. It should be noted that the body B(i) is usually termed as the
slave body and B(k) as the master body [23]. It is probably due to the dependence implied by the
closest point projection. From now on, where it will be useful, the variables which depend on the
closest point projection will be denoted with the bar •̄.

To find the position vector X̄(k) the contact boundary Γ(k)
c is parametrized by convective

coordinates ξ ∈ A ⊂ Rnpd and described by the mapping ψ(k)
0 : A 7→ Γ(k)

c , see Figure 2.1. Further,
a squared distance function d(X(i), ξ) : Γ(i)

c ×A 7→ R is introduced as

d(X(i), ξ) := 1
2

∥∥∥x(i)(X(i), t)− x(k)(X(k)(ξ), t)
∥∥∥2
. (2.7)

Minimization of this function (see Appendix (A.1)) yields system of non-linear algebraic equations
for unknown convective coordinates ξ̄ of the nearest point X̄(k)

6



............................................ 2.1. Contact kinematics

(
x(i) − x̄(k)

)
· ∂x̄(k)

∂X(k)
∂X̄(k)

∂ξα
= 0, (2.8)

where α = 1, . . . , npd is the index of the convective coordinate component. Here, npd = nsd − 1
is the number of parametric dimensions. From now on, it will be assumed that the greek letters
indices α, β, γ can take vaules 1, . . . , npd. The solution of this system of non-linear algebraic
equations, ξ̄, determines the desired position vector X̄(k) = ψ

(k)
0 (ξ̄). Equation (2.8) can be further

recast considering the definition of the deformation gradient F(k) ∈ Rnsd×nsd

F(k) := ∂x(k)

∂X(k) , (2.9)

and the vectors tangent to the initial contact boundary Γ(k)
c at a point X(k)(ξ̄)

T (k)
α := ∂X(k)

∂ξα
. (2.10)

The tangent vector T (k)
α ∈ Rnsd can be transformed to the current configuration τ (k)

α ∈ Rnsd by
the push forward operation

τ (k)
α = F(k)T (k)

α . (2.11)

Equation (2.8) now gains a particularly simple form

(
x(i) − x̄(k)

)
· τ̄ (k)

α = 0 (2.12)

which can be interpreted as the orthogonality condition. Usually, rather then the initial position
vector X̄(k) its spatial counterpart x̄(k) = x(k)(X(k)(ξ̄), t) will be in question. Therefore it is useful
to replace the mapping ψ(k)

0 by the composite mapping ψ(k)
t : A× T 7→ γ

(k)
c defined as

ψ
(k)
t := χ(k) ◦ ψ(k)

0 . (2.13)

The spatial position vector x̄(k) = x(k)(ξ̄, t) now directly depends on the convective coordinates.
Consequently, the vector tangent to the current contact boundary γ(k)

c at point x̄(k) can be defined
as

τ̄ (k)
α := ∂x̄(k)

∂ξα
. (2.14)

It is worth mentioning that the tangent vectors form a covariant basis of the tangent space at
point x̄(k) which, in general, are not orthogonal. Therefore, it will be useful to define the metric
tensor m(k) ∈ Rnpd×npd by its components

m
(k)
αβ := τ (k)

α · τ
(k)
β . (2.15)

With the metric tensor at hand, the relation between the covariant and contravariant basis can be
expressed as

τ (k)
α = m

(k)
αβτ

(k)β, (2.16)
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where the Einstein summation convention [25, p. 6] has been used. Let us recall that for the
contravariant base vectors, τ (k)β, it holds

τ (k)
α · τ (k)β = δβα, (2.17)

where δβα is the Krönecker delta [27, p. 33]. With the aid of tangent vectors, the normal vector
N(k) ∈ Rnsd to the initial contact boundary Γ(k)

c is constructed as

N(k) := e3 × T (k)
1∥∥∥e3 × T (k)
1

∥∥∥ , N(k) := T (k)
1 × T (k)

2∥∥∥T (k)
1 × T (k)

2

∥∥∥ (2.18)

for nsd = 2 and nsd = 3, respectively, and its spatial counterparts n(k) ∈ Rnsd

n(k) := e3 × τ (k)
1∥∥∥e3 × τ (k)
1

∥∥∥ , n(k) := τ
(k)
1 × τ

(k)
2∥∥∥τ (k)

1 × τ
(k)
2

∥∥∥ . (2.19)

Note that on the contact interface, the smoothness and kinematic compatibility of the two
contacting surfaces necessitates that [28, p. 1130]

n(i) = −n̄(k). (2.20)

2.1.1 The normal gap function

The normal vector allows to define an essential contact kinematic quantity, the normal gap function
g

(i)
N : Γ(i)

c × T 7→ R [29, p. 114], in the form

g
(i)
N (X(i), t) := −

(
x(i) − x̄(k)

)
· n̄(k), (2.21)

which can be understood as the signed distance function. According to our definition, (2.21), the
gap is open, i.e. bodies are not in contact, when the normal gap function is negative. Conversely,
positive value of the normal gap function indicates penetration of the bodies. Finally, the zero
value means that bodies are in touch. With the normal gap function at hand the non-penetration
condition (2.4) can be reformulated as

g
(i)
N ≤ 0, ∀X(i) ∈ Γ(i)

c , t ∈ T. (2.22)

This condition is essential for the contact problem formulation, which will be presented in
Section 2.6. It is the inequality character of the non-penetration condition why the numerical
solution of contact problems is so challenging.

2.1.2 The relative tangential velocity

As far as friction is concerned another important kinematic quantity has to be introduced. Namely,
the relative tangential velocity [29, p. 118], ġ(i)

T ∈ Rnsd , which states the time change of position
of point x(i) with respect to its closest projection point x̄(k). For the ideal slip, i.e. g(i)

N = ġ
(i)
N = 0,

it must hold

8
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∂

∂t

(
x(i) − x̄(k)

)
= 0, (2.23)

∂x(i)

∂t
− ∂x̄(k)

∂t
− ∂x̄(k)

∂X(k)
∂X̄(k)

∂ξα
∂ξ̄α

∂t
= 0, (2.24)

where the material time derivative V(i) ∈ Rnsd can be recognized

V(i)(X(i), t) := ∂x(i)(X(i), t)
∂t

. (2.25)

Utilizing this definition along with (2.9) and (2.10) one finally gets

V(i) − V̄(k) − F̄(k)T̄ (k)
α

˙̄ξα = 0. (2.26)

The last term on the left hand side of (2.26) presents the rate of relative tangential slip expressed
with the aid of the time derivative of convective coordinates related to the spatial tangent base

ġ(i)
T := ˙̄ξαF̄(k)T̄ (k)

α = ˙̄ξατ̄ (k)
α . (2.27)

It means that contravariant components of the slip rate vector, ġ(i)α
T , are equal to the time

derivative of the convective coordinates, ˙̄ξα. Often it will be useful to express components of the
relative tangential velocity vector by its covariant components

ġ
(i)
Tα = ˙̄ξα = m̄

(k)
αβ

˙̄ξβ. (2.28)

The unknown time derivative of convective coordinates can be obtained by differentiating the
orthogonality condition (2.12) (see Appendix A.2)

˙̄ξα =
(
m̄

(k)
αβ + g

(i)
N κ̄

(k)
αβ

)−1
[(

V(i) − V̄(k)
)
· τ̄ (k)

β − g
(i)
N n̄(k) · ∂V̄(k)

∂ξβ

]
, (2.29)

where κ(k)
αβ stands for components of the curvature tensor κ(k) ∈ Rnpd×npd in the spatial tangent

basis, which are defined as

κ
(k)
αβ := n(k) · ∂x(k)

∂ξα∂ξβ
. (2.30)

In the frictional contact the stick and slip state has to be distinguished. The characteristic feature
of the stick state is that there is no relative movement between the bodies, i.e.

ġ(i)
T = 0. (2.31)

Conversely, during the slip the relative tangential velocity is non-zero and hence relative movement
between contacting bodies can occur. It means that the closest projection x̄(k) of the slave point
x(i) changes its convective coordinates ξ̄. The infinitesimal relative tangential displacement of
these two points is

dg(i)
T = ġ(i)

T dt = ˙̄ξατ̄ (k)α dt. (2.32)

9



2. State of the Art ..............................................
2.2 Contact traction vector

The traction vector t(k)
c ∈ Rnsd acting on the current contact boundary γ(k)

c is given by Cauchy’s
stress theorem [25, p. 137]

t(k)
c = n(k) · σ(k), (2.33)

where σ(k) ∈ Rnsd×nsd is the Cauchy stress tensor (also known as the true stress tensor). For the
differential of the contact force df (k)

c ∈ Rnsd in the current configuration it holds

df (k)
c = t(k)

c dγ(k) = n(k) · σ(k)dγ(k). (2.34)

To express the counterpart of t(k)
c in the initial configuration, Nanson’s formula [30, p. 366]

n(k) = J (k) dΓ(k)

dγ(k) N(k) ·
(
F(k)

)−1
, (2.35)

will be exploited. Here, J (k) ∈ R denotes the Jacobian determinant of the mapping from the
initial to the current configuration, i.e. J (k) = det F(k). Nanson’s formula establishes a relation
between the normal vector in the initial and the current configurations. Substitution from (2.35)
into (2.34) yields

df (k)
c = J (k) dΓ(k)

dγ(k) N(k) ·
(
F(k)

)−1
· σ(k)dγ(k) (2.36)

= N(k) · J (k)
(
F(k)

)−1
· σ(k)dΓ(k) (2.37)

= N(k) ·P(k)dΓ(k), (2.38)

where the first Piola-Kirchhoff stress tensor P(k) ∈ Rnsd×nsd has been introduced as

P(k) := J (k)
(
F(k)

)−1
· σ(k). (2.39)

The first Piola-Kirchhoff traction vector T(k)
c ∈ Rnsd acting on the initial contact boundary Γ(k)

c is
then given as

T(k)
c = N(k) ·P(k). (2.40)

Now, for the differential of contact force it holds

df (k)
c = t(k)

c dγ(k) = T(k)
c dΓ(k). (2.41)

Thus the contact traction vectors t(k)
c and T(k)

c have different length but they are pointing in
the same direction. Therefore, the components of the first Piola-Kirchhoff stress tensor can be
interpreted as the stresses that result from a current force vector which acts on a surface in the
initial configuration [30, p. 89].

The both contact traction vectors t(k)
c and T(k)

c at some particular point X(k) ∈ Γ(k)
c can be

resolved into the normal and tangential direction. It should be noted that the resolution into the
tangent direction can be in principle performed both in the initial [31, p. 673] or in the current

10
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n̄(k)

τ
(k)
1

τ
(k)
2

Ω(k)
t

T(k)
ct(k)

N

t(k)
T

t(i)
N

n(i)

t(i)
T

T(i)
c

Figure 2.2: Resolution of the contact traction vector into the normal and tangent components in the
current (spatial) configuration.

[32, p. 321] tangent basis. In this work only the resolution into the current tangent basis will be
presented as it is more common in the numerical implementation. The resolution of the contact
traction vector T(k)

c into the normal t(k)
N ∈ Rnsd and the tangential t(k)

T ∈ Rnsd direction in the
current basis, as is depicted in Figure 2.2, yields

T(k)
c = t(k)

N + t(k)
T . (2.42)

Here, the normal component is

t(k)
N =

(
T(k)

c · n(k)
)

n(k) (2.43)

= T(k)
c

(
n(k) ⊗ n(k)

)
. (2.44)

The length of the normal traction vector t(k)
N ∈ R is

t
(k)
N = T(k)

c · n(k). (2.45)

Obviously, on the contact interface without adhesion only compression can occur, for which the
normal traction is negative. This is the motivation for definition of a new non-negative quantity
— the contact pressure p(k)

c ∈ R+

p(k)
c = −t(k)

N . (2.46)

The tangential part of the traction vector can be expressed from (2.42) as

t(k)
T = T(k)

c − t(k)
N (2.47)

= T(k)
c − (T(k)

c · n(k))n(k) (2.48)

= T(k)
c

(
I− n(k) ⊗ n(k)

)
, (2.49)

where I ∈ Rnsd×nsd is the identity matrix. The tangent traction vector can be further resolved in
the current tangent basis as

11
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t(k)
T = t

(k)α
T τ (k)

α , (2.50)

where the contravariant component has been introduced as

t
(k)α
T = T(k)

c · τ (k)α. (2.51)

Note that contravariant basis vectors can be easily computed from (2.16) by inverse

τ (k)α =
[
m(k)

]−1

αβ
τ

(k)
β . (2.52)

A separate statement of the linear momentum balance applies on the contact interface stipulates
that [28, p. 1130]

T(i)
c = −T̄(k)

c . (2.53)

It follows that

p(i)
c = p̄(k)

c , (2.54)

and

t(i)
T = −t̄(k)

T . (2.55)

Consequently, one can write

T(i)
c = t(i)

N + t(i)
T (2.56)

= t
(i)
N n(i) − t̄(k)

T (2.57)

= −t(i)N n̄(k) − t̄(k)
T (2.58)

= p(k)
c n̄(k) − t(k)

Tατ̄
(k)α, (2.59)

where in (2.58) the equality of normal vectors (2.20) has been considered. By utilizing (2.54) and
(2.55) one finally arrives to the expression

T(i)
c = p(i)

c n̄(k) + t
(i)
Tατ̄

(k)α. (2.60)

In other words, the contact traction vector T(i)
c acting at some point X(i) ∈ Γ(i)

c has been resolved
into the normal and tangent vectors constructed in the closest point X̄(k) ∈ Γ(k)

c and its components
are p(i)

c and t(i)αT .
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2.3 Normal contact conditions

The non-adhesive physical behavior at the contact boundary in the normal direction can be
described using the Hertz-Signoriniho-Moreau conditions [29, p. 136]

p(i)
c ≥ 0, g

(i)
N ≤ 0, p(i)

c g
(i)
N = 0, ∀X(i) ∈ Γ(i)

c , ∀t ∈ T. (2.61)

This conditions are known in mathematical optimization as the Karush–Kuhn–Tucker (KKT)
conditions [33, p. 328] formulating the first-order necessary conditions for a solution in nonlinear
programming to be optimal. The conditions are schematically depicted in Figure 2.3. The first
inequality (2.61)1 indicates that only non-negative contact pressure is admissible at the contact
interface. The second inequality (2.61)2 represents the non-penetration condition. The third
equality (2.61)3, is the so-called complementarity condition which assures that compression is
admissible only when the gap is closed and, conversely, the potential contact interface is stress-free
only when the gap is open.

p
(i)
c

g
(i)
N

Figure 2.3: A scheme of the normal contact conditions.

2.4 Tangential contact conditions

Although this work is restricted exclusively on Coulomb’s friction, the introduced concept will
be general enough that the adjustment for other tangential constitutive relation can be achieved
without great effort.

p
(i)
c

t
(i)2
T

t
(i)1
T

(a) : slip function

−µp(i)
c

µp
(i)
c

g
(i)
T

t
(i)
T

(b) : 1d case of KKT conditions for friction

Figure 2.4: The slip function and the KKT conditions for Coulomb’s friction law.

Coulomb’s friction law can be regarded as the constitutive model for a rigid — perfectly–plastic
material with infinity Young’s modulus and zero isotropic hardening parameter. At the same time,
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2. State of the Art ..............................................
the yield strength is equal to µp(i)

c , where µ ∈ R is the coefficient of friction. This analogy between
friction and plasticity is commonly exploited in the numerical implementation of friction [34, 35].
Therefore, in the spirit of the plastic analogy let us start by the additive decomposition of the
relative slip velocity

ġ(i)
T = ġst(i)

T + ġsl(i)
T (2.62)

where ġst(i)
T ∈ Rnsd is the “elastic” and ġsl(i)

T ∈ Rnsd is the “plastic” part of the slip rate. Then,
the so-called slip function Φ(i) : R× Rnsd 7→ R as a direct analogy to the function of plasticity is
introduced. For Coulomb’s friction law it has the particular form

Φ(i)(p(i)
c , t(i)

T ) :=
∥∥∥t(i)

T

∥∥∥− µp(i)
c ≤ 0. (2.63)

An example of the slip function for the Coulomb friction is depicted in Figure 2.4. The relationship
between the tangent stress vector and the slip rate follows from the principle of maximum plastic
dissipation [36], under which(

t(i)
T − t∗T

)
· ġsl(i)

T ≤ 0, ∀t∗T ∈ {t∗T ∈ Rnsd |Φ(t∗T) ≤ 0} . (2.64)

This inequality implies that

ġsl(i)
T = −λ̇(i)∂Φ(i)

∂t(i)
T
, (2.65)

and for the Coulomb friction law (2.63)

ġsl(i)
T = −λ̇(i) t(i)

T∥∥∥t(i)
T

∥∥∥ , (2.66)

where λ̇(i) ∈ R is called the rate of plastic slip. Thus, the consequence of the principle of maximum
plastic dissipation is that the slip due to friction occurs in the opposite direction to the tangent
traction vector. The rate of plastic slip and the slip function are linked by the KKT conditions for
the frictional contact problem

λ̇(i) ≥ 0, Φ(i) ≤ 0, λ̇(i)Φ(i) = 0, ∀X(i) ∈ Γ(i)
c , ∀t ∈ T. (2.67)

For the numerical solution it will be advantageous to express the condition (2.66) in covariant
coordinates

ġ
sl(i)
Tα = −λ̇(i) t

(i)
Tα∥∥∥t(i)
T

∥∥∥ , (2.68)

where the length of the vector t(i)
T can be calculated from the identity

∥∥∥t(i)
T

∥∥∥2
= t

(i)
Tαm̄

(k)αβt
(i)
Tβ. (2.69)
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2.5 Enforcement of contact constraints

The normal (2.61) and tangential (2.67) contact conditions constitute a restriction on the solution.
As such, they are the reason why the solution of contact tasks leads to a constrained optimization
problem or a nonlinear programming problem, as it is called in the mathematical literature [33].
There is a plethora of numerical methods for solving this problem. The three most common
methods used in computational contact mechanics include the penalty method, the Lagrange
multipliers method and the augmented Lagrangian method. In this section, the principle of each
of these methods will be briefly described.

2.5.1 Penalty method

The method of penalty function is the most commonly used method of regularization of contact
traction vector components. The popularity of the penalty method comes from the fact that it
is easy to implement and it has the vivid physical interpretation. The penalty function may, in
fact, be seen as a spring, which is active only in that part of the contact boundary, where is a
mutual penetration of the contacting bodies. The higher the value of penalty function, the less
the resultant penetration. Hence the main disadvantage of this method, namely that the contact
conditions are fulfilled only approximately for the final value of the penalty function.

The principle of regularization of the contact traction vector components by the penalty method
is shown in Figure 2.5. The regularization consists in replacing the unknown components of the
contact traction vector with a new ones which are dependent on the displacement field. The
normal contact traction is prescribed by the function

p(i)
c = εN

〈
g

(i)
N

〉
, (2.70)

where εN ∈ R+ is the normal penalty function, most commonly a constant, and 〈•〉 : R→ R are
the so-called Macaulay’s brackets defined as

〈x〉 := |x|+ x

2 , x ∈ R. (2.71)

It is thus an operator that for a positive x returns x and for a negative x returns zero. It is now
obvious the reason for the negative sign in the definition of the gap function (2.21). Further, the
rate of the tangent contact traction is prescribed by the function

ṫ(i)
T = −εTġst(i)

T (2.72)

= −εT
(
ġ(i)

T − ġsl(i)
T

)
(2.73)

= −εT

m̄(k)
αβ

˙̄ξβ + λ̇(i) t(i)
T∥∥∥t(i)
T

∥∥∥
 , (2.74)

where ġ(i)
T and ġsl(i)

T was substituted with (2.28) and (2.66), respectively. In this function, εT ∈ R+

is the tangent penalty function, and the expression in parentheses is the “elastic” part of the
slip rate, ġst(i)

T , as is depicted in Figure 2.5b. The contact constraints are theoretically fulfilled
exactly for εN, εT →∞ but in practice, however, the penalty function significantly higher than the
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stiffness of the contacting bodies resulting in the ill-conditioning of the linear system of equations.
This problem can be eliminated by the augmented Lagrangian method.

p
(i)
c = εNg

(i)
N

g
(i)
N

(a) : normal direction

ṫ
(i)
T = εTġ

st(i)
T

−µp(i)
c

ġ
(i)
T

µp
(i)
c

ṫ
(i)
T

(b) : tangent direction

Figure 2.5: A scheme of regularization of the normal and tangent contact constraints by the penalty
method.

2.5.2 Lagrange multipliers method

Considering the method of Lagrange multipliers one can interpret components of the contact
traction vector as the Lagrange multipliers

p(i)
c = λ

(i)
N , (2.75)

t
(i)
Tα = λ

(i)
Tα. (2.76)

Thus, contact traction components are not regularized but instead left as the independent variables.
The advantage of this method is that, in comparison with the penalty method, the contact conditions
are satisfied “exactly”. As a disadvantage may be considered the fact that the resulting system of
equations constitutes the saddle point problem with a semi-definite system matrix, which requires
a special type of linear solver. Moreover, the frequently mentioned drawback is that Lagrange
multipliers increase the number of unknowns. This shortcoming can be solved by employing
so-called dual mortar method [37, 38] which, thanks to a special choice of the space of Lagrange
multipliers, allows to perform the static condensation of Lagrange multipliers.

2.5.3 Augmented Lagrangian method

The augmented Lagrangian method is the robust method, which combines the advantages of the
method of Lagrange multipliers and the penalty method. As the name suggests, the principle
lies in the extension of the Lagrange functional by a certain term. Its purpose is to convert the
problem of constrained optimization in the problem of unconstrained optimization [39]. The result
is a regularization of the contact traction components in the form

p(i)
c =

〈
λ

(i)
N + εNg

(i)
N

〉
, (2.77)

ṫ(i)
T = λ̇

(i)
T − εT

ġ(i)
T + λ̇(i) t(i)

T∥∥∥t(i)
T

∥∥∥
 , (2.78)
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where both the Lagrange multipliers and the penalty terms are used. Now, however, the penalty
functions can be set smaller in order of magnitude than in the case of standard penalty method.
Consequently, it improves the conditioning of the resulting linear systems. In Section 2.10.5 an
algorithm for efficient solution of the augmented Lagrangian is presented.

2.6 Large deformation contact problem formulation

After all the necessary variables have been defined, one can proceed to formulate the contact
initial-boundary value problem in the strong sense. The Lagrangian description is chosen having
regard to the linearization because integration regions will not depend on the displacement field.

2.6.1 Strong form of the contact initial-boundary value problem

At each time instance t ∈ T, the conservation of momentum [29, p. 111] is required

Div P(i) + f (i)
0 = ρ

(i)
0 A(i) in Ω(i)

0 , (2.79)

where Div denotes the divergence operator with respect to the initial configuration, P(i) ∈ Rnsd×nsd

is the first Piola-Kirchhoff stress tensor, f (i)
0 ∈ Rnsd is the prescribed body force per unit reference

volume, ρ(i)
0 ∈ R is the prescribed reference density and A(i) ∈ Rnsd is the material acceleration

field. The equations of momentum conservation are further supplemented by the initial conditions

u(i)
∣∣∣
t=0

= u(i)
0 in Ω̄(i)

0 , (2.80)

V(i)
∣∣∣
t=0

= V(i)
0 in Ω̄(i)

0 , (2.81)

the boundary conditions

u(i) = û(i) on Γ(i)
u , (2.82)

P(i)N(i) = T̂(i) on Γ(i)
σ , (2.83)

and the contact conditions on Γ(i)
c (cf. Equation (2.60))

P(i)N(i) = T(i)
c = p(i)

c n̄(k) + t
(i)
Tατ̄

(k)α, (2.84)

p(i)
c ≥ 0, g

(i)
N ≤ 0, p(i)

c g
(i)
N = 0, (2.85)

λ̇(i) ≥ 0, Φ(i) ≤ 0, λ̇(i)Φ(i) = 0, (2.86)

where u(i)
0 : Ω(i)

0 → Rnsd and V(i)
0 : Ω(i)

0 → Rnsd are prescribed initial displacement and initial
material velocity fields, respectively. û(i) : Γ(i)

u × T → Rnsd and T̂(i) : Γ(i)
σ × T → Rnsd are

prescribed displacement and traction fields, respectively. To complete the formulation, the normal
gap function (2.21), the slip function for Coulomb’s friction law (2.63), and the rate of plastic slip
(2.68) respectively are recalled
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g
(i)
N = −

(
x(i) − x̄(k)

)
· n̄(k), (2.87)

Φ(i) =
√
t
(i)
Tαm̄

(k)αβt
(i)
Tβ − µp

(i)
c , (2.88)

ġ
sl(i)
Tα = −λ̇ t

(i)
Tα√

t
(i)
Tβm̄

(k)βγt
(i)
Tγ

. (2.89)

This system of equations is necessary to supplement by the constitutive relation between
stress and strain, but in this work, it will not be further specified. The solution of the problem
(2.79)-(2.89) is the displacement field, u(i)(X(i), t), which is required to be C2-continuous, and the
contact pressure p(i)

c (X(i), t) along with the covariant components of the tangent traction vector,
t
(i)
Tα(X(i), t). In what follow, only the penalty method will be considered for enforcement of the
contact constraints. As a consequence, after the regularization of the contact pressure (2.70) and
the rate of tangent traction (2.74), the only unknown of the problem (2.79)-(2.89) will be the
displacement field u(i)(X(i), t). Note that the solution must satisfy (2.79)-(2.89) in every single
point of Ω̄(i)

0 , hence the name strong form. As will be showed in the next section, this requirement
can be weakened by considering the so-called weak form.

2.6.2 Weak form of the contact initial-boundary value problem

As is well known, to address a particular problem by the finite element method (FEM), it is first
necessary to convert the strong formulation of the problem to the so-called weak formulation which
has lower demands on the smoothness of the solution. It can be shown that the strong and weak
formulations are equivalent [40, p. 145].

The older and to engineers usually closer approach is based on the calculus of variations, which
establishes the so-called variational formulation. The variational formulation is based on the
definition of a suitable energy functional. The solution of the problem is then sought by minimizing
the energy functional. This leads to the well-known principle of virtual work for static problems
or to the principle of virtual power in the case of dynamic problems.

In this section, the weak formulation of the contact initial-boundary values problem will be
derived using the method of weighted residuals. The idea of the method is as follow. The governing
equations are first converted into the residual form. Then, a trial solution from a suitable function
space is thought substituted into the residual. If the scalar product of the residual for this particular
trial solution is equal to zero for all so-called weighting functions, also taken from a suitable
function space, then this trial solution is considered as the weak solution of the problem. In other
words, the residual is orthogonal to the whole weighting space and, therefore, corresponding trial
solution is the best approximation of the exact solution.

Now, appropriate function spaces will be introduced. The weighting space, V(i), is defined as
a class of all kinematically admissible displacement fields [41, p. 547], which are zero on the
boundary Γ(i)

u

V(i) :=
{
δu(i)(X(i)) ∈ H1(Ω(i)

0 )|δu(i)(X(i)) = 0 on Γ(i)
u

}
, (2.90)

and the solution space of the trial functions, U (i), will be defined as the same class of functions
but which, in addition, fulfills Dirichlet’s boundary conditions on the boundary Γ(i)

u
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U (i) :=
{
u(i)(X(i), t) ∈ H1(Ω(i)

0 )|u(i)(X(i), t) = û(i) on Γ(i)
u

}
. (2.91)

Here, H1 denotes the Sobolev space [42] of all functions defined on Ω(i)
0 that are, as well as all

their first partial derivatives, square integrable. The equations of momentum conservation (2.79)
in the residual form are

ρ
(i)
0 A(i) −Div P(i) − f (i)

0 = 0, (2.92)

and their scalar product with an arbitrary weight function δu(i) ∈ V(i) yields

δΠ(i)(u(i), δu(i)) :=
∫

Ω(i)
0

δu(i) ·
(
ρ

(i)
0 A(i) −Div P(i) − f (i)

0

)
dΩ(i) (2.93)

=
∫

Ω(i)
0

δu(i) · ρ(i)
0 A(i) dΩ(i) (2.94)

−
∫

Ω(i)
0

δu(i) ·Div P(i) dΩ(i) (2.95)

−
∫

Ω(i)
0

δu(i) · f (i)
0 dΩ(i) (2.96)

= 0. (2.97)

Utilizing integration per partes, the stress divergence term (2.95) can be expanded as

∫
Ω(i)

0

δu(i) ·Div P(i) dΩ(i) =
∫

Ω(i)
0

Div
(
δu(i) ·P(i)

)
dΩ(i) −

∫
Ω(i)

0

Grad δu(i) : P(i) dΩ(i), (2.98)

where Grad denotes the gradient operation with respect to the initial coordinates. Further, with
the aid of Gauss-Ostrogradsky theorem one can write

∫
Ω(i)

0

Div
(
P(i) · δu(i)

)
dΩ(i) =

∫
∂Ω(i)

0

δu(i) ·N(i) ·P(i) dΓ(i) (2.99)

=
∫

Γ(i)
σ

δu(i) · T̂(i) dΓ(i) +
∫

Γ(i)
c
δu(i) ·T(i)

c dΓ(i), (2.100)

where the integral over Γ(i)
u is not involved thanks to the weighting space, V(i), which has been

defined in such a way that the weighting functions δu(i) are equal to zero on the boundary Γ(i)
u .

Backward substitution from (2.100) to (2.98) and then into (2.93) yields

∫
Ω(i)

0

(
δu(i) · ρ(i)

0 A(i) + Grad δu(i) : P(i) − δu(i) · f (i)
0

)
dΩ(i)

−
∫

Γ(i)
σ

δu(i) · T̂(i) dΓ(i) −
∫

Γ(i)
c
δu(i) ·T(i)

c dΓ(i) = 0. (2.101)

Introducing definitions for the particular terms in (2.101)
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δΠ(i)
int(u(i), δu(i)) :=

∫
Ω(i)

0

δu(i) · ρ(i)
0 A(i) dΩ(i) +

∫
Ω(i)

0

Grad δu(i) : P(i) dΩ(i), (2.102)

δΠ(i)
ext(u(i), δu(i)) := −

∫
Ω(i)

0

δu(i) · f (i)
0 dΩ(i) −

∫
Γ(i)
σ

δu(i) · T̂(i) dΓ(i), (2.103)

δΠ(i)
c (u(i), δu(i)) := −

∫
Γ(i)

c
δu(i) ·

(
p(i)

c n̄(k) + t
(i)
Tατ̄

(k)α
)

dΓ(i), (2.104)

where T(i)
c has been substituted from (2.60). δΠ(i)

int represents the virtual work done by inertia and
internal forces, δΠ(i)

ext comprises of terms expressing virtual work due to volume and surface forces,
respectively, and δΠ(i)

c denotes virtual work done by contact forces i.e. the contact residual term.
With this definitions at hand, one can proceed to formulate the contact initial-boundary value

problem in the weak form: Let ρ(i)
0 , f (i)

0 , u(i)
0 , v(i)

0 defined on Ω̄(i) and T̂(i), û(i) defined onΓ(i)
σ ,

Γ(i)
u , respectively, are given square-integrable functions. In every time instance t ∈ T, we seek for

a displacement field u(i) ∈ U (i) which for all weight functions δu(i) ∈ V(i) satisfy

2∑
i=1

(
δΠ(i)

int + δΠ(i)
ext + δΠ(i)

c

)
= 0. (2.105)

This equation serves as the basis for the numerical solution by the finite element method, which
will by presented in Section 2.8.

Contact virtual work term

The contact virtual work term, or contact residual, (2.104) can be expanded into the form

δΠc = −
∫

Γ(1)
c
δu(1) ·

(
p(1)

c n̄(2) + t
(1)
Tατ̄

(2)α
)

dΓ(1)−
∫

Γ(2)
c
δu(2) ·

(
p(2)

c n̄(1) + t
(2)
Tατ̄

(1)α
)

dΓ(2). (2.106)

This is the most general form of the contact residual which admits two different and independent
contact traction vector fields T(1)

c and T(2)
c . The frictionless variant of this contact residual is

utilized in the contact formulation of the FEA software PMD [1, p. 2621]. From equation (2.106) it
is apparent that the action-reaction principle is not directly enforced on the contact interface. The
advantage of this formulation is that the integrated quantities in both integrals are independent of
the counterpart contact boundary, i.e., the integral over Γ(1)

c depends only on coordinate X(1) as
well as the integral over Γ(2)

c depends only on coordinate X(2).
If the action-reaction principle is explicitly enforced using (2.53), the contact residual in the

form (2.106) can be transformed into the integral only over the slave boundary Γ(i)
c ,

δΠc = −
∫

Γ(i)
c
δu(i) ·T(i)

c dΓ(i) −
∫

Γ(k)
c
δu(k) ·

(
−T(i)

c

)
dΓ(k) (2.107)

= −
∫

Γ(i)
c

(
δu(i) ·T(i)

c − δu(k) ·T(i)
c

)
dΓ(i) (2.108)

= −
∫

Γ(i)
c

T(i)
c ·

(
δu(i) − δu(k)

)
dΓ(i) (2.109)

= −
∫

Γ(i)
c

(
p(i)

c n̄(k) + t
(i)
Tατ̄

(k)α
)
·
(
δu(i) − δu(k)

)
dΓ(i), (2.110)
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and taking full advantage of relations for the normal gap function variation, (B.20), and variation
of the convective coordinate, (B.30), derived in Appendix B, one arrives to

δΠc =
∫

Γ(i)
c

(
p(i)

c δg
(i)
N − t

(i)
Tαδξ̄

α
)

dΓ(i). (2.111)

This is the most common form of the contact residual. Notice that the integration is carried
out only over the slave boundary Γ(i)

c but the integrand depends on the both contact interfaces.
Therefore, a special projection algorithms are needed [43, 44].

After discretization, the boundaries Γ(1)
c ,Γ(2)

c cannot be assumed to coincide, as it is the case
for the continuum formulation. Some authors take into account this lack of bias by the so called
two-pass algorithm [23], where the contact residual is calculated as the average value of the integral
(2.111) evaluated gradually over the both contact boundaries. More generally, it is possible to
introduce a parameter φ ∈ 〈0, 1〉, which governs the amount of the contribution to the contact
residual from each of the contact boundaries

δΠc = (1− φ)
∫

Γ(i)
c

(p(i)
c δg

(i)
N + t

(i)
Tαδξ̄

α) dΓ(i) + φ

∫
Γ(k)

c
(p(k)

c δg
(k)
N + t

(k)
Tαδξ̄

α) dΓ(i). (2.112)

Another way how to solve the problem with ambiguous definitions of contact boundary Γc is to
integrate the contact residual over a fictitious contact boundary Γf

c [45, 24]. This contact boundary
could be defined for instance as a middle surface (for 3D) or a middle curve (for 2D) of boundaries
Γ(1)

c and Γ(2)
c , i.e. each point of the boundary Γf

c has the same closest distance from Γ(1)
c and Γ(2)

c .

2.7 Linearization

In the previous section, the contact initial-boundary value problem was formulated in the weak
sense. Thanks to the regularization by the penalty method, the resulting equation (2.105) non-
linearly depends only on the displacement field u(i). An efficient way to find a solution of system
of non-linear equations is the Newton-Raphson method [46, p. 152], which will be described in
detail in Section 2.10.4. It is based on iterative solving of the linearized problem. To linearize a
non-linear problem, the concept of directional derivative has to be introduced [47, p. 50]. The
directional derivative D∆u(i) [F ] of a functional F at a point u(i) and in the direction of ∆u(i) is
defined as

D∆u(i) [F ] (u(i)) := d
dθF (u(i) + θ∆u(i))

∣∣∣∣
θ=0

. (2.113)

where θ ∈ R. With the directional derivative at hand, one can proceed to construct the linearization
of the weak form (2.105) at the point u(i)

2∑
i=1

{
δΠ(i)

int,ext

∣∣∣
u(i)

+ δΠ(i)
c

∣∣∣
u(i)

+D∆u(i)

[
δΠ(i)

int,ext

]
+D∆u(i)

[
δΠ(i)

c

]}
= 0. (2.114)

Further in this section only the linearization of the contact residual term (2.111) will be presented
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D∆u(i)

[
δΠ(i)

c

]
=D∆u(i)

[∫
Γ(i)

c

(
p(i)

c δg
(i)
N − t

(i)
Tαδξ̄

α
)

dΓ(i)
]

(2.115)

=
∫

Γ(i)
c

(
D∆u(i)

[
p(i)

c

]
δg

(i)
N + p(i)

c D∆u(i)

[
δg

(i)
N

]
− D∆u(i)

[
t
(i)
Tα

]
· δξ̄α − t(i)Tα ·D∆u(i)

[
δξ̄α

])
dΓ(i). (2.116)

Note that in the case of the penalty method, not only the normal gap function but also components
of the contact traction vector are dependent on the displacement field. For the contact pressure
one gets

D∆u(i)

[
p(i)

c

]
= D∆u(i)

[
εN
〈
g

(i)
N

〉]
(2.117)

= εNH
(
g

(i)
N

)
D∆u(i)

[
g

(i)
N

]
. (2.118)

Because the tangent traction vector is defined by the evolution equation (2.74) and, as such, it
is time dependent, it has to be integrated in time. In principle, the linearization can be performed
both before or after the time integration. In this work, the time integration of the friction model
is postponed to Section 2.9.3 and at this point, the linearization of the rate of tangent traction
vector, ṫ(i)

T , is performed.
The linearization of the tangent traction vector components depends on whether it is in the

stick or slip state. In the stick state the directional derivative in the direction of u(i) yields

D∆u(i)

[
ṫ
st(i)
Tα

]
= D∆u(i)

[
−εTm̄

(k)
αβ

˙̄ξβ
]

(2.119)

= −εT
(
D∆u(i)

[
m̄

(k)
αβ

] ˙̄ξβ + m̄
(k)
αβD∆u(i)

[ ˙̄ξβ
])
, (2.120)

and in the case of slip

D∆u(i)

[
ṫ
sl(i)
Tα

]
= D∆u(i)

[
ṫ
st(i)
Tα

]
+D∆u(i)

−εTλ̇(i) t(i)
T∥∥∥t(i)
T

∥∥∥
 (2.121)

= D∆u(i)

[
ṫ
st(i)
Tα

]
− εT

D∆u(i)

[
λ̇(i)

] t(i)
T∥∥∥t(i)
T

∥∥∥ + λ̇(i)D∆u(i)

 t(i)
T∥∥∥t(i)
T

∥∥∥
 . (2.122)

For the sake of completeness, the expressions for all involved variations and directional derivatives
of the contact quantities are derived in Appendices B and C.

2.8 Spatial discretization by the finite element method

The aim of the spatial discretization is to construct finite-dimensional subspaces Uh(i) and Vh(i)

of the infinite-dimensional function spaces U (i) and V(i) defined in Section 2.6.2. From now
on discretized quantities will be denoted by the superscripted letter h. First of all, the region
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...............................2.8. Spatial discretization by the finite element method

Ω(i) ⊂ Rnsd is approximated with the aid of the so-called finite elements Ω(i)
e ⊂ Rnsd , as is depicted

in Figure 2.6

Ω(i) ≈ Ωh(i) =
nel⋃
e

Ω(i)
e , (2.123)

where e is the element index and nel is the number of elements. The geometry of each finite element
is described by the mapping Xe (i)(ζ) : Ω� 7→ Ω(i)

e , where Ω� ⊂ Rnsd indicates the parametric
region. (In R1 the parametric domain is usually the interval Ω� = [−1, 1], in R2 it is the square
Ω� = [−1, 1]× [−1, 1], etc.) This mapping is defined as

Xe (i)(ζ) :=
nen∑
a=1

Na(ζ)Xe (i)
a , (2.124)

where Xe (i)
a ∈ Ω(i)

e is the initial position vector of the a-th nodal point, ζ ∈ Ω� is the vector of
isoparametric coordinates, Na(ζ) is the shape function associated with the a-th nodal point, and
nen indicates the number of element nodes. Shape functions are usually chosen as the Lagrange
polynomials of the first or second order. Other requirements on shape functions are mainly the
linear independence and partition-of-unity. Details can be found e.g. in monographs [11, 12], or
[13].

Γh(i)
c

Γh(k)
c

Ω(i)
0

Ω(i)
e

Ω(k)
e

Ωh(i)
0

Ωh(k)
0

Ω(k)
0

Figure 2.6: Finite element discretization of regions Ω(i)
0 by Ωh(i)

0 .

Further, so-called isoparametric concept, first introduced by Irons [48], will be employed. The
fundamental idea consists in the fact that any field being discretized on the finite element region
Ω(i)
e uses the same shape functions as the finite element itself in the mapping for Xe (i)(ζ) (2.124).

Consequently, the discretized displacement field, displacement test functions and the field of spatial
coordinates, defined on the finite element Ω(i)

e can be written as

ue (i)(ζ, t) :=
nen∑
a=1

Na(ζ)d(i)
a (Xe (i)

a , t), (2.125)

δue (i)(ζ) :=
nen∑
a=1

Na(ζ)c(i)
a (Xe (i)

a ), (2.126)
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xe (i)(ζ, t) :=
nen∑
a=1

Na(ζ)x(i)
a (Xe (i)

a , t), (2.127)

where d(i)
a ∈ Rnsd are nodal displacements, c(i)

a ∈ Rnsd are nodal weighted displacements, and
x(i)
a ∈ Rnsd are nodal position vectors in the current configuration.

Ω(i)
eΩh(i)

0

A

ΦA

(a) : a basis function

(a ≡ A)

Na ≡ ΦA

a = 2

a = 3

N2

N3

Ω(i)
e

a = 1

(b) : an element shape functions

Figure 2.7: An example of the basis function ΦA defined over the whole region Ωh(i)
0 and its counterpart

on the finite element Ω(i)
e — the shape function Na for a = 1.

By the unification of the defined fields over all finite elements Ω(i)
e one gets fields defined over

the whole domain Ωh(i)

uh(i)(Xh(i), t) =
nel⋃
e

ue (i)(ζ, t) =
nnod∑
A=1

ΦA(Xh(i))d(i)
A (t), (2.128)

δuh(i)(Xh(i)) =
nel⋃
e

δue (i)(ζ) =
nnod∑
A=1

ΦA(Xh(i))c(i)
A , (2.129)

xh(i)(Xh(i), t) =
nel⋃
e

xe (i)(ζ, t) =
nnod∑
A=1

ΦA(Xh(i))x(i)
A (t), (2.130)

where the local description using the shape functions Na(ζ) has been replaced by the global
description using the basis functions ΦA(Xh(i)), where A = 1, . . . , nnod are global indices of nodal
points and nnod is the total number of nodes. The set of all functions defined in this way forms
the finite-dimensional subspaces Vh(i) ⊂ V(i) and Uh(i) ⊂ U (i)

Vh(i) :=
{
δuh(i) =

nnod∑
A=1

ΦA(Xh(i))c(i)
A |δu

h(i) = 0 on Γh(i)
u

}
, (2.131)

Uh(i) :=
{

uh(i) =
nnod∑
A=1

ΦA(Xh(i))d(i)
A (t)|uh(i)(Xh(i), t) = û on Γh(i)

u

}
. (2.132)

Note that it is also possible to proceed in reverse. That is, to chose the basis functions, ΦA,
which would be defined on the whole region Ωh(i) (i.e. the principle of the Ritz method), and then
perform their division into finite elements. The advantage of this process is that the basis functions
could be chosen in a way that the geometry would be described accurately, i.e. Ωh(i) ≡ Ω(i)

0 . This
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can be achieved e.g. by choosing the basis functions as some sort of splines. Just described idea is
the essential idea behind the isogeometric finite element analysis [49, p. 4138] as a modern method
of spatial discretization.

The application of the isogeometric analysis to the solution of contact problems is especially
appealing thanks to the guaranteed smoothness of the contact boundaries [50, 51, 52, 53, 54]. In
particular, it eliminates the problem of the ambiguous definition of the normal vector field, which
for classical finite elements leads to oscillations of the contact traction vector.

A discrete form of the weak formulation, introduced in Section 2.6.2, can be obtained by the
Bubnov-Galerkin weighted residual method [12, p. 7]. The principle is simple. It consist in
replacement of the infinite-dimensional spaces U (i) and V(i) in the weak formulation (2.105) by
their finite-dimensional subspaces Uh(i) and Vh(i).

The discrete weak form of the contact initial-boundary value problem can be formulated as
follow: Let ρ(i)

0 , f (i)
0 , u(i)

0 , v(i)
0 defined on Ω̄h(i) and T̂(i), û(i) defined on Γh(i)

σ , Γh(i)
u , respectively,

are given square-integrable functions. In every time instance t ∈ T, we seek for a displacement
field uh(i) ∈ Uh(i) which for all weight functions δuh(i) ∈ Vh(i) satisfies

∑2
i=1

{
δΠh(i)

int + δΠh(i)
ext + δΠh(i)

c
}

= 0, (2.133)

where the discrete equivalents of (2.133) are obtained by the substitution from the definition of
spaces Uh(i) (2.132) and Vh(i) (2.131). After some manipulations which can be found e.g. in [13,
29], one can write (2.133) in the matrix notation

cT
[
Md̈(t) + Fint(d(t))− Fext(t) + Fc(d(t))

]
= 0, (2.134)

where c ∈ Rndof is the vector of nodal weighting coefficients of displacement, ndof is the number
of degree of freedom (number of unknowns of the problem), M ∈ Rndof×ndof is the mass matrix,
d̈ ∈ Rndof is the vector of nodal accelerations, Fint ∈ Rndof is the vector of internal nodal
forces, Fext ∈ Rndof is the vector of external nodal forces and Fc ∈ Rndof is the vector of nodal
contact forces. As was explained in Section 2.6.2, equations (2.134) must hold for all displacement
weighting functions from the test space Vh(i). But this means that vector c of nodal weighting
coefficients can be arbitrary. Therefore, the term in square brackets in (2.134) has to be equal to
zero vector

Md̈(t) + Fint(d(t))− Fext(t) + Fc(d(t)) = 0. (2.135)

Further in this section, the discretization of the contact residual term δΠc (2.111) will be
described. Because the discretized version of this term is integrated only over the contact boundary
Γh(i)

c (see Figure 2.6), to establish the global vector of nodal contact forces, Fc, it is sufficient to
consider the restriction of functions uh(i) and δuh(i) on Γh(i)

c .
All types of contact discretization can be written in a common form

δΠh
c =

nc∑
s=1

(
p(i)

cs δg
(i)
Ns − t

(i)
Tsαδξ̄

α
s

)
A(i)
s , (2.136)

where the integration over contact interface has been replaced by the summation over nc active
contact points (nodes or integration points). A(i)

s means the size of the associated contact boundary
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that belongs to the s-th active node. Note that superscript h indicating discretization will be
omitted in that cases where the discrete character is noted by summation index s.

The variations of the discretized normal gap function and convective coordinates can be written
in matrix notation as

δg
(i)
Ns = −cT

s N, (2.137)
δξ̄αs = cT

s Dα, (2.138)

where cs ∈ Rn
(i)
nes+n(k)

nes×nsd is the matrix of nodal weighted displacements, n(i)
nes is the number of nodes

of the element segment (i.e. element edge in 2D or element face in 3D), and N,Dα ∈ Rn
(i)
nes+n(k)

nes×nsd

are matrices that will be specified by the contact discretization type in the following subsections.
Substituting these matrix expressions into the discretized contact residual (2.136) yields

δΠh
c =

nc∑
s=1

[
p(i)

cs

(
−cT

s N
)
− t(i)Tsα

(
cT
s Dα

)]
As, (2.139)

=
nc∑
s=1

cT
s (FNs + FTs) , (2.140)

where the vector of normal and tangent components of the local equivalent contact forces has been
introduced as

FNs = −p(i)
cs NAs, (2.141)

FTs = t
(i)
TsαDαAs. (2.142)

Note that the global vector Fc can be easily obtained from the local vectors FNs and FTs utilizing
the standard finite element assembly procedure.

2.8.1 Node-to-node discretization

Node-to-node is the easiest way of contact discretization [18]. The contact constraints are enforced
only point-wise in contact nodes, that is the principle of collocation methods [55]. Since the large
slip of the contact interface is not permitted, this formulation is suitable only for geometrically
linear problems. Normal vectors are defined in master nodes as the average normal vector of
adjacent segments.

As

Γh(i)
c

g
(i)
Ns

Γh(i)
c

Γh(k)
c

x(i)
s

d(i)
s

g0s

d(k)
s

n(k)
s

Γh(k)
cx(k)

s

Figure 2.8: Node-to-node discretization.
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The indisputable advantage of this formulation is its simplicity. Another advantage is that
the node-to-node discretization satisfies the contact patch test [56, 57], which verifies the ability
of a contact discretization to transfer a constant pressure load between two bodies. The main
disadvantage is the fact that the finite element mesh of a contact interface has to be conform.
A typical configuration with the s-th contact pair is shown in Figure 2.8. There is the initial
configuration, outlined by the light blue colour, with the initial gap g0s. The current configuration
is denoted by the black colour. After deformation, in the kinematically linear case, the normal
gap function can be written using the nodal displacements as

g
(i)
Ns =

(
d(i)
s − d(k)

s

)
· n̄(k)

s + g0s = NTds + g0s. (2.143)

Equation (D.10), governing the variation and linearization of the convective coordinates, simplifies
to

Dα = AαβTβ, (2.144)

where for Aαβ holds (D.6). The main consequence of considering the kinematically linear contact is
that the geometric part of the contact tangent matrix is zero. The concrete form of the previously
defined matrices is

ds =
[

d(i)
s

d(k)
s

]
, ∆ds =

[
∆d(i)

s

∆d(k)
s

]
, cs =

[
c(i)
s

c(k)
s

]
, (2.145)

N =
[

n(k)
s

−n(k)
s

]
, Tα =

[
τ

(k)
sα

−τ (k)
sα

]
. (2.146)

2.8.2 Node-to-segment discretization

First note that the term segment is used to denote the portion of the contact boundary per one
element, both the 2D and the 3D case. The node-to-segment discretization [58, 59, 60, 61] is
currently the most widely used contact discretization in commercial FEA softwares. This type
of contact discretization eliminates the drawbacks of the node-to-node discretization. Contact
constraints are enforced between the slave node, x(i)

s , and the corresponding point, x̄(k)(ξ), on
the master segment, as is depicted in Figure 2.9. The contact reaction in the slave node is then
interpolated into the nodes of master segment. Therefore, it is possible to use also non-conforming
meshes of the contact interface. Moreover, unlike the node-to-node discretization, the large mutual
sliding of contacting bodies are permitted.

Slave nodes are thus prevented from penetration into master segments, however, a master
segment can, in principle, penetrate into a slave segment. Therefore, it is recommended selecting
as a slave body that one with a finer mesh. This contact bias can be treated with the two-pass
algorithm, as was described in Section 2.6.2. Because the node-to-segment discretization simply
enforces zero penetration of slave nodes, a localized concentration of contact forces occurs at this
nodes, leading to oscillation of the contact pressure.
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Figure 2.9: Node-to-segment discretization.

The main disadvantage of this formulation is that the one-pass node-to-segment algorithm fails
the contact patch test [56], whereas the two-pass node-to-segment algorithm passes the patch test
but only if used in conjunction with the Lagrange multiplier method [62, p. 380].

Another drawback of the node-to-segment discretization is that it can lead to the so-called surface
locking [63]. In general, locking is a phenomenon, when the mesh refinement does not lead to the
convergence of the solution. It is due to the fact that the shape functions of higher orders lead to
overdetermined system of linear equations for the calculation of nodal displacements. The locking
problem is caused by failure of inf-sup condition, also known as Ladyzhenskaya-Babuška-Breezi
(LBB) condition, which establish the condition for the well posedness of the variational problem
in the mixed form. For the node-to-segment contact discretization the matrix quantities are

xs =


x(i)
s

x(k)
1
...

x(k)
n

(k)
nes

 , ∆ds =


∆d(i)

s

∆d(k)
1
...

∆d(k)
n

(k)
nes

 , cs =


c(i)
s

c(k)
1
...

c(k)
n

(k)
nes

 , (2.147)

N =


n̄(k)

−N (k)
1 (ξ̄)n̄(k)

...
−N (k)

n
(k)
nes

(ξ̄)n̄(k)

 , Nα =


0

−N (k)
1,α(ξ̄)n̄(k)

...
−N (k)

n
(k)
nes,α

(ξ̄)n̄(k)

 , Nαβ =


0

−N (k)
1,αβ(ξ̄)n̄(k)

...
−N (k)

n
(k)
nes,αβ

(ξ̄)n̄(k)

 ,
(2.148)

Tα =


τ̄ (k)α

−N (k)
1 (ξ̄)τ̄ (k)α

...
−N (k)

n
(k)
nes

(ξ̄)τ̄ (k)α

 , Tαβ =


0

−N (k)
1,β (ξ̄)τ̄ (k)α

...
−N (k)

n
(k)
nes,β

(ξ̄)τ̄ (k)α

 . (2.149)

2.8.3 Segment-to-segment discretization

As the segment-to-segment discretization is denoted the contact formulation first presented in [24],
which was extended for the large deformation case in [64]. This type of discretization enforces
contact conditions not pointwise, like the collocation method, but in average over contact segments,
i.e. in the weak sense. Contact conditions are evaluated in integration points, as shown in
Figure 2.10. The result is in comparison with the node-to-segment discretization a smoother
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contact pressure. In addition, this type of discretization is not so sensitive to the choice of the
master/slave contact boundary, as it is in the case of node-to-segment discretization.

x(i)
g

Γh(i)
c

Γh(k)
c

n̄(k)

x̄(k)

g
(i)
Ng

x(i)
sx(i)

s−1 x(i)
s+1

Figure 2.10: Segment-to-segment discretization.

Mortar discretization

Also the mortar method can be understood as the segment-to-segment contact discretization
technique. The mortar FE method is a discretization technique for partial differential equations
(PDE), which uses special FE spaces of Lagrange multipliers on non-overlapping subdomains
to enforce the equality of the solution on the interface. It was originally proposed as a new
approach to discretization-driven domain decomposition in application to the spectral element
method and its performance was demonstrated on the Navier-Stokes problem [65]. Shortly after
that, application to moving-geometry sliding-mesh problem was presented in [66] and fourth-order
problem in FE framework was showed in [67]. The extension of the mortar FE method to handle
the unilateral contact between deformable bodies was proposed in [68, 69] where among other
things an upper bound of the convergence rate was given.

From the computational contact point of view, the key properties of the mortar FE method
are: it preserves optimal convergence rate; results in stable discretization, i.e. fulfills the inf-sup
condition, and passes the contact patch test. All this provided that a suitable space of Lagrange
multiplier is chosen. For instance the dual space to the space of displacements proved itself to
be a particularly advantageous choice of the Lagrange multiplier ansatz [70, 71]. This is because
it leads to easier implementation as the mortar map can be represented by a diagonal matrix.
Consequently, the Lagrange multipliers can be eliminated from the global system of equations by
static condensation, and thus avoiding an increase in system size.

Beside continuing rigorous mathematical analysis of the mortar FE method, the papers devoted
to the implementation had also appeared. 2D frictionless small deformation case was presented in
[72, 73] and finite deformation case in [37, 74], where dual Lagrange space and primal-dual active
set strategy (PDASS) were utilized. 2D frictional contact algorithm involving finite deformation
and large sliding was presented in [75] where penalty regularization was considered. To the same
problem, linear dual Lagrange space and PDASS was applied in [76, 41].

In three dimensions the evaluation of the mortar surface integrals requires special treatment by
the projection of the displacement jump across the interface onto the Lagrange multiplier space
[77, 78]. This projection was successfully applied on 3D frictionless large deformation problems in
[44] and also utilizing PDASS with linear dual Lagrange space in [79, 38] and higher order dual
Lagrange space in [80]. 3D frictional large deformation contact was presented in [81], with linear
elements, and in [82] with quadratic elements.

Engineers usually understand the mortar FE method as weak enforcement of the contact
constraints. This is in contrast to the conventional node-to-segment formulations where the contact
constraints are enforced in the sense of collocation method only in the discrete points. Inspired
by this reasoning, researchers came with so-called mortar-based contact formulations [83, 84, 85].
Also the contact virtual work discretized by the mortar-based method can be written in the form
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of summation over active nodal points, (2.136), provided that nodal point contact quantities are
defined. In particular, the control point normal gap and its variation are defined as the weighted
average, with the basis functions as weights

g
(i)
Ns =

∫
Γc

Φsg
(i)
N dΓ

As
δg
h(i)
Ns =

∫
Γc

Φsδg
(i)
N dΓ

As
, (2.150)

and similarly for frictional contact quantities

ξs =
∫

Γc
Φsξ̄s dΓ
As

, m̄(k)
s =

∫
Γc

Φsm̄(k) dΓ
As

. (2.151)

where As is the “area of competence” of the s-th nodal point and is defined as

As =
∫

Γc
Φs dΓ. (2.152)

Note that an active nodal point is one for which g(i)
Ns ≤ 0. For the sake of completeness, also for

the segment-to-segment contact discretization the necessary matrix quantities will be presented:

xs =



x(i)
1
...

x(i)
n

(i)
nes

x(k)
1
...

x(k)
n

(k)
nes


, ∆ds =



∆d(i)
1
...

∆d(i)
n

(i)
nes

∆d(k)
1
...

∆d(k)
n

(k)
nes


, cs =



c(i)
1
...

c(i)
n

(i)
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c(k)
1
...

c(k)
n

(k)
nes


, (2.153)

N =



N
(i)
1 (η)n̄(k)

...
N

(i)
n

(i)
nes

(η)n̄(k)

−N (k)
1 (ξ̄)n̄(k)

...
−N (k)

n
(k)
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(ξ̄)n̄(k)
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0
...
0

−N (k)
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, Nαβ =



0
...
0
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(2.154)

Tα =



N
(i)
1 (η)τ̄ (k)

α
...

N
(i)
n

(i)
nes

(η)τ̄ (k)
α

−N (k)
1 (ξ̄)τ̄ (k)

α
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−N (k)
n

(k)
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(ξ̄)τ̄ (k)
α


, Tαβ =



0
...
0
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α
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n
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nes,β

(ξ̄)τ̄ (k)
α


. (2.155)

30



............................. 2.9. Temporal discretization by the finite difference method

2.9 Temporal discretization by the finite difference method

The system of non-linear ordinary differential equations (2.135) resulting from the spatial discretiza-
tion by the finite element method is called semi-discrete, because the vector of equivalent nodal
displacements, d(t), is continuous in time. This section proceeds with the time discretization. The
time interval T = 〈0, T 〉 is divided into subintervals T =

⋃N
n=0

〈
tn, tn+1〉 with the corresponding

time step ∆tn = tn+1 − tn. The unknown displacement field is then calculated at discrete time
points employing an appropriate integration schemes. As a representative of temporal integration
schemes, the Hilbert-Hughes-Taylor (HHT) method [86], also known as α-method, will be presented.
The integration scheme can be summarized as follows:

Man+1 + Fint|dn+α + Fc|dn+α = Fc|tn+α , (2.156)

dn+α = αdn+1 + (1− α)dn, (2.157)

dn+1 = dn + ∆tnvn + (∆tn)2

2
[
(1− 2β)an + 2βan+1

]
, (2.158)

vn+1 = vn + ∆tn
[
(1− γ)an + γan+1

]
, (2.159)

where α, β, and γ are algorithmic parameters which determine stability and accuracy of the
method. Parameter α controls in which point of the time subinterval,

〈
tn, tn+1〉, the balance of

momentum will be enforced. Parameter β determines the point of subinterval
〈
tn, tn+1〉, to which

the acceleration will be linearly interpolated for the calculation of the new displacement vector
dn+1. And finally parameter γ has the same meaning as β but for calculation of the new velocity
vector vn+1.

2.9.1 Implicit time integration schemes

If the parameter α is put equal to one, the classical implicit scheme — the Newmark method [87]
— is obtained. Further, if β = 1/4 and γ = 1/2, one comes to the trapezoidal method. For such
given parameters, the acceleration an+1 can be expressed from equation (2.158) as

an+1 = an − 4
(∆tn)2

(
dn+1 − dn

)
+ 4

∆tnvn, (2.160)

which can be substituted into the momentum balance equation (2.156) and after some manipulation

R|dn+1 = M
[
an + 4

(∆tn)2 dn + 4
∆tnvn

]
−M 4

(∆tn)2 dn+1 + Fint|dn+1 − Fext|tn+1 + Fc|dn+1 = 0,

(2.161)
that is the residual vector expressed in the time instance tn+1. It represents a set of non-linear
algebraic equations for the new displacement vector dn+1. It is therefore necessary to employ
some numerical method for solving nonlinear equations, which will be described in Section 2.10.4.
The advantage of the implicit method is unconditional stability. It means that the time step ∆tn
can be chosen arbitrarily large, without affecting the stability of the numerical solution. The
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drawback of the method is the need to solve a set of nonlinear equations in each time step, which
can be, especially for large problems, time consuming.

2.9.2 Explicit time integration schemes

The values α = 1, β = 0, and γ = 1/2 yield a representative of explicit schemes — the central
difference method (CDM) . If zero is substituted for the parameter β in the equation (2.158)

dn+1 = dn + ∆tnvn + (∆tn)2

2 an, (2.162)

an explicit formula for the new displacement vector dn+1 is immediately obtained. With dn+1 in
hand, the new acceleration vector can be expressed for (2.156)

an+1 = M−1 (Fext|tn+1 − Fint|dn+1 − Fc|dn+1) . (2.163)

This system of linear algebraic equations can be solved very efficiently, especially for a diagonal
mass matrix M. In this case, the linear system of equations breaks up into linearly independent
equations, which can be addressed in parallel. The disadvantage is that the central difference
method is conditionally stable. The stable time step is driven by the stability condition

∆tn ≤ 2
ωmax

, (2.164)

where ωmax is the largest natural frequency of the linearized system.

2.9.3 Backward Euler method for friction

Both, in the case of Newmark methods and the method of central differences, the vector of contact
forces Fc|dn+1 has to be calculated at time step n+1. If the friction is taken into the consideration,
driven by the evolution equations (2.63)-(2.67), its temporal integration has to be performed. For
this purpose, the most commonly used temporal integration scheme is the backward Euler method,
also known as the implicit Euler method. The quantities ġ(i)

T , ṫ(i)
T , and λ̇ are approximated by the

backward time differences as

ġ
(i)
Tα = m̄

(k)
αβ

˙̄ξβ ≈ m̄n(k)
αβ

ξ̄n+1β − ξ̄nβ

∆tn , (2.165)

ṫ
(i)
Tα ≈

t
n+1(i)
Tα − tn(i)

Tα
∆tn , (2.166)

λ̇ ≈ λn+1 − λn

∆tn = ∆λn+1

∆tn . (2.167)

These differences are used to approximate the regularized tangential components of the contact
traction vector (2.74)

t
n+1(i)
Tα − tn(i)

Tα
∆tn = −εT

m̄n(k)
αβ

ξ̄n+1β − ξ̄nβ

∆tn + λ̇
t
n+1(i)
Tα∥∥∥tn+1(i)
T

∥∥∥
 , (2.168)

from where
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tn+1
Tα = tnTα − εT

m̄n(k)
αβ

(
ξ̄n+1β − ξ̄nβ

)
+ ∆λn+1 t

n+1(i)
Tα∥∥∥tn+1(i)
T

∥∥∥
 . (2.169)

Linearization of the tangential components of the contact traction vector, D∆u(i)

[
t
n+1(i)
Tα

]
, can be

found in Appendix C. To the determination of the time increment of the total plastic slip, ∆λn+1,
is dedicated Section 2.10.6, where the method of radial return is described.

2.10 Numerical procedures

In the last section of the state-of-the-art, miscellaneous topics regarding numerical implementation
are discussed. The evaluation of the normal gap function (2.21) is the subject of the contact
detection. Because it leads to the problem of solving the system of non-linear algebraic equations,
great attention is paid to numerical methods for this kind of problem. Also the finite element
discretization of the contact initial-boundary value problem leads to the non-linear system of
equation, which is discussed in Section 2.10.4. The problem of poor conditioning due to the
relatively large value of the penalty function is attacked by the Uzawa iteration as a practical
implementation of the Augmented Lagrangian method in Section 2.10.5. The key ingredients
of the numerical implementation of Coulomb’s friction model is the evaluation of the "plastic"
slip rate (2.66) resp. its time difference (2.167). For this purpose, the radial return algorithm is
presented in Section 2.10.6. The last two topics that are mentioned in this section are those of
contact smoothing in Section 2.10.7 and mass lumping and scaling in Section 2.10.8.

2.10.1 Contact detection

By the contact detection it is understood the evaluation of the normal gap function (2.21) in
contact points (nodes or quadrature points) of the potential contact interface Γ(i)

c . The importance
of this procedure results from the fact that this evaluation must be performed in each iteration
of the non-linear solver. Computational time of this procedure determines the resulting time
demands of the whole contact algorithm. Indeed, the simplest contact detection procedure consists
in solving (2.8) by a non-linear solver, such as the Newton-Raphson method, in the loop over slave
contact points and master contact segments.

It is obvious that searching for the closest point in a cycle over all contact points is not optimal,
because if the bodies are not in contact, the exact value of the gap function is not necessary.
Instead, only logical value is sufficient to indicate that no contact occur. Therefore, the contact
detection is usually divided into two phases: a global search, which consists of effectively detecting
and sorting all potential candidate slave points and their corresponding candidate master segments,
and a local search for closest point projections of slave points onto master segments.

Global contact searching

The simplest and least effective global contact searching procedure is the so-called brute force
method, when the search is carried out as all-to-all. Obviously there are more effective methods.
A frequently used method is the so-called bucket-sorting [88, p. 145–149]. This algorithm performs
sorting and searching in 3D by nested loops. Later, Oldenburg and Nilsson [89, p. 368–373] reduced
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the 3D to only 1D sorting and searching algorithm, called the position code. The complexity of
this algorithm is proportional to O(N log2N), where N is the number of contacting point. A
more efficient algorithm with complexity O(N) is the no binary search (NBS) algorithm, that was
proposed in [90, p. 134–142]. Its weakness is that it can only be used for bodies of a spherical
shape and a similar size. A general algorithm with complexity O(N) was proposed in [91, p.
375–378]. This algorithm exploits so-called linked lists, which is a data structure that is commonly
used in computer programming for sorting and searching. Recently, the idea of global contact
searching based on linked lists was exploited in the algorithm called LC-Grid [92] (“L” after Lei,
who devised the algorithm and “C” after Chen, who implemented the algorithm). All contact
points and segments are gradually mapped onto layers, rows and cells, while for each of this level
the linked-list is constructed. In the context of mortar method, the contact searching algorithm
based on the bounding volume hierarchies (BVHs) was proposed in [93]. In this algorithm, master
and slave contact interfaces are bounded by the k faced discrete orientation polytopes (k-DOPs)
organizing in the tree structure which supports fast browsing throughout the structure.

Local contact searching

When the global search is successfully done, a local one is performed. The most frequently used
approach for the local contact search is described in References [23, 88]. A contact point is defined
on the master segment as the point closest to the slave point. Its parametric coordinates are
calculated by solving the minimization problem. Recently, the uniqueness and existence of the
closest point projection were investigated for C0, C1 and C2 continuity of the target segment in [94].
An analytical solution exists only for linear triangular segments, but a bilinear quadrilateral, as
well as higher order, elements have to be treated numerically. The Newton-Raphson method had
usually been applied to this end.

In order to increase efficiency, in Reference [95] each quadrilateral segment was broken into four
triangles with their common vertex at the centre of the master segment. The contact point was
calculated by determining which triangle was closest to the slave node and then projecting the
slave node onto it. Although the efficiency of this approach is undeniable, it is not adequate for
distorted elements, a situation which often occurs in post-buckling computations [88].

For a node-to-segment contact design, an algorithm based on the definition of a meshed-surface
normal is proposed in Reference [96]. The mesh normal vector assigned to a node is defined
as the average normal vector taken over all surfaces adjacent to the node. The inside-outside
algorithm [97] employs this vector to determine whether the projection of a node is located inside
or outside the surface. Since no iterations are involved, this algorithm is very fast. However, a lack
of continuity on the boundary of surfaces, called the deadzone problem, was observed. In order to
overcome such a drawback, the free-form-surface (FFS) algorithm is proposed in Reference [98].
The contact area was approximated by the FFS patch, which ensures smoothness. Accuracy can
be increased by subdividing the surface patches.

The closest point projection of a point to the FFS design also poses a common problem to
computer graphics. Computational methods for the orthogonal projection of points in CAD/CAM
applications have recently been presented in a review paper [99]. In order to guarantee robustness
of the calculation, it is recommended to initially employ a subdivision based global scheme, followed
by a Newton-type iteration method or the second order algorithms with small sensitivity to the
choice of initial estimation such as the sphere approximation method [100] and torus approximation
method [101].

The subdivision based global scheme is equivalent to global contact search. One of the first
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subdivision schemes is presented in Reference [102]. The essence of this technique is similar to the
mentioned contact search described in Reference [95]. The so-called base surface is subdivided
into quadrilaterals and a point is projected onto the closest quadrilateral. The parametric
coordinates of the projection are recovered from the parametric coordinates of the corner point of
the closest quadrilateral. Similar concept was proposed in Reference [103] where the base surface
is recursively subdivided into Bézier surfaces and their control polygons are utilized to find the
projection. An improved version of the method [103] was proposed in Reference [104], where a large
number of subdivided parts are excluded from the computation by introducing new elimination
criteria, namely the endpoint interpolation, convex hull property and tangent cones. The circular
clipping algorithm was suggested in Reference [105], which is more efficient than those cited in
References [103, 104]. A sphere is used as an elimination region. After subdivision the surface
segments located outside the sphere are repeatedly eliminated until the termination condition is
satisfied. The concept of the clipping sphere method was further improved in Reference [106] by
using the separating axis and k-DOP (Discrete Orientation Polytopes) type of bounding scheme.

As was mentioned, the advantageous properties of spline representation (Bezier, B-spline,
NURBS, etc.) are utilized in the subdivision phase and can be directly applied to modern
isogeometric contact analysis [107]. Unfortunately, these properties are not shared by the standard
higher-order finite elements which are the primary subject matter of this paper. In any case, the
solution to the problem of orthogonal projection remains open since the present solution methods
are prone to instability and their performance should also be improved [99].

In sheet forming simulations, a special local contact search procedure was developed to detect
the shared position between the tool surface and the sheet [108]. The projected point onto the
tool surface along the sheet normal direction was found iteratively, using the projection along the
z-direction.

The mortar method has gained substantial popularity in recent years [75, 85, 37, 38, 74], to name
some references. A continuous normal field on the slave surface was used to ensure projections. It
calculates the intersection of the master segment with a line emanating from the slave point along
the vector normal to the slave segment [75].

The closest point projection problem stated in Section (2.1) results is a non-linear algebraic
system (2.12). In what follows, various optimization methods for solving this system will be
described. Although, a solution, ξ̄, may lie outside the feasible region, i.e., outside the element
segment, only unconstrained optimization methods are considered. At the same time, these
methods are expected to converge to the closest local minimum. Nevertheless, even if the closest
local minimum lies outside the feasible region, the current segment is then rejected and a new
projection is sought in the next adjacent element segment. It should be noted that another approach
formulating an optimization problem with inequality constraints can be found in Reference [109].

Let us introduce some additional notation. Since Equation (2.12) is solved iteratively, the k-th
approximation to the solution will be denoted by the iteration counter k, which should not be
confused with the body index (k). In particular, the gradient of the squared distance function
(2.7) is now given by

∂d(ξ)
∂ξα

∣∣∣∣
ξk

=
(

x(i) − x(k)(ξ)
∣∣∣
ξk

)
· ∂x(k)(ξ)

∂ξα

∣∣∣∣∣
ξk

. (2.170)

In what follows, an abbreviated notation will be introduced: dk = d(ξ)|ξk , x(k)
k (ξ)

∣∣∣
ξk
.
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2.10.2 Line-search technique

In this section, several numerical methods for solving the system of non-linear algebraic equation,
(2.170), will be presented. All of these methods fall into the category of so-called line-search
methods. Each iteration of a line-search method computes a search direction pk ∈ Rnpd and then
decides how far to move along that direction. The iteration is given by

ξk+1 = ξk + θkpk, (2.171)

where the positive scalar θk ∈ R+ is called the step-length. The success of a line-search method
depends on the effective choices of both the direction pk and the step-length parameter θk. Most
line-search algorithms require pk to be a descent direction for which pkα ∂dk∂ξα < 0, where the iteration
index k was moved to the upper index position of p without changing the meaning. The search
direction often has the form

pkα = −Dk
αβ

∂dk
∂ξβ

, (2.172)

where Dk ∈ Rnpd×npd is a suitable matrix. Let us consider that Dk is positive definite. From
multiplication of (2.172) by ∂dk

∂ξα arises

pkα
∂dk
∂ξα

= −∂dk
∂ξα

Dk
αβ

∂dk
∂ξβ

< 0. (2.173)

Thus, the positive definiteness of Dk guarantees a descent direction of pk. How to compute the
matrix Dk will be discussed in consequence sections. We now give attention to the choice of the
step-length parameter θk. Its computation is based on the restriction of the minimized function
d(ξ) to the ray from a point ξk in the search direction pk

f(θ) = d(ξ)|ξj+θpj , θ > 0. (2.174)

Apparently, the exact minimization of this function is computationally expensive. To find even a
local minimizer of f(θ) generally requires too many evaluations of the minimized function d(ξ). In
Reference [33, p. 55], more sophisticated strategies are mentioned to perform an inexact line-search
to identify a step-length that achieves reductions in d(ξ).

Strong Wolfe Conditions

A suitable step-length θk should first of all give sufficient decrease in the minimized function d(ξ).
Therefore, we insist that the value of fk = f(θ)|θk in the candidate for θk is less than the value of
a linear function. Such an inequality is known as the Armijo condition or the sufficient decrease
condition that has a form

fk ≤ dk + c1θk
∂dk
∂ξα

pkα, c1 ∈ (0, 1) . (2.175)

The parameter c1 sets the slope of the linear function (see Figure 2.11). In practice, c1 is chosen
to be quite small. According to [33, p. 38], c1 = 10−4. In Figure 2.11, there are two intervals,
denoted by AC, which fulfill the Armijo condition (2.175).

The sufficient decrease condition is not enough to ensure that the algorithm makes reasonable
progress. It is satisfied for all sufficiently small values of θ as can be seen from Figure 2.11.
Therefore, a second requirement that is called the curvature condition, is introduced∣∣∣∣∣ ∂d(ξ)

∂ξα

∣∣∣∣
ξk+θkpk

pkα

∣∣∣∣∣ ≤ c2

∣∣∣∣∣ ∂d(ξ)
∂ξα

∣∣∣∣
ξk

pkα

∣∣∣∣∣ , c2 ∈ (c1, 1) . (2.176)
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AC
CC CC

AC
θ

f(θj) = d(ξj + θjpj)

d(ξj) + c1θj
∂d(ξj)
∂ξα pjα

Figure 2.11: The Wolfe condition (AC – Armijo condition, CC – curvature condition).

It is based on the fact, that the gradient of function is close to zero in a neighborhood of a local
extremum. Thus, the curvature condition enforces only a slight slope of f(θ) in the candidate for
θk. The acceptable slope is set by the parameter c2. According to [33, p. 39], typical values are
0.9 when the search direction pk is computed by the Newton or the quasi-Newton method, and
0.1 when pk is obtained from the gradient methods.

In Figure 2.11, the intervals denoted by CC fulfill the curvature condition (2.176). The Armijo
condition (2.175) and the curvature condition (2.176) are known as the strong Wolfe conditions.

Step length

The determination of the parameter θk is based on the restriction of the minimized function in
the search direction. Using too accurate line search can substantially increase the total cost of
computation. Therefore, the practical strategy consists of adequate reduction of the minimized
function at the minimum cost. The derivative-free procedures (e.g. bisection method, golden
section, or Fibonacci search) are the simple step-length techniques. A popular method in FE
applications is the Illinois algorithm [110]. An overview of sophisticated step-length procedures
based on quadratic or cubic interpolations is presented in Reference [33, p. 56].

A particularly effective step-length procedure is based on the interpolation of the known function
f(θ) and their derivations. The procedure generates a decreasing sequence of values θ` for each of
the k-th iteration of the nonlinear solver. Here, the subscript ` denotes the iteration counter of the
step-length procedure. The initial guess θ` is simply set to 1. Then the strong Wolfe conditions
(2.175), (2.176) are checked. If the conditions are satisfied for this step-length, the procedure is
terminated. Otherwise, we know that the interval [0, θ0] contains acceptable step-lengths (see
Figure 2.11). A quadratic approximation fq(θ) to function f(θ) can be formed as

fq(θ) =
(
f |θ0
− θ0 f

′|0 − f |0
θ2

0

)
θ2 + f ′

∣∣
0 θ + f |0 . (2.177)

The value of θ1 is defined as the minimizer of this quadratic function, that is

θ1 = − f ′|0 θ2
0

2
(
f |θ0
− f |0 − θ0 f ′|0

) . (2.178)
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If the strong Wolfe conditions(2.175), (2.176) are satisfied for θ1, the step-length procedure is
terminated. Otherwise, a cubic function is used to interpolate f |θ`−1

, f ′|θ`−1
, f |θ` , f

′|θ` .
In Reference [33, p. 57] the minimizer of the cubic function is given by

θ`+1 = θ` − (θ` − θ`−1)
(

f ′|θ` + d2 − d1

f ′|θ` − f ′|θ`−1
+ 2d2

)
, (2.179)

where

d1 = f ′
∣∣
θ`−1

+ f ′
∣∣
θ`
− 3

f ′|θ`−1
− f ′|θ`

θ`−1 − θ`
,

d2 =
√
d2

1 − f ′|θ`−1
f ′|θ` .

If the strong Wolfe conditions (2.175), (2.176) are satisfied at θ`+1, the step-length procedure is
terminated. Otherwise, the interpolation process is repeated by discarding the data at one of
the step-length and replacing it by f |θ`+1

and f ′|θ`+1
. Then, the repetition of the interpolation

process continues until the strong Wolfe conditions are fulfilled.

Gradient methods

The only gradient method which will be dealt with in this section is probably the most famous
method in this class — the method of steepest descent.

The method of steepest descent. The steepest descent method, also known as the gradient
descent method, is the simplest minimization technique. It is based on the observation that a
differentiable function in the neighborhood of a point decreases fastest in the direction of the
negative gradient. Thus, one step of this method takes the form

ξαk+1 = ξαk − θk
∂dk
∂ξα

(2.180)

where θk is the step length parameter. Its proper choice is the objective of the so-called step-length
algorithm which was described in the preceding section.

Newton and quasi-Newton methods

Another class of line-search methods consists of the Newton and quasi-Newton methods. What
is characteristic of them is that, unlike gradient methods, they use not only the first but also
the second derivatives of the minimized function or, in the case of quasi-Newton method, their
approximation.

The Newton-Raphson method. Linearizing the residual (2.8) about the k-th approximation
gives rise to a popular numerical scheme, the Newton-Raphson method

ξαk+1 = ξαk −
[
H−1
k

]
αβ

∂dk
∂ξβ

(2.181)

where [Hk]αβ = ∂dk
∂ξαξβ

, Hk ∈ Rnpd×npd , is the Hessian matrix. A sufficient condition for convergence
of the Newton-Raphson method to the nearest local minimum is positive definiteness of the Hessian
matrix. The proof of this assertion can be found in [33, p. 138].
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It should be noted that even when the Hessian matrix is not positive definite, it is still possible to
ensure the Newton-Raphson method convergent. Various techniques exist based on a modification
of the Hessian matrix [33, p. 141] or combining it with another gradient method (e.g. the steepest
descent method).

The Broyden method. Just as the Newton-Raphson method is a generalization of Newton’s
procedure to multiple dimensions, Broyden’s method is a generalization of the secant method [111].
It belongs to a class of algorithms known as the quasi-Newton methods, which construct an
approximation of the Hessian matrix instead of its exact evaluation. The iterative scheme has the
form

ξk+1 = ξk − θk
[
D−1
k

]
αβ

∂dk
∂ξβ

(2.182)

where Dk ∈ Rnpd×npd is the representation of the secant matrix. According to Broyden, the update
of Dk is computed as

Dk+1 = Dk + rk −Dksk
sk · sk

⊗ sk (2.183)

in which the auxiliary vectors rkα = ∂dk+1
∂ξα −

∂dk
∂ξα , rk ∈ Rnpd and sαk = ξαk+1 − ξαk , sk ∈ Rnpd have

been introduced. The initial secant matrix D0 is usually set to the identity matrix or its multiple.
The method’s convergence may again be accelerated by the line search algorithm as indicated in
Equation (2.182) by the step-length parameter θk.

The BFGS method. The most popular quasi-Newton method for the finite element applications
is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [111]. Since the secant matrix Dk is
constructed as the positive definite matrix, the search direction has always a descent character.
The iterative scheme is identical to Equation (2.182) but the update of Dk is computed as

Dk+1 = Dk + rk ⊗ rk
sk · rk

− (Dkrk)⊗ (Dkrk)
rk · (Dkrk)

(2.184)

Just as with Broyden’s method, the initial secant matrix D0 is set to identity matrix or its multiple.
The BFGS method may also be accelerated by the line search method.

2.10.3 Gradient-free methods

As the gradient-free methods are known those methods which do not require calculation of
derivatives, but they work only with function values. The so-called simplex method will be
presented as a representative of this class of methods.

The simplex method. The simplex (polytope) method is a robust heuristic unconstrained
optimization method. In contrast to previous methods, which operate with the derivatives of the
squared distance function, the simplex method utilizes only its function values. The idea of the
method was originally proposed in [112]. This should not be confused with another well-known
method — Dantzig’s simplex algorithm for linear programming [33, p. 361]. In this Section the
simplex method will be briefly outlined.

In each iteration, the values of the squared distance function are evaluated at three vertices of a
regular polytope (i.e. simplex). A new position of the simplex is obtained by the mirroring of the
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vertex with the highest function value over the centre of the remaining vertices – see Figure 2.12a.
Furthermore, there are two additional rules, which make the algorithm robust. The first rule is
applied when the value in the new vertex is the maximum again. It is not allowed to return a
vertex back in the subsequent iteration in order to prevent a runaway loop. Instead, the vertex
with the second highest function value is moved. The second rule handles the case when one of
the vertices remains in position for m ∈ N iterations. This situation indicates that the simplex
rotates about a local extremum. Then, the length of the simplex edge is halved. The parameter
m depends on the problem dimension. In our two-dimensional case m = 5 as is apparent in
Figure 2.12b.

ξk+1

ξck

ξk

(a) : 1st criterion

ξk ≡ ξk+1 ≡ · · · ≡ ξk+m

(b) : 2nd criterion

Figure 2.12: The basic rules of the simplex method.

2.10.4 Solution of the non-linear finite element equations

After formulating the contact initial-coundary value problem in the strong and weak sense,
regularization of the contact constraints by the penalty method, linearization, spatial discretization
by the finite element method, and temporal discretization, the final step is the solution of the
resulting system of non-linear equations. Although already mentioned in the connection with local
contact searching, the Newton-Raphson and the BFGS methods are presented here in the context
of finite element equations.

Newton-Raphson method

Newton-Raphson method is one of the effective techniques for solving systems of non-linear
algebraic equations. Its principle consists in converting the system of equations into the residual
form

R(d) = 0, (2.185)

and the subsequent linearization at a point dk

R|dk + ∂R
∂d

∣∣∣∣
dk

∆dk = 0 (2.186)

where k indicates iteration counter. For the increment ∆dk one gets from the last equation
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∆dk =
[
∂R
∂d

∣∣∣∣
dk

]−1 (
− R|dk

)
. (2.187)

Then a new estimate of the solution can be calculated from the increment ∆dk as

dk+1 = dk + ∆dk. (2.188)

The whole process is repeated until R|dk+1
is smaller than the selected tolerance. It can be shown

that the Newton-Raphson method converges quadratically to the nearest root of the non-linear
system, provided the tangent matrix is positive definite [33, p. 138]. The Newton-Raphson method
is used in every time step of the implicit integration scheme for the solution of (2.161), as was
mentioned in Section 2.9.1. If the inertial forces in (2.161) can be neglected, the residual vector
for quasi-static problems is obtained

R(d) = Fint(d) + Fc(d)− Fext = 0. (2.189)

Otherwise, the non-linear system of equation (2.161) is solved by the Newton-Raphson method
for each time step of the temporal integration scheme.

Broyden-Fletcher-Goldfarb-Shenno method

The Broyden-Fletcher-Goldfarb-Shenno (BFGS) method belongs to the class unconstrained op-
timization methods but in principle it can be utilized also for solving systems of non-linear
algebraic equations. To show this, recall the necessary condition for a local extremum of a function
G(d) : Rndof → R which demands that the gradient of the function has to be equal to zero vector

∂G(d)
∂d

∣∣∣∣
d=d∞

= 0. (2.190)

If the Newton-Raphson method is utilized to find the extremal point d∞

∂

∂d

(
∂Gk
∂d

)
∆dk = −∂Gk

∂d , (2.191)

Kk∆dk = −Rk, (2.192)

where Gk = G(d)
∣∣
dk
. Now, one can immediately see the connection between the problem of

finding an extreme value of the function G(d) and solving the system of non-linear equations
R(d) = 0. The gradient ∂Gk

∂d can be in fact viewed as the residual vector R and the Hessian
matrix ∂

∂d

(
∂Gk
∂d

)
, i.e. the matrix of second partial derivatives, can be understood as the tangent

matrix K ∈ Rndof×ndof . Therefore, the BFGS method can be employed also for solving systems of
non-linear algebraic equations. The BFGS method belongs to the class of quasi-Newton methods,
which instead of the exact Hessian/tangent matrix Kk work with a suitable approximation — a
secant matrix Dk ∈ Rndof×ndof . The advantage of this method is that it is not necessary to perform
the exact linearization and to solve the system of linear algebraic equations in each iteration, as it
is the case for the Newton-Raphson method. The price we pay for it is "only" superlinear rate of
convergence [33] of the BFGS method.

41



2. State of the Art ..............................................
The initial estimate of the secant matrix D0 can be chosen as a multiple of the identity matrix,

D0 = Indof ( Indof ∈ Rndof×ndof is the ndof -dimensional identity matrix), or as the exact tangent
matrix D0 = K

∣∣
d0
. The update of secant matrix is calculated from the relation

Dk+1 = Dk + ∆Rk ⊗∆Rk

∆dk ⊗∆dk
− (Dk∆Rk)⊗ (Dk∆Rk)

∆Rk · (Dk∆Rk)
, (2.193)

where ∆Rk = Rk+1 −Rk. An implementation according to Matthies and Strang [113] is often
used in application to FEM. The utilization of BFGS method for solving the contact problem,
as a constrained optimization problem, can be found in [1, 114]. In practice, it appears that due
to discontinuous non-linearities, which are characteristic for contact problems, the secant matrix
Dk can become ill-conditioned. In such a case it is recommended to perform the recovery of the
secant matrix using the exact tangent matrix Dk = K

∣∣
dk

[114].

2.10.5 Uzawa iteration method

The augmented Lagrangian method, as well as the Lagrange multiplier method, increases the
number of unknowns. This deficiency elegantly removes the Uzawa algorithm. The principle is
demonstrated in the calculation of the contact traction vector in time tn+1, where we assume that
the solution in time tn is known. Initially, Lagrange’s multiplier estimates are set equal to the
values calculated in the previous time step

λn+1
N` = λnNn , (2.194)
λn+1

Tα` = λnTα, (2.195)

and the iteration index ` is set equal to zero. Then the system of non-linear equations (2.161)
where for the contact traction vector Fc

tn+1
N =

〈
λn+1

N` + εNg
(i)n+1
N

〉
, (2.196)

tn+1
Tα = λn+1

Tα` + εT

m̄n
αβ

(
ξ̄n+1β
` − ξ̄nβ`

)
−∆λ

tn+1
Tα∥∥∥tn+1
T

∥∥∥
 , (2.197)

∆λ ≥ 0, Φ(tn+1
N , tn+1

T ) ≤ 0, ∆λΦ(tn+1
N , tn+1

T ) = 0, (2.198)

The solution is made by radial return algorithm which will be presented in the following subsection.
The new approximation of Lagrange multipliers is

λn+1
N`+1 = tn+1

N , (2.199)
λn+1

Tα`+1 = tn+1
Tα , (2.200)

If the difference for iterations ` and `+1 is less than a set tolerance, the calculation is terminated.
Otherwise, the iteration index is increased by one and the calculation is repeated. The robustness
of this method is compensated by a higher number of iterations than in the case of penalty method
or the method of Lagrange multipliers.
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2.10.6 Radial return method

The radial return method was originally designed for integration of plasticity constitutive models
[115]. The first use of this method for integrating of the constitutive relation for friction can be
found in [116, p. 159]. Algorithm 2.1 shows the application of the radial return method on solving
discretized evolutionary equation (2.169) to determine the regularized tangential components of
the contact traction vector at time tn+1.

Algorithm 2.1 The algorithm of the radial return method.
1: procedure RadialReturn
2: tn+1

Tαtrial
← tnTα − εT

(
ξ̄n+1α − ξ̄nα

)
m̄n
αβ . (2.169) for ∆λn+1 ← 0

3: Φn+1
trial ←

∥∥∥tn+1
T trial

∥∥∥− µpn+1
c

4: if Φn+1
trial ≤ 0 then

5: tn+1
T ← tn+1

Ttrial
6: else
7: tn+1

T ← µpn+1
c

tn+1
Ttrial
‖tn+1

Ttrial‖
. (2.169) for ∆λn+1 ← Φn+1

trial
εT

8: end if
9: end procedure

2.10.7 Contact smoothing techniques

Non-smoothness is another difficulty encountered in computational contact analysis which has to
be treated. It naturally arises from inequality constraints as well as the geometric discontinuities
inducted by spatial discretization. Contact analysis based on traditional finite elements utilizes
element facets to describe a contact surface. The facets are C0-continuous so that surface normals
can experience jump across facets boundaries leading to artificial oscillations in normal and tangent
contact forces. A global non-linear equation solving scheme is also affected by non-smoothness. It
was pointed out in [117] that the Newton-Raphson method admits, in general, only superlinear
convergence even for C2-continuous contact boundary, unless Lipschitz continuity is enforced.

Non-smoothness is usually attacked by contact smoothing techniques, where contact interface
is approximated by various species of splines. In 2D, first attempts applied Hermite cubic
interpolation [118, 119, 120]. C1-continuous Overhauser (Catmull-Rom) splines were used in [121],
or non-uniform rational B-splines (NURBS) were utilized in [122]. Also in 3D, a lots of different
options of contact surface smoothing were presented in the literature: local diffuse approximation
with quadratic basis [123], cubic B-Splines [124], Bézier patch [125, 126], NURBS [127], Gregory
patches [128, 126], or recently Nagata patches [129]. All these contact smoothing techniques
concentrate on the better approximation of the contact boundary. A different approach was
proposed in [130], where rather then the contact boundary, the signed distance function was
smoothed by a moving least-squares approximation with a polynomial basis.

Contact smoothing techniques introduce an additional geometry on the top of the existing
finite element mesh. This adds an extra layer of data management and increases computational
overhead. A hierarchical enrichment [131], on the other hand, enriches the shape function space of
the contact layer finite element in a way that contact interface geometry is exactly represented but
at the same time the bulk of the contacting bodies can be described by lower order shape function.
2D local enrichment with high-order Lagrange and Hermite interpolation was presented in [132],
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both, 2D and 3D NURBS enrichment was studied in [133], and 3D isogeometrically enriched finite
elements were published in [134].

Isogeometric contact analysis

Another remedy to the geometric discontinuity provides isogeometric analysis (IGA) [49, 135]. The
fundamental idea is to accurately describe a physical domain of interest by a proper mathematical
representation (e.g. B-spline, NURBS, etc.) and then utilize the same basis for analysis. This is
in contrast with the classical finite element method where the basis is given in advance by the
element type and the geometry of physical domain is then only approximated with the aid of
isogeometric mapping.

Isogeometric NURBS-based contact analysis has some additional advantages: preserving ge-
ometric continuity, facilitating patch-wise contact search, supporting a variationally consistent
formulation, and having a uniform data structure for the contact surface and the underlying
volumes.

Geometric basis and formulation for frictionless isogeometric contact were given in [136]. Sharp
corners or C0 edges that can exist on the interface of patches present a challenge to contact
detection. A strategy to seamlessly deal with sharp corners was proposed in this reference. Herein,
the contact constraints were regularized by penalty method and contact virtual work was discretized
by finite strain segment-to-segment contact element. Both one-pass and two-pass algorithm were
tested.

In [50], finite deformation frictionless quasi-static thermomechanical contact problems was
considered. Two penalty-based contact algorithms were studied herein. The former was called
knot-to-segment (KTS) algorithm. It is the straightforward extension of the classical node-to-
segment (NTS) algorithm. Since NURBS control points are not interpolatory, contact constraints
were enforce directly at the physical points of the quadrature points. It was shown in this reference
that this approach is over-constrained and therefore not acceptable if a robust formulation with
accurate tractions is desired. The latter was called mortar-KTS algorithm. In this algorithm a
mortar projection to control pressures was employed to obtain the correct number of constraints.

The penalty-based mortar-KTS algorithm was extended to frictional contact in [51] and [137].
The mortar-KTS algorithm was also studied in conjugation with augmented Lagrangian method in
[53]. As a viable alternative to the augmented Lagrangian approach the interior point method, also
known as the barrier method, was applied to frictionless contact in [138]. Isogeometric frictionless
contact analysis using non-conforming mortar method in two-dimensional linear elasticity regime
was presented in [139].

An isogeometric point-to-segment contact formulation for 2D large elastic deformations was
presented in [140]. To collocate the contact integrals it was proposed to use Greville and Botella
points. Also two postprocess methods to obtain contact stress distribution from discrete values of
the Lagrange multipliers at collocation points were investigated and compared. This concept was
recently enhanced by weighting in [141].

Another isogeometric thermomechanical mortar contact algorithms was investigated in [142]. In
comparison to [50] where mortar-based formulation was used, in this work a series of simplifications
were considered so that an established numerical techniques for mortar methods such as segmen-
tation could be transferred to IGA without modification. Recenlty, a dual mortar formulation
for isogeometric analysis was derived and investigated in [143]. Finally, a review of isogeometric
contact formulations was given in [107].
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Isogeometric collocation methods (IGA-C) [144, 145] have been recently proposed as an alter-
native to standard Galerkin approaches. They provide a significant reduction in computational
cost especially for higher-order discretizations. They can be interpreted as a one point quadrature
rule in the IGA context. The imposition of Neumann boundary conditions and the enforcement
of contact constraints in IGA-C context was studied in [146]. The application of IGA-C to large
deformation frictional contact problems with consistent linearization was presented in [147].

It is well known that accurate evaluation of the contact stresses at the contact interface requires
appropriate refinement. As the NURBS multivariate basis functions are defined as tensor product,
the number of unknowns increases rapidly as the knot insertion requires control point addition
along the whole parametric dimension. The local basis function refinement provides T-spline-based
isogeometric analysis [148, 149]. It was first applied to frictionless large deformation contact
problem in [150]. Here, the cubic T-splines and cubic NURBS were considered. A Gauss-point-
to-surface formulation and the penalty method was used to treat the contact constraints. An
alternative to T-splines is the NURBS-based hierarchical refinement scheme [151] applied to contact
problems in [152] where large deformation frictionless contact was considered, or in [153] where a
mortar contact algorithms applied to a phase-field approach to brittle fracture were studied.

2.10.8 Mass lumping and mass scaling techniques

The performance of the explicit integration method is commonly boosted by the lumping technique
[12, 154, 155], i.e. diagonalization of the mass matrix. Diagonal mass matrix results in the
orthogonal system of linear equation. Therefore, the mass lumping is the essence which enables the
massive parallelization and the reduction of data storage requirements. Two most usual lumping
methods are the row sum method [12] and the Hinton-Rock-Zienkiewicz (HRZ) method [156]. The
accuracy of the lumping scheme has been recently assessed in Adam et al. [157]. A higher order
lumping scheme was presented in [158].

Another approach how to improve the performance of the explicit temporal integration is a
selective mass scaling (SMS) [159, 160, 161, 162, 163, 155, 154] . While the mass lumping aspires
for faster integration via efficient solution of the linear system of equations, SMS trails the same aim
through the enlargement of the critical time step. SMS techniques are based on local modification
of the material properties, such as density, to increase the stable time step with only a little lose of
accuracy. They are particularly useful in analyses which involve the solid shell elements [159, 163,
155] to prevent the time step from being controlled by the thickness. However, SMS usually results
in a non-diagonal mass matrix whose inverse is more expensive in comparison with a lumped mass
matrix. Therefore, Tkachuk and Bischoff [164] proposed a new SMS technique based on direct
variational construction of a sparse inverse mass matrix. They also studied the problem of optimal
SMS in [165].
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Chapter 3
Aims of the Thesis

In this chapter, based on the state of the art presented in the previous chapter, the aims and
objectives of this dissertation will be defined.

3.1 Aim

This work aims only one goal, namely: To improve efficiency and robustness of the finite element
contact algorithm for resolution of the general static and dynamic large deformation contact
problems.

3.2 Objectives

It is intended to achieve the stated aim through the following objectives:..1. To develop a symmetry preserving isogeometric finite element contact formulation for static
and dynamic large deformation problems.
Conventional contact formulations are based on the master-slave concept and explicit enforce-
ment of the action-reaction principle (2.111) that introduce bias into the problem, making
the solution dependent on the choice of the master and the slave body. We propose symmetry
preserving contact formulation based on the contact residual in the form of (2.106).
Contact analysis based on traditional finite elements utilizes element facets to describe a
contact surface. The facets are only C0-continuous so that surface normals can experience
jump across facets boundaries leading to artificial oscillations in normal and tangent contact
forces. As an alternative to conventional contact smoothing techniques discussed in Section
2.10.7, we propose to utilize the isogeometric analysis which naturally allows the higher
continuity of contact boundaries.
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3. Aims of the Thesis ...............................................2. To propose a new local contact search technique based on the geometric iteration methods.
Today’s implementations of the local contact search procedure most frequently employs the
Newton-Raphson method which was presented in Section 2.10.2 . Although this method
works passably for linear elements, it suffers from convergence difficulties for higher-order
elements. This is due to the fact that the Hessian matrix of the square distance function
(2.7) to be minimized is not positive definite in general. We propose to utilize the geometric
iteration methods for the local contact searching...3. To extend the bipenalty method for the solution of the contact-impact problems.
The explicit temporal integration schemes are known to be conditionally stable. Furthermore,
it is well known that the penalty method has a negative effect on the critical time step. To
address this issue, we propose to utilize the bipenalty method. Moreover, a critical time step
estimate for the penalty and bipenalty method will be derived.
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Chapter 4
Applied methods

This chapter describes the tools necessary to meet the objectives defined in the previous chapter.
The basic building block of the isogeometric analysis is the geometry representation by different
types of splines. Therefore, the first section will briefly describe the B-spline and NURBS basis
functions. Next, the idea of geometric iteration method will be presented in Section 4.2. The first
order method — the least square projection method — and two second order methods — sphere
and torus approximation methods — are described in detail. The last section is devoted to the
bipenalty method.

4.1 Isogeometric analysis

Isogeometric analysis is a new spatial discretization method [49] which utilizes as basis functions
various types of splines. The fundamental idea is to accurately describe a physical domain of
interest by a proper mathematical representation (e.g. B-spline, NURBS, etc.) and then by means
of the isoparametric concept [48] to utilize the same basis for analysis.

4.1.1 Non-Uniform Rational B-Splines

This section gives a brief overview of the main concerns of B-splines and NURBS. For more
detailed description as well as efficient algorithms see, e.g. [166]. Throughout this section the
polynomial degree will be indicated by p and the number of basis functions by n.

A B-spline or NURBS object is called patch. An example of a patch is depicted in Figure 4.1.
The patch is parametrize by the linear combination of control points coordinates PA ∈ Rnsd and
basis functions NA(ζ) : Rnpd 7→ [0, 1]. A particular B-splines/NURBS basis function is defined
with the aid of so called knot vector

Ξi :=

 ζi1, . . . , ζ
i
pi+1︸ ︷︷ ︸

pi+1 equal terms

, ζipi+2, . . . , ζ
i
ni , ζ

i
ni+1, . . . , ζ

i
ni+pi+1︸ ︷︷ ︸

pi+1 equal terms

 , i = 1, . . . npd. (4.1)

The knot vector is a non-decreasing sequence of parametric coordinates. The knot vector is said
to be uniform if the knots are unequally spaced in the parametric space. If the first and the last
knot value appears pi + 1 times, the knot vector is called open. B-spline/NURBS object with
open knot vectors are interpolatory at the corner of a patch. It means that the boundary of a
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B-spline/NURBS object with npd parametric dimensions is itself a B-spline/NURBS object with
npd − 1 dimensions.

(a) : NURBS surface (b) : NURBS curve

Figure 4.1: An example of NURBS surface and curve.

The B-spline basis functions are defined by the Cox-de Boor recursion formula. For p = 0 it is

Nj,0(ζ) =
{

1 ζ ∈ [ζj , ζj+1) , j = 1 . . . n
0 otherwise

, (4.2)

and for p > 0

Nj,p(ζ) = ζ − ζj
ζj+p − ζj

Nj,p−1(ζ) + ζj+1+p − ζ
ζj+1+p − ζj+1

Nj+1,p−1(ζ). (4.3)

B-splines are known to be unable to exactly describe some curves and surfaces. For instance
circles or cylinders. NURBS was developed to extend interpolatory capability of the B-splines.
While the B-spline basis functions are ordinary polynomials, the NURBS basis functions are
rational polynomials. The extension originates from projection geometry of conic sections. More
details can be found in [166]. The p-th degree NURBS basis function is defined as

Rpj (ζ) := Nj,p(ζ)wj∑n
ĵ=1Nĵ,p(ζ)wĵ

, (4.4)

where wj is referred to as the j-th weight.
Multivariate NURBS objects can be constructed simply by tensor product of univariate NURBS

basis functions (4.4). For npd = 2

Rp1,p2
j1,j2

(ζ1, ζ2) := Nj1,p1(ζ1)Nj2,p2(ζ2)wj1,j2∑n1
ĵ1=1

∑n2
ĵ2=1Nĵ1,p1

(ζ1)Nĵ2,p2
(ζ2)wĵ1,ĵ2

, (4.5)

and similarly for higher parametric dimensions.
With multivariate NURBS basis functions at hand we can introduce surface discretization by

x(ζ1, ζ2) =
n1∑
j1=1

n2∑
j2=1

Rp1,p2
j1,j2

(ζ1, ζ2)Pj1,j2 , (4.6)
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where Pj1,j2 ∈ Rnsd is the control net, i.e., array of coordinates of control points. Adopting the
isogeometric concept, an analogous interpolation is used for unknown displacement field and its
variation. Utilizing proper connectivity arrays one can write

x(ζ) =
ncp∑
A=1

RA(ζ)xA, (4.7)

u(ζ) =
ncp∑
A=1

RA(ζ)dA, (4.8)

δu(ζ) =
ncp∑
A=1

RA(ζ)cA, (4.9)

where ζ ∈ Rnpd is the vector of isoparametric coordinates, A is the index of global basis
function, which is related to indices of univariate basis function by the connectivity array
A = INC(j1, j2, . . . , jnpd) , and ncp is the number of control points of the patch. It is also
useful to consider local mappings defined over one individual knot span which can be interpreted
as a finite element. Then one can recast (4.7)–(4.9) into the form

x(ζ) =
necp∑
a=1

Ra(ζ)xa, (4.10)

u(ζ) =
necp∑
a=1

Ra(ζ)da, (4.11)

δu(ζ) =
necp∑
a=1

Ra(ζ)ca, (4.12)

where a is the number of local basis function, and necp is the number of element control points.
The index of local and global control point are joined by connectivity array A = IEN(e, a), where
e is the index of element. Just described discretization was extended for multipatch geometries
which was exploited for computation of eigenvalues in works [187, 188].

4.2 Geometric iteration methods for local contact searching

Geometry iteration methods attack the equation (2.170) by replacing the original parametrization
of the surface, x(k)(ξ), with a suitably chosen approximation. The aim is to simplify the calculation
of the projection onto this approximate surface and recover the closest point projection onto the
original surface in the iterative process. An example of such an approximation is the tangent plane
which leads to the first order geometry iteration method, here called the least square projection
method [189]. The projections on the sphere and torus will be also presented.

4.2.1 The least square projection method

The Newton-Raphson method was based on the linearization of the residual (2.8) whereas the
least squares projection directly linearizes the parametrization (2.124). One has
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x(k)(ξ) ' x(k)∣∣
ξk

+ ∂x(k)

∂ξα

∣∣∣∣∣
ξk

(ξα − ξαk ) (4.13)

= x(k)∣∣
ξk

+ τ (k)
α

∣∣
ξk

(ξα − ξαk ) , (4.14)

which defines a plane tangent to the surface Γ(k)
c at a certain point x(k). Now, x(i) is projected

onto this plane. Substituting into Equation (2.170), the problem becomes linear[
x(i) −

(
x(k)∣∣

ξk
+ τ (k)

α

∣∣
ξk

(ξα − ξαk )
)]
· τ (k)

β

∣∣
ξk

= 0. (4.15)

Using definition (2.170) in the latter expression, the iterative scheme can be devised as

ξαk+1 = ξαk −
[
τ (k)
α

∣∣
ξk
· τ (k)

β

∣∣
ξk

]−1 ∂d

∂ξβ

∣∣∣∣
ξk

(4.16)

= ξαk+1 = ξαk −
[
m(k)

]−1

αβ

∣∣∣∣
ξk

∂d

∂ξβ

∣∣∣∣
ξk

. (4.17)

Benson et al. [88] employ three iterations of this method to generate an initial guess for the full
Newton-Raphson procedure in their local contact treatment. However, the least square projection
method may also be used as a fully-fledged algorithm.

4.2.2 The sphere approximation method

As it was mentioned, the least square projection method linearizes the parametrization (2.124).
Therefore, it can be viewed as a first order method. The next logical step is to utilize the curvature,
i.e. the second order information, to approximate Equation (2.124). This idea leads to the second
order geometric methods. A representative of this approach is the sphere approximation method
which was proposed in Reference [100].

Each step of the sphere approximation method starts with the calculation of the vector sk =
ξk+1 − ξk using the least square projection (4.17), i.e.

sαk = −
[
m(k)

]−1

αβ

∣∣∣∣
ξk

∂d

∂ξβ

∣∣∣∣
ξk

. (4.18)

Next, the normal curvature κn is calculated according to formula

κn =
sαkκ

(k)
αβ

∣∣
ξk
sβk

sαkm
(k)
αβ

∣∣
ξk
sβk

, (4.19)

where the metric tensor,(4.17), and the curvature tensor,(2.30), are evaluated at point ξk. An
example of the osculating sphere and the osculating circle of the surface at point x(k)

k is plotted
in Figure (4.2). The osculating circle lies in the plane defined by the normal vector n(k) and the
auxiliary tangent vector t which is defined as

t = τ (k)
α

∣∣
ξk

(ξαk+1 − ξαk ). (4.20)
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n(k)

x(k)
k

x(i)

x(k)
k+1

xc

q
τ

(k)
1

τ
(k)
2 t

Figure 4.2: Osculating sphere of the surface at point x(k)
k .

Since the inverse value of the normal curvature is the radius of curvature, the centre of the
osculation sphere can be easily obtained as

xc = x(k)
k + n(k)

κn
. (4.21)

The projection of the slave point x(i) onto the osculation sphere yields

q = xc + x(i) − xc
|κn|

∥∥x(i) − xc
∥∥ . (4.22)

Finally, the point q has to be mapped onto the original surface (2.124) to obtain new approximation
of the parametric coordinates ξk+1 by scaling the least square projection step

ξk+1 = ξk + θksk, (4.23)

where for the step-length parameter θk it holds

θk = sign(t · (q − x(k)
k ))

√√√√2
∥∥∥t× (q − x(k)

k )
∥∥∥

|κn| ‖t‖3
. (4.24)

4.2.3 The torus approximation method

The extension of the sphere approximation method was proposed in Reference [101] where, instead
of the normal curvature, the principal curvatures at a given point of surface are utilized. The local
shape of the surface is approximated by a torus patch as shown in Figure 4.3. The major and
minor circles of the torus are constructed using the maximum and minimum principal curvatures
κα yielded from the solution of the eigenvalue problem
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e2
xc

x(i)

x(k)
k

e1
n

x(k)
k+1

Rm

rm

q2

Q

Figure 4.3: Approximation torus of the surface at point x(k)
k .

(
κ(k) − καm(k)

)∣∣∣
ξk

eα = 0, α = 1, 2 (4.25)

where the metric tensor m(k) is given by (2.15) and the curvature tensor κ(k) by (2.30). Note that
the eigenvalues (principal curvatures) κα and eigenvectors (principal directions) eα are sorted in
such a way that |κ1| < |κ2|. If κ1 > 0 then κ1,κ2, and the normal vector n(k) are multiplied by
−1. In Figure 4.3 the blue circle represents the major circle and the green circle represents the
minor one. Similarly to equation (4.21), the centre of the torus can be obtained as

xc = x(k)
k + n(k)

κ1
, (4.26)

and the major and minor radii of the torus are calculated from

Rm = − 1
κ1

+ 1
κ2
, and rm = 1

|κ2|
, (4.27)

respectively.
In each iteration, the centre point xc and the major Rm and minor rm radii of the approximation

torus are calculated at point x(k)
k . Next, the projections of the slave point x(i) onto the torus are

performed. Specifically, the slave point x(i) is projected onto the major circle

q1 = [I− e2 ⊗ e2]
(
x(i) − xc

)
, (4.28)

q2 = xc +Rm
q1
‖q1‖

, (4.29)

where I ∈ Rnsd×nsd is the identity matrix and q1 is an auxiliary vector. The point q2 lying on the
major circle of the torus is projected onto the minor circle

Q = q2 + r
(x(i) − q2)∥∥x(i) − q2

∥∥ . (4.30)

Finally, the torus point Q is mapped back onto the original surface (2.124) to obtain a new
approximation of the parametric coordinates of x(k)

k+1 assuming that
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x(k)(ξk+1) = Q. (4.31)

The Taylor expansion of equation (4.31) about the point x(k)
k yields

x(k)
k + ∂x(k)

∂ξα

∣∣∣∣∣
ξk

sαk + 1
2s

α
k

∂x(k)

∂ξα∂ξβ

∣∣∣∣∣
ξk

sβk = Q. (4.32)

This overconstrained system of nonlinear algebraic equations is solved by the Newton-Raphson
method for computation of vector sk. The new approximation of parametric coordinates ξk+1 is
obtained as

ξk+1 = ξk + sk. (4.33)

4.3 Bipenalty method

In dynamic transient analysis, the penalty method can also be applied to the mass matrix. This
technique is known as the mass penalty or the inertia penalty method and it initially gained
popularity for frequency domain problems, see [167, 168]. In contrast to the stiffness penalty
approach, it significantly reduces one or more eigenfrequencies. In Reference [169] the bipenalty
technique was introduced for time domain problems, where the both penalty formulations were
used simultaneously. The goal of this method is to find the optimum of the so-called critical
penalty ratio (CPR) defined as the ratio of stiffness and mass penalty parameters so that the
maximum eigenfrequency and the critical time step are preserved. The calculation of CPR requires
an analysis of the full bipenalised problem. Owing to mathematical difficulty, it limits the classes of
elements that can be taken into account. In order to overcome this problem, a simple relationship
between the CPR of an element and its maximum unpenalised eigenfrequency was derived in [170].
Thus, the multiple constraints and more complex element formulations can be directly accounted
for [171].

In dynamics, the simultaneous use of the stiffness penalties and inertia/mass penalties, called
the bipenalty method, was originally proposed in [169]. There was defined the penalty ratio as

R = εs
εm
, (4.34)

where εs and εm are the stiffness and mass penalty parameter, respectively. There were also derived
optimum values of the penalty ratios — the so-called critical penalty ratios (CPR) — for a number
of finite elements such that the critical time step of the penalised system remains unaffected. A
new method of calculating the CPR associated with a finite element formulation was developed in
[170]. Recently, this finding was extended to include systems with an arbitrary set of multipoint
constraints [171] and to cohesive zone (surface) elements [172].

Now, a brief description of the bipenalty method in application to the contact-impact problem
[192, 190] follows. For the sake of simplicity, only linear elastodynamic with small deformations
will be considered. Let us assume that the contact boundary Γ(i)

c is known. The standard stiffness
penalty method adds an extra term to the strain energy to enforce the zero gap on the contact
boundary

Ep(i)
pot (u(i)) =

∫
Ω(i)

0

1
2σ

(i) : ε(i) dΩ(i) +
∫

Γ(i)
c

1
2εs

(
g

(i)
N

)2
dΓ(i), (4.35)
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where ε(i) is the infinitesimal strain tensor defined as the symmetric part of the gradient of
deformation. Further, the inertia penalty term can also be added to the kinetic energy to enforce
the zero gap rate on the contact interface

Ep(i)
kin (u̇(i)) =

∫
Ω(i)

0

1
2ρ0u̇(i) · u̇(i) dΩ(i) +

∫
Γ(i)

c

1
2εm

(
ġ

(i)
N

)2
dΓ(i). (4.36)

Now, a new penalised Lagrangian functional can be defined as

Lp(u(i), u̇(i)) =
2∑
i=1

{
T (i)

p (u̇(i))−
(
U (i)

p (u(i))−W(i)(u(i))
)}

. (4.37)

The unknown displacement field can be found as one which renders the penalised action functional
stationary

δ

∫ T

0
Lp(u(i), u̇(i)) dt = 0, (4.38)

where δ denotes the first variation or the directional derivative in the direction of virtual work
δu(i). Using the standard procedures one arrives to the principle of virtual displacements which
serves the base for the finite element discretization

2∑
i=1

(
δΠ(i)

int + δΠ(i)
ext + δΠ(i)

c

)
= 0. (4.39)

where

δΠ(i)
int(u(i), δu(i)) :=

∫
Ω(i)

0

δu(i) · ρ(i)
0 ü(i) dΩ(i) +

∫
Ω(i)

0

δε(i) : σ(i) dΩ(i), (4.40)

δΠ(i)
ext(u(i), δu(i)) := −

∫
Ω(i)

0

δu(i) · f (i)
0 dΩ(i) −

∫
Γ(i)
σ

δu(i) · T̂(i) dΓ(i), (4.41)

δΠ(i)
c (u(i), δu(i)) := −

∫
Γ(i)

c
δg

(i)
N

(
εmg̈

(i)
N + εsg

(i)
N

)
dΓ(i), (4.42)

represent the virtual work of the inertia forces and internal forces, external forces, and contact
forces, respectively. Now the main feature of the bipenalty method is immediately visible from the
expression for the virtual work of the contact forces (4.42), where in addition to the work of the
stiffness penalty, there is also the term expressing the work due to inertia penalty. Tuning the
ratio of penalty parameters, R, can control the stability of the explicit temporal integration, as
will be shown on examples in Chapter 6.

56



Chapter 5
Results and Discussion

This chapter presents the main results demonstrating the fulfillment of the defined objectives of
this dissertation. Namely, in the first section the newly developed symmetry preserving Gauss-
point-to-segment isogeometric contact formulation is presented. Then, the proposed local contact
search procedure utilizing the geometry iteration methods is compared with the other conventional
techniques. In the last section of this chapter, a stable time-step size estimation for bipenalty
method is derived.

5.1 Symmetry preserving Gauss-point-to-segment isogeometric
contact formulation

In this section, the discretization of the contact residual term δΠ(i)
c by the isogeometric finite

elements [191] will be described. By the substitution of (4.9) into (2.104)

δΠh(i)
c = −

∫
Γ(i)

c

ncp∑
A=1

RAc(i)
A ·

(
p(i)

c n̄(k) + t
(i)
Tατ̄

(k)α
)

dΓ(i). (5.1)

Note that the superscript h indicating discretized quantities has been omitted to simplify the
notation. Similarly to the bulk elements, Ωe(i)

0 , also the boundary Γ(i)
c is decomposed into finite

elements, here called segments

Γ(i)
c =

ns⋃
s=1

Γs(i)c . (5.2)

Consequently, the contact residual can be assembled segment-wise

δΠh(i)
c =

ns⋃
s=1
−
(
cs(i)

)T ∫
Γs(i)

c

(
p(i)

c Ns(i) + t
(i)
TαTs(i)

α

)
dΓs(i), (5.3)

where ns indicates number of contact segments, cs(i) is the segment matrix of control point weighted
displacements, and Ns(i),Ts(i)

α are the segment matrices defined as

Ns(i) =


R1n̄(k)

...
Rnscpn̄(k)

 , Ts(i)
α =


R1τ̄

(k)α

...
Rnscp τ̄

(k)α

 , (5.4)
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where nscp is the number of segment control points. Finally, one can introduce the vector of
equivalent control point contact forces through the identity

δΠh(i)
c =

ns⋃
s=1

(
cs(i)

)T
Fs(i)

c , (5.5)

where for Fs(i)
c it holds

Fs(i)
c = −

∫
Γs(i)

c

(
p(i)

c Ns(i) + t
(i)
TαTs(i)

α

)
dΓs(i). (5.6)

The global vector of control point contact forces is then assembled in a conventional manner

Fc =
2∑
i=1

ns⋃
s=1

Fs(i)
c . (5.7)

5.2 Assessment of methods for the local contact searching

In this section, different local contact searching methods will be assessed from both, the qualitative
and the quantitative point of view. First of all a benchmark problem will be defined in Section 5.2.1.
The actual comparison of the methods will be described in Section 5.2.2. The last section,
Section 5.2.3, concentrates on the performance of the local contact search methods.

5.2.1 Benchmark problem

In order to assess the methods introduced in Sections 2.10.2 and 4.2, a suitable benchmark function
is needed. Indeed, there are several popular test functions such as the Rosenbrock function or
Himmelblau’s function which are well-known by the optimization community [173]. However,
since our motivation comes from computational contact mechanics, we have chosen a test function
which arises in this field.

The benchmark test follows from an example which involves the bending of two rectangular
plates over a cylinder [1, p. 2632]. During the iterative solution of this problem, the instability of
the calculation of the normal vector by the Newton-Raphson method occurred for the specific
surface Γ(k)

c and the slave Gauss point x(i). The geometry of this master segment of the second
order serendipity element was used as the benchmark configuration for the comparison of described
methods . Note that the complete numerical solution of this example will be presented in
Section 6.1.6.

The input parameters for this benchmark problem are given in Tables 5.1–5.3. The shape
functions of a quadrilateral element with eight nodes are summarized in Table 5.2. The coordinates
of the nodal points x(k)

a of the master segment Γ(k)
c and slave points x(i) are shown in Tables 5.3

and 5.1, respectively.

x
(i)
1 x

(i)
2 x

(i)
3

0.004676691973675341 0.0855075528940456 0.06290027930804223

Table 5.1: Coordinates of the point x(i).
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a Na(ξ1, ξ2)
1 0.25(1− ξ1)(1− ξ2)− 0.5N5 − 0.5N8
2 0.25(1 + ξ1)(1− ξ2)− 0.5N5 − 0.5N6
3 0.25(1 + ξ1)(1 + ξ2)− 0.5N6 − 0.5N7
4 0.25(1− ξ1)(1 + ξ2)− 0.5N7 − 0.5N8
5 0.5(1− (ξ1)2)(1− ξ2)
6 0.5(1− (ξ2)2)(1 + ξ1)
7 0.5(1− (ξ1)2)(1 + ξ2)
8 0.5(1− (ξ2)2)(1− ξ1)

Table 5.2: The shape functions of a quadrilateral element with eight nodes.

a x
(k)
1a x

(k)
2a x

(k)
3a

1 0.0386717163175745 -0.0405563517184674 0.0381663218813485
2 0.0000000000000000 -0.0397596588441705 0.0391125455253157
3 0.0000000000000000 -0.0394782972838687 0.0763120389982561
4 0.0385870095736594 -0.0411702783414374 0.0757307152845918
5 0.0194722110243407 -0.0357571570173317 0.0387704050499758
6 0.0000000000000000 -0.0406822372736114 0.0581663708592389
7 0.0190469010033457 -0.0407176751343564 0.0759898919202766
8 0.0387103243000099 -0.0409359436667850 0.0569337608379921

Table 5.3: Coordinates of the nodal points x(k)
a of the surface Γ(k)

c .
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Figure 5.1: The contours of the square distance function.
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The contours of the squared distance function (2.7) for this particular geometry are depicted in

Figure 5.1. The master segment facet is outlined by the black square in the middle of the figure.
Furthermore, there are positions of five stationary points of the squared distance function marked
by green dots. The local minima are denoted by (LM1,LM2), the global minimum by (GM), and
remaining two are the saddle points (SP1,SP2).

Initial guesses ξ0 have to be prescribed. Seven points have been chosen whose coordinates are
listed in Table 5.4. These seven initial guesses are marked by red dots in Figure 5.1. The initial
guess #1 corresponds to a linear estimate through one iteration of the least square projection
method for ξ0 = {0, 0}T, see Reference [88]. The initial guess #2 placed into the origin of the
parametric coordinates is rather the natural choice of the starting estimate. The initial guess #3
is located near the saddle point of the squared distance function. Similarly, the initial guess #4 is
intentionally located in the vicinity of the local minimum (LM2). The remaining initial estimates
are considered only for performance testing purposes.

# ξ1 ξ2

1 0.830817352545586 -0.621994609286856
2 0 0
3 1 1
4 -2.8 3
5 -1 1
6 -1 -1
7 1 -1

Table 5.4: Isoparametric coordinates of the initial guesses.

Finally, it is necessary to define a convergence criterion. The iterative process is controlled by
the change of vector ξk. For all the tested methods we have set the criterion

∥∥ξk − ξk−1
∥∥ ≤ TOL (5.8)

with TOL = 10−10. In case of the simplex method there is a vector ξki for each of three vertices.
Therefore, we calculate the centroid of the simplex as the arithmetic average in the current iteration
step

ξk = 1
3

3∑
i=1
ξki (5.9)

and, as well as in the previous iteration step ξk−1 and substitute them into the criterion (5.8). In
the following section, the results for each of tested method will be discussed in detail.

5.2.2 Methods assessment

After introducing the benchmark problem in the previous section, the assessment of the methods
follows. An overview of the results is presented in Table 5.5 for all the tested methods and initial
estimates. For each of them the solution vector ξ∞, the number of iterations (NITER), and the
CPU time are shown in Table 5.5. There are also the values of principal minors of the Hessian
matrix, det H(ξ∞) and H11(ξ∞), for the determination of the type of stationary point. The error
norm, ‖ξk − ξ∞‖, during the iterative process is plotted in Figures 5.2a-5.2h. The trajectories of
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the iterative process for the Newton-Raphson method, the least square projection and the simplex
method are plotted in Figures 5.3, 5.4, and 5.5, respectively.

The Newton-Raphson method

The inadvisability of the Newton-Raphson method is clearly demonstrated by the iterations for the
initial guess #1, which is plotted in Figure 5.3. Due to the fact that the Hessian matrices H0 and
H10 are indefinite, the approximation of the solution “rebounds” far from the previous iteration.
It is also apparent in Figure 5.2a, where the error norm for the Newton-Raphson iterations is
plotted. Finally, the method converges to the local minimum LM1 in 28 iterations–see Table 5.6a.

A similar behaviour occurs for other initial estimates, except guesses #2 and #3. In the case of
point #2, the Hessian matrix is positive definite in each iteration. Thus, the method converges
quadratically to the local minimum LM1 in 5 iterations. On the other hand, in the case of
initial point #3, the Hessian matrix is indefinite in each iteration. Consequently, the method
converges quadratically to the saddle point SP1 also in 5 iterations. Thus, if the initial guess lies
in the domain, where the distance function is convex, the method converges quadratically to the
nearest local minimum. However, the convergence of the Newton-Raphson method to the nearest
local minimum is difficult to achieve since the positive definiteness of the Hessian matrix is not
guaranteed in general.

The least square projection method

Table 5.6b indicates the interesting fact that this method always converges to the global minimum
GM. Figure 5.4, where the iterations are depicted, demonstrates this fact for the initial guess #2.
Note that three iterations with a least square projection are recommended to generate an initial
guess in Reference [88]. However, as is clear from the Figure 5.4 (number 3), such linear guess
does not generate better initial estimation, at least for quadratic segments. Moreover, the global
minimizer may be situated outside of the master segment face–see Figure 5.1. Thus, the least
square projection is not a suitable method for local contact search.

The sphere approximation method

In contrast to the least square projection this method can converge to the closest local minimum
as shown in Table 5.6c. However, this is not the case with all starting points. For example, the
solution for the initial guess #3 was expected to converge to the global minimum GM rather than
to the local minimum LM1. Similarly, the sphere approximation method did not converge to the
closest minimum for the initial estimates #4 and #7, comparing the type of stationary point in
Table 5.6c with their initial position in Figure 5.1.

It should be noted that the convergence criterion had to be modified to achieve the convergence.
This is due to the vector product in Equation (4.24). The vectors become collinear as the sphere
approximation method converges. As a consequence, the method oscillates around the solution. In
order to suppress this effect the convergence tolerance was adjust to a more free value TOL = 10−7.

The torus approximation method

The torus approximation method converges to exactly the same results as the sphere approximation
method, which is apparent from the comparison of Table 5.6d and Table 5.6c. In contrast to
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5. Results and Discussion............................................
the sphere approximation method it shows better performance manifested by lower number of
iterations and CPU times (see also Figure 5.2c and Figure 5.2d). However, the convergence to
the nearest local minimum is also difficult to achieve in general. Therefore, the location of initial
guesses has to be carefully selected in practical applications of this method.

The steepest descent method

In general, the steepest descent method, as well as the other gradient methods, converges to a
saddle point much less than the quasi-Newton methods. It can be confirmed in Table 5.5e where
no saddle point occurs in the solution of the benchmark problem. This is the consequence of the
fact that the Hessian matrix is not employed in the computation.

The convergence to a saddle point is significantly influenced by the line search technique.
Although the steepest descent method returns a descent search direction, the step length procedure
may cause the solution to “wander” in the vicinity of the saddle point. Such behaviour is observed
for the initial guess #3. In Figure 5.2e the error norm behaviour suffers from a certain fluctuation
near the saddle point SP1. The method finally converges to the global minimum GM. Note that
the tested quasi-Newton methods did not share this feature.

Poor convergence was observed for the initial guess #5. There are difficulties with the step-length
θ0. Since the initial guess #5 is located close to the saddle point, the quadratic interpolation in
the line search procedure returns a parabola with a small curvature. Consequently, the step-length
causes a huge rebound in the next iteration. The method converges very slowly to the global
minimum GM.

The Broyden method

The Broyden method is sensitive to the selection of the initial secant matrix D0. It plays a critical
role in the computation of the initial search direction p0. A good idea is to select a positive
definite matrix ensuring a descent direction. Using the multiple of the identity matrix D0 = f ′|0 I
ensures this condition.

Based on the comparison of results of the steepest descent method (see Table 5.5e) and Broyden’s
method (see Table 5.5f) we can conclude that a better convergence rate is obtained by Broyden’s
method. Figure 5.2f shows that numbers of iterations are up to eleven for each initial estimate.
The exception is the initial guess #5 for which the method converges into 15669 iterations. Just
as in the preceding section, this is caused by the step-length procedure.

The BFGS method

The BFGS secant matrix is initialized identically to Broyden’s method. Based on Table 5.5g it can
be concluded that the best convergence rate is reached by this method. For example, the method
converges in only eight iterations for the initial guess #1. It should be emphasized that the error
norm for all initial guesses except for #5 is practically zero within four iterations (see Figure 5.2g).

The simplex method

At the beginning of the starting procedure, the length of the simplex edge has to be set. Since the
dependence on the number of iterations of the simplex edge length is stochastic, the value was set
to 0.43 for all initial guesses. This value was obtained via an ad hoc procedure.
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............................. 5.2. Assessment of methods for the local contact searching

Note that the numerical solution for all corner and central starting points, except for point #3,
converge to the nearest local minimum LM1. Figure 5.5 shows the typical transforming of the
simplex toward the nearest local minimum. For the initial guess #3 the solution directs toward
the global minimum GM since the initial position of the simplex is on the opposite sides of the
saddle ridge.

The distribution of the error norm for the first fifty iterations is depicted in Figure 5.2h. The
numbers of iterations are higher than one hundred (see Table 5.5h) even though a considerable
decrease of error occurs within thirty iteration steps (see Figure 5.2h).
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# ξ1

∞ ξ2
∞ detH(ξ∞) H11(ξ∞) Type NITER CPU time [ms]

1 0.241 -0.926 1.24e-06 2.82e-03 LM1 28 36.6
2 0.241 -0.926 1.24e-06 2.82e-03 LM1 5 7.4
3 0.923 0.810 -1.76e-06 7.46e-04 SP1 5 7.3
4 0.923 0.810 -1.76e-06 7.46e-04 SP1 9 13.0
5 -2.167 2.133 -2.68e-06 -2.29e-04 SP2 12 16.2
6 0.241 -0.926 1.24e-06 2.82e-03 LM1 12 16.3
7 0.923 0.810 -1.76e-06 7.46e-04 SP1 17 22.3

(a) : Newton-Raphson method

# ξ1
∞ ξ2

∞ detH(ξ∞) H11(ξ∞) Type NITER CPU time [ms]

1 3.649 3.624 8.03e-03 7.66e-06 GM 133 16.0
2 3.649 3.624 8.03e-03 7.66e-06 GM 134 16.5
3 3.649 3.624 8.03e-03 7.66e-06 GM 116 14.3
4 3.649 3.624 8.03e-03 7.66e-06 GM 124 16.3
5 3.649 3.624 8.03e-03 7.66e-06 GM 134 16.7
6 3.649 3.624 8.03e-03 7.66e-06 GM 137 16.8
7 3.649 3.624 8.03e-03 7.66e-06 GM 124 15.4

(b) : Least square projection method

# ξ1
∞ ξ2

∞ detH(ξ∞) H11(ξ∞) Type NITER CPU time [ms]

1 0.241 -0.926 1.24e-06 2.82e-03 LM1 20 55.5
2 0.241 -0.926 1.24e-06 2.82e-03 LM1 42 99.3
3 0.241 -0.926 1.24e-06 2.82e-03 LM1 47 109.1
4 3.649 3.624 7.66e-06 6.33e-03 GM 15 33.9
5 0.241 -0.926 1.24e-06 2.82e-03 LM1 19 43.3
6 0.241 -0.926 1.24e-06 2.82e-03 LM1 49 113.7
7 -3.804 3.111 6.76e-06 2.53e-03 LM2 38 88.9

(c) : Sphere approximation method

# ξ1
∞ ξ2

∞ detH(ξ∞) H11(ξ∞) Type NITER CPU time [ms]

1 0.241 -0.926 1.24e-06 2.82e-03 LM1 9 46.4
2 0.241 -0.926 1.24e-06 2.82e-03 LM1 8 24.4
3 0.241 -0.926 1.24e-06 2.82e-03 LM1 8 21.5
4 3.649 3.624 7.66e-06 6.33e-03 GM 8 24.3
5 0.241 -0.926 1.24e-06 2.82e-03 LM1 10 30.0
6 0.241 -0.926 1.24e-06 2.82e-03 LM1 7 17.6
7 -3.804 3.111 6.76e-06 2.53e-03 LM2 7 19.7

(d) : Torus approximation method

Table 5.5: Results of the benchmark test.
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# ξ1
∞ ξ2

∞ detH(ξ∞) H11(ξ∞) Type NITER CPU time [ms]

1 0.241 -0.926 1.24e-06 2.82e-03 LM1 51 164.7
2 0.241 -0.926 1.24e-06 2.82e-03 LM1 71 223.1
3 3.648 3.624 7.66e-06 6.33e-03 GM 29 95.1
4 -3.804 3.111 6.76e-06 2.53e-03 LM2 13 41.4
5 3.648 3.624 7.66e-06 6.33e-03 GM 1543 5232.6
6 0.241 -0.926 1.24e-06 2.82e-03 LM1 28 92.3
7 0.241 -0.926 1.24e-06 2.82e-03 LM1 14 44.5

(e) : Steepest descent method

# ξ1
∞ ξ2

∞ detH(ξ∞) H11(ξ∞) Type NITER CPU time [ms]

1 0.241 -0.926 1.24e-06 2.82e-03 LM1 9 17.6
2 0.241 -0.926 1.24e-06 2.82e-03 LM1 11 21.2
3 0.923 0.810 -1.76e-06 7.46e-04 SP1 11 20.3
4 -3.804 3.111 6.76e-06 2.53e-03 LM2 10 19.3
5 0.241 -0.926 1.24e-06 2.82e-03 LM1 15669 29981
6 0.241 -0.926 1.24e-06 2.82e-03 LM1 10 18.7
7 0.241 -0.926 1.24e-06 2.82e-03 LM1 9 16.9

(f) : Broyden’s method

# ξ1
∞ ξ2

∞ detH(ξ∞) H11(ξ∞) Type NITER CPU time [ms]

1 0.241 -0.926 1.24e-06 2.82e-03 LM1 8 13.6
2 0.241 -0.926 1.24e-06 2.82e-03 LM1 8 15.4
3 0.923 0.810 -1.76e-06 7.46e-04 SP1 10 17.4
4 -3.804 3.111 6.76e-06 2.53e-03 LM2 8 14.9
5 0.923 0.810 -1.76e-06 7.46e-04 SP1 23 44.4
6 0.241 -0.926 1.24e-06 2.82e-03 LM1 8 14.9
7 0.241 -0.926 1.24e-06 2.82e-03 LM1 7 13.2

(g) : BFGS method

# ξ1
∞ ξ2

∞ detH(ξ∞) H11(ξ∞) Type NITER CPU time [ms]

1 0.241 -0.926 1.24e-06 2.82e-03 LM1 190 247.2
2 0.241 -0.926 1.24e-06 2.82e-03 LM1 200 260.9
3 3.649 3.624 7.66e-06 6.33e-03 GM 210 278.6
4 -3.804 3.111 6.76e-06 2.53e-03 LM2 190 238.1
5 0.241 -0.926 1.24e-06 2.82e-03 LM1 196 253.0
6 0.241 -0.926 1.24e-06 2.82e-03 LM1 192 247.2
7 3.241 3.926 1.24e-06 2.82e-03 LM1 184 250.4

(h) : Simplex method
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Figure 5.2: Distribution of error norm.
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Figure 5.3: Trajectory of iterative process for the Newton-Raphson method.
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Figure 5.4: Trajectory of iterative process for the least square projection.
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Figure 5.5: Trajectory of iterative process for the simplex method.

5.2.3 Performance test

In benchmark problem, the attention was focused on the qualitative assessment of methods for
a given slave point and seven selected initial guesses. However, it is hardly possible to draw
conclusions about robustness of these methods. Therefore, the previous benchmark test was
extended to a performance test involving an equally spaced three-dimensional grid of slave points,
which are projected onto the master segment. The grid of slave points is created by nine squares,
which consist of five by five slave points. These square grids are placed parallel to the element
facet (see Figure 5.6).

Figure 5.6: Grid of the slave points in the performance test.

68



............................. 5.2. Assessment of methods for the local contact searching

For each of the slave points the closest point projection was calculated with 121 initial guesses
of starting point defined by the bi-unit square [−1,−0.8, . . . , 1]× [−1,−0.8, . . . , 1]. Thus, the total
number of calculation of the closest point projection for each method was 27 225. The results of the
performance test are summarized in Tables 5.5–5.7, where the average number of iterations (AVRG
NITER), the maximum number of iterations (MAX NITER), the number of “failed” calculations
(DNF NITER), and the average CPU time (AVRG CPU) are shown. Besides the average CPU
time the percentage share of computational time consumption of the line search procedure is
also displayed. Note that the iteration process is referred to be divergent if twenty thousand
iterations are reached. The results of the performance test for all eight tested methods are shown
in Table 5.5. The methods utilizing the line search technique employ quadratic interpolation to
calculate the step-length parameter as in the previous benchmark test.

Method AVRG NITER MAX NITER DNF NITER AVRG CPU [ms]

Newton-Raphson 14 762 19 34
Least square projection 52 726 5427 76
Sphere approx. method 26 4189 0 75
Torus approx. method 7 15 0 20

Steepest descent 52 19076 183 137 (60.8 %)
Broyden 166 19940 922 442 (55.4 %)
BFGS 12 12175 8 48 (45.2 %)
Simplex 199 503 0 303

Table 5.5: Results of the performance test for eight tested methods.

The local contact search procedure has to return a correct value, otherwise the calculation is
terminated. Therefore a robust method for the local contact searching should be able to converge
in every situation. This requirement is satisfied only for both the second order algorithms and
the simplex method as it is indicated by the zero value of DNF NITER in Table 5.5. As far as the
convergence rate is concerned, the torus approximation method is the fastest one. It overcomes the
sphere approximation method more than three times. It is even faster than the Newton-Raphson
or the BFGS method as it is apparent from AVRG CPU numbers in Table 5.5. On the other hand,
the average CPU time of the simplex method is about fifteen times higher in comparison with the
torus approximation method.

The results of the performance test for the remaining methods, namely the least square projection
method, the steepest descent method and Broyden’s method, are comparable or even worse than
for the benchmark problem. They suffer from complete lack of robustness and efficiency.

Method AVRG NITER MAX NITER DNF NITER AVRG CPU [ms]

Steepest descent 20 193 0 253 (91.2 %)
Broyden 8 27 0 579 (97.2 %)
BFGS 8 27 0 54 (78.3 %)

Table 5.6: Results of the performance test for the line search methods utilizing Illinois algorithm.

In order to remedy the robustness of the line search method, the Illinois algorithm [110] as
a promising alternative to the quadratic step length procedure was considered. The results are
shown in Table 5.6, where only the methods employing the line search technique are listed. Zero
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values of the DNF NITER confirm the correctness of this modification. As far as the efficiency is
concerned, the average CPU time substantially rises for the steepest descent method by 84.7%
and the Broyden method by 31%, comparing AVRG CPU numbers in Table 5.5 and Table 5.6.
The most CPU time is spent in the line search procedure. The best results were obtained using
the BFGS method, where the average CPU is only 54 [ms].

Method AVRG NITER MAX NITER DNF NITER AVRG CPU [ms]

N-R with modified Hessian 7 101 0 40 (61.1 %)
N-R with steepest descent 20 193 0 253 (91.2 %)

N-R with simplex 8 640 0 32

Table 5.7: Results of the performance test for three variants of the improvement of the Newton-Raphson
method.

For the purpose of the improvement of the Newton-Raphson scheme, a variation of this method
with Hessian modification and advantageous coupling with the steepest descent method or the
simplex method were considered. As the step length procedure the Illinois algorithm was used
again. The results for these three variants are shown in Table 5.7. The idea of Hessian modification
is based on its eigenvalue modification when negative eigenvalue is replaced by a small positive
number to ensure that the Hessian matrix is sufficiently positive definite [33]. Similarly, in the
case of the combination of methods, the steepest descent method or simplex method is performed
when the Hessian matrix is not positive definite. In all cases, the Hessian matrix was considered
to be not positive definite if one of the eigenvalues was less than 10−5. The Newton-Raphson
method with Hessian modification and coupling with the simplex method seem to be competitive
with the torus approximation method as the most effective methods for local contact search.

Although the presented results of the benchmark problem including performance test show
certain features of the methods, one should not draw relevant conclusions unless the methods are
used in a real contact problem. Therefore, each of the methods were implemented to the local
contact search procedure of FEA software PMD [174] and tested by means of numerical examples.
The results are discussed in the following section.

5.3 Stable time step size estimation for bipenalty method

Unfortunately, there are no stability theorems for contact-impact problems [40]. In this case the
linear stability theory can be applied carefully. In practice, for example, the stability may be
preserved by checking the energy balance during a nonlinear computation. In Reference [175,
p. 558] an upper bound for the stiffness penalty was derived. Moreover, it was shown that the
stiffness penalty always decreases the stable time step. In this work, we generalize this estimate
for the bipenalty approach [192, 202, 190] following the Belytschko approach [175].

h

E,A, ρ

εm

εs

u1u2

Figure 5.7: A simple dynamic system with two degrees-of-freedom — Signorini problem.
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Let us consider a simple dynamic system, depicted in Figure (5.7), with two degrees-of-freedom.
The system consists of one 1D constant strain truss element with lumped mass matrix. The active
contact constraint is set in node 1. The aim is to determine the maximum eigenfrequency of this
system to estimate the stable time step in the form (2.164). To this end, the eigenvalue problem
can be formulated as

EA

h

[
1 + βs −1
−1 1

]
u = ω2 ρ0Ah

2

[
1 + βm 0

0 1

]
u, (5.10)

where E is Young’s modulus, A is the cross section area, h is the characteristic length of the
element, u is the displacement vector which has the form u = [u1, u2]T and the dimensionless
mass and stiffness penalty have been introduced as

βm = 2
ρ0Ah

εm, βs = h

EA
εs. (5.11)

Note that since a single body is in contact with a rigid obstacle, the body index, (i), is not necessary
and is therefore omitted here, and also in the further similar cases. We define the maximum
angular velocity of a separate linear finite element with the lumped mass matrix ωmax = 2c0/h,
where c0 marks the wave speed in a bar given by c0 =

√
E/ρ0. Corresponding critical time step

size is given as

∆tc = 2
ωmax

= h

c0
. (5.12)

The maximum eigenfrequency of the problem (5.10) is given by

ωmax = c0
h

√√√√1 + (1 + βs)
(1 + βm) +

√
1 + (1 + βs)2

(1 + βm)2 + 2(1− βs)
(1 + βm) . (5.13)

Now, it is useful to introduce a new dimensionless penalty ratio r as

r = 1
2
βs
βm

= h2

4c2
0
R, (5.14)

and the Courant dimensionless number Cr is defined as

Cr = c0∆t
h

. (5.15)

It should be mentioned, the well-known CFL condition for the linear FE with lumped mass matrix
in one-dimensional case reaches the value Ccrit

r = c0∆tc/h = 1 .
Substituting (5.13) into (5.12) using (5.15) the upper bound of the stable Courant number for

the bipenalty method is obtained

Cr = c0∆tc
h

= 2√√√√1 + (1 + βs)
(1 + βm) +

√
1 + 2(1− βs)

(1 + βm) + (1 + βs)2

(1 + βm)2

, (5.16)

with the property ωmax|r=1 = 2 and Cr|r=1 = 1 independently of βs. This is the main advantage
of the bipenalty method.
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Figure 5.8: The dependence of the Courant number Cr on the dimensionless stiffness penalty βs for
selected dimensionless penalty ratios r.

The dependence of the Courant number Cr on the dimensionless stiffness penalty βs is plotted
in Figure 5.8, where the dimensionless penalty ratio r is employed as the parameter. The curve
for r →∞ (i.e. βm → 0) corresponds to the standard stiffness penalty method. It illustrates the
main disadvantages of the standard stiffness penalty method: the Courant number Cr rapidly
decrease with increasing dimensionless stiffness penalty βs. On the other hand, the curve for
r = 1 confirms the existence of the CPR, for which the stable time step remains unchanged for an
arbitrary value of the dimensionless stiffness penalty βs. In addition, there are more curves in
Figure 5.8 for dimensionless penalty ratios r = 1, 2, 4, 8, 16 and ∞. For each of them, there are
limits of the Courant number for βs →∞ on the right edge of the picture. Taking dimensionless
ratios r < 1 does not decrease the critical time step below the level of the unconstrained system.
It is clear that the bipenalty method with the penalty ratio equal to the CPR is superior over the
standard stiffness penalty method.
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Chapter 6
Numerical examples

The performance of the newly developed method will be demonstrated by means of several
numerical examples involving static and dynamic problem. Both the 2D and the 3D cases are
considered. Moreover, an engineering application is presented in Section 6.3, where the contact
between the upper and lower part of the high pressure inner turbine casing is analyzed.

6.1 Static contact problems

Seven static contact problems are solved in this section. Four two-dimensional and three three-
dimensional. The friction is considered in two cases. Namely in the examples called: ”2D shallow
ironing problem” and ”3D sliding of a cube on a rigid plate”.

6.1.1 2D contact patch test

In the first example, the contact patch test according to Taylor and Papadopoulos [56] is presented
[193, 191]. The purpose of this example is to test the ability of contact discretization to accurately
transfer constant pressure loads from one body to another. Two blocks of different size are pressed
against each other. Dimensions are depicted in the Figure 6.1a, where L1 = 1 m. Both blocks are
subjected to a pressure q = 1 Pa. The same material with Poisson’s ratio ν = 0.3 and Young’s
modulus E = 1000 Pa is used for both blocks. The plane strain state is considered. The analytical
solution is σyy = −1 Pa.

Either of the blocks is discretized by one bivariate NURBS patch of order p(i) = 1 in each
parametric dimension. The lower block is discretized by n(1)

1 = 33 times n(1)
2 = 11 control points

and the upper block by n(2)
1 = 37 times n(2)

2 = 7 control points. Corresponding uniform knot
vectors were considered.

In Figure 6.1b, there are contours of σyy stress component, which perfectly match the analytical
solution. In fact, the maximum error of the numerical solution is in the order of machine precision.
Note that the same results were obtained for bi-quadratic and bi-cubic NURBS patches.
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Figure 6.1: 2D contact patch test.

6.1.2 2D Hertz-Signorini problem

In the second example, the classic Hertzian problem is investigated [191, 194]. In particular, the
plane strain contact of cylinder with rigid plane is considered. The material parameters, geometry,
and boundary conditions as well as IGA mesh parametrization are taken from the work of Temizer
et al. [50, p. 1104].

The cylinder with the outer radius L1 = 1 m is made of a linear elastic material characterized
by the Poisson’s ratio ν = 0.3 and Young’s modulus E = 1 Pa. The vertical load per unit length
of the cylinder is q1 = 10−3 Pa, so that the total vertical force is Fc = 2L1q1 = 2× 10−3 N.
In the work of Temizer et al. [50, p. 1105] one can find analytical solution for the contact
area radius rc =

√
4FcL1(1− ν2)/(πE), and maximum contact pressure pmax

c = 2Fc/(πrc). The
contact pressure distribution is pc(x) = pmax

c
√

1− (x/rc)2. As in Reference [50], the cylinder is
modelled with a non-zero inner radius. The corresponding vertical load on the inner radius is
q2(ϑ) = q1 cos(ϑ).

The entries of the knot vector are located in such a way that approximately 75 % of the
elements in the radial direction are distributed in the outer circular ring (see Figure 6.2a) of radius
L3 = 0.1L2. Likewise, approximately 75 % of the elements in the angular direction are distributed
in the region defined by the angle ϑ1 = 0.1π/2. Particularly, 48 linear elements along the radial
direction and 81 linear elements along the angular direction are considered. The r-refinement is
employed during the increasing the polynomial order of the basis functions, i.e. the control points
are relocated but their number is kept constant.

For illustration, the contours of the normalized vertical stress component σ∗yy = σyy/p
max
c are

showed in Figure 6.2b. The detail study of contact pressure distribution in dependence on the
contact area radius, rc, is presented in Figures 6.3 and 6.4. In these figures, the plots in the left
column were obtained for the newly developed symmetry preserving GPTS isogeometric contact
formulation, whereas the plots in the right column were obtained for the mortar isogeometric
contact formulation according to Temizer et al. [50]. Rows of Figures 6.3 and 6.4 differs in the
polynomial order, p, of NURBS basis functions. In each sub-plot of Figures 6.3 and 6.4, there
is analytical solution, the contact pressure at Gauss points pcg = εNgNg , and a post-processed
contact pressure denoted in legend as NURBS.

Here employed post-processing scheme for the contact pressure was originally proposed by
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Sauer [132, p. 306]. The idea is to calculate control point contact pressures pcA to get post-
processed contact pressure in the form

pp
c =

nscp∑
A=1

RApcA . (6.1)

The calculation of the control point values of the contact pressure is inspirited by the mortar
method [50]. In particular, control point pressures are evaluated as a weighted average

pcA =
∫

Γc
RAεN 〈gN〉 dΓ∫

Γc
RA dΓ . (6.2)

One can see in Figures 6.3 and 6.4 that post-processed contact pressure shows very good agreement
with the analytical solution. On the other hand, the contact pressure at Gauss points exhibits
oscillations that increase with the polynomial order of the basis functions. This is the expected
result because the GPTS formulation leads to the over-constrained system of equations. Note that
calculation of the weighted average quantities is the bottom line of the mortar-KTS algorithm [50].
While Equation (6.2) was used only once in a post-processing solution, the mortar FE algorithm
uses this formula in each iteration of the non-linear solution to obtain the correct number of
contact constraints. It can be concluded that the oscillations are smaller for the newly developed
algorithm than for the KTS-mortar algorithm.
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(a) : Parameters of the IGA mesh.
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Figure 6.2: Hertzian contact problem.
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Figure 6.3: Contact pressure distribution for εN = 104.
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Figure 6.4: Contact pressure distribution for εN = 106.
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6.1.3 2D bending of two cantilever beams

This example was inspired by the problem solved in a[140, p. 37]. 2D plane stress cantilever beams,
depicted in Figure 6.5, are placed in a way that one is just above the other so they do not touch
but there is an initial gap between them L3 = 0.01 m. The thickness of both beams is L2 = 2 m.
The length of the bottom beam is L1 = 28 m. The length of the upper one is L1 + L2 = 30 m.
The upper beam is subjected to the death load q = 0.175 Nm−1. The Saint Venant-Kirchhoff
material model [176, sec. 5.3.1] is considered for both beams with Young’s modulus E = 200 Pa
and Poisson’s ratio ν = 0.3.
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Figure 6.5: Bending of two cantilever beams with contact.

The beams are discretized by quadratic B-spline IGA elements. The upper beam consists of 15
elements and 51 control points and the lower one consists of 14 elements and 48 control points. The
control net can be seen in Figure 6.6, where several deformed configurations are plotted. There is
also final solution with contours of the HMH reduced stress. During the bending the upper beam
slides (without friction) over the lower one. The penalty parameter was set to εN = 100ENm−2

and the contact residual is integrated with 8 Gaussian quadrature points per each contact segment.
The solution was obtained within 10 sub-increments indicating the good robustness of the newly
proposed contact algorithm.
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Figure 6.6: Several intermediate deformed configurations and final solution with HMH stress contours.
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6.1.4 2D shallow ironing problem with friction

The shallow ironing problem becomes a popular benchmark to demonstrate the performance of
a finite deformation frictional contact formulation [84, 177, 178]. It was shown by Fischer and
Wriggers [84, p. 5035] that conventional NTS contact discretization fails for this problem.
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Figure 6.7: Geometry setting of the 2D shallow ironing problem.

The geometry setting of the problem is shown in Figure 6.7, where the geometry parameters
of the block are: L3 = 1.2 m, L4 = 0.9 m, L5 = 0.3 m, and dimensions of the slab are L1 = 12 m
and L2 = 4 m. For both the block and the slab, the Neo-Hookean material is considered with
Young’s modulus E = 68.96× 108 Pa and E = 68.96× 107 Pa, respectively. Both bodies has the
same Poisson’s ratio ν = 0.32. The displacement-driven loading is applied on the upper edge of
the block, which is depicted by the blue line in Figure 6.7. The displacement is prescribed in two
steps. In the first step, the block is pressed against the slab with displacement u(1)

y = −0.05 m.
This movement is realized in 10 sub-increments from t = 0 s to t = 1 s. After that, the block
is forced to slip by prescribing the horizontal displacement u(1)

x = 10.0 m from time t = 1 s to
time t = 2 s in 500 sub-increments. Both the block and the slab are discretized by quadratic
NURBS elements. The slab consists of 50 by 8 elements in the horizontal and vertical direction,
respectively. Similarly the block consists of 6 by 3 quadratic NURBS elements. The control net is
apparent form the Figure 6.8. The slab is discretized by 520 and the block by 40 control points.
The contact residual is integrated with 20 Gaussian quadrature points per each contact segment.
The penalty parametrs was set to εN = εT = 1010 Nm−3 and the coefficient of friction was µ = 0.3.
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Figure 6.8: Contours of the shear stress component σ∗
xy for three selected time instances.

In Figure 6.8, there are three deformed configurations at time t = 1 s (u(1)
x = 0 m, u(1)

y − 1 m),
t = 1.5 s (u(1)

x = 5 m, u(1)
y − 1 m), and t = 2 s (u(1)

x = 10 m, u(1)
y − 1 m). Each of the configurations

is coloured by contours of normalized shear stress component σ∗xy. One can notice the penetration
of control nets. Its due to the fact that control points and control net of a NURBS curve do
not interpolate the curve. Therefore, the real penetration caused by the low value of the penalty
parameter is smaller than it appears.

In Figure 6.9, the time evolution of the normal and tangential components of the contact forces
are plotted. The obtained results are smoother than those presented in [84, 177, 178]. In these
references, although quadratic elements were used the contact force oscillates during the sliding
over the edge between two adjacent elements. This is because of C0 continuity of classic FEA. On
the other hand, in the case of quadratic NURBS elements, the continuity is C1 which results in
the smoother contact forces.
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Figure 6.9: Magnitude of the normal and tangential components of the contact force.

6.1.5 3D frictional sliding of a cube on a rigid plane

As a representative example of the 3D friction problem was chosen an example according to
Yastrebov [178, p. 292]. It consists of the frictional sliding of an elastic block on a rigid plate.
The geometry is presented in Figure 6.10, where the size parameter L1 is set to 1 m. The material
parameters of the elastic block are Young’s modulus E = 210 Pa and Poisson’s ratio ν = 0.3. The
displacement-driven loading is also denoted in Figure 6.10. The displacement of the upper side
of the block is prescribed in two steps. In the first step the block is pressed against the rigid
plate by moving u(1)

z = −0.05 m in the z-axis direction. In the second step the block is forced to
slip by prescribing the horizontal displacement u(1)

x = 1/3 m in the x-axis direction. The vertical
displacement is applied during 1 s and the horizontal displacement is performed in 2 s. Three
coefficients of friction are considered: µ = 0.2, 0.5, and 0.8.

L1

u
(1)
z

u
(1)
x

Figure 6.10: Geometry setting of the 3D frictional sliding of a cube on a rigid plane.
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The elastic block is discretized by the trivariate quadratic B-spline basis functions and five

isogeometric elements in each of the parametric directions. The knots in the knot vector are placed
in a way that the linear parametrization is obtained. The control net can be seen from Figure 6.12.
The total number of quadratic isogeometric elements is 125 and the total number of control points
is 343.

For each of three considered frictional coefficients different number of load sub-increments is
considered. For the frictional coefficient µ = 0.2, the vertical displacement is applied in 12 and
the horizontal displacement in 36 load sub-increments. For the frictional coefficient µ = 0.5, the
vertical displacement is applied in 10 and the horizontal displacement in 30 load sub-increments.
And finally for the frictional coefficient µ = 0.8, the vertical displacement is applied in 5 and the
horizontal displacement in 25 load sub-increments.

The magnitude of the tangent reaction component is plotted in Figure 6.11 together with the
normal reaction component scaled by the frictional coefficient. One can observe approaching of
the two curves after switching to the slip state.

Deformed geometries and the corresponding contours of the shear stress σxz are presented in
Figure 6.12 for three considered deformation states. Note that in accordance with Yastrebov’s
solution [178, p. 295], in the case of µ = 0.8 contact detachment occurs.
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Figure 6.11: Evolution of the magnitude of the tangent contact reaction for three values of coefficient
of friction (µ = 0.2, µ = 0.5, and µ = 0.8).
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Figure 6.12: Contours of the shear stress component σxy for three selected time instances.
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6.1.6 3D bending of two rectangular plates over a cylinder

As was mentioned in Section 5.2.1, the benchmark problem arises from a numerical example
that was originally introduced in [1] and resolved in [210, 189]. It involves the bending of two
elastic rectangular plates over an elastic cylinder (see Figure 6.13). The radius of the cylinder is
L4 = 0.4 m, the dimensions of the plates are: length L1 = 2 m, width L2 = 0.6 m and thickness
L3 = 0.08 m. The material properties are: Young’s modulus E = 2.1 × 105 MPa and Poisson’s
ratio ν = 0.36. The plates were loaded with uniformly distributed surface traction q = 22.5 MPa.
Due to the triple, symmetry only one-eighth was modelled using 1168 20-node hexahedral classic
FEA quadratic serendipity elements. Since the applied loading caused a significant deflection of
the plate, the effect of large displacements and rotations in total Lagrangian formulation was
considered.
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Figure 6.13: Bending of two rectangular plates over a cylinder.
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Figure 6.14: Distribution of σyy-stress colour contours in deformed configuration of the model.

The numerical solution obtained by a penalty-based contact algorithm [1] is illustrated in
Figure 6.14. In this figure the distribution of σyy stress colour contours in the deformed configuration
of the model for the penalty parameter εN = 1013 Nm−3 is plotted. The effect known from the
theory of beams on elastic foundation can be observed when the plate disengages from the cylinder
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in the vicinity of the edges.
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Figure 6.15: Contact pressure distribution on the plate.

Since the analytical solution is not available, the ANSYS solution by the Lagrange multipliers
method was taken as a reference solution. The mortar segment-to-segment contact formulation [81]
with symmetrically treated contact surfaces (two-pass) was applied. In Figure 6.15a, the distribution
of the contact pressure pc on the plate is plotted for the penalty parameter εN = 1011 Nm−3. For
a chosen section z = 102.07 mm drawn in Figure 6.15a by the red curve, the distribution of the
contact pressure evaluated at the surface Gaussian points is drawn in Figure 6.15b. It can be
observed that the numerical solution obtained by the penalty contact algorithm [1] gradually drifts
with increasing value of the penalty parameter εN to the reference calculation denoted as Lagrange
in the legend of Figure 6.15b.

Finally, attention was focused on the crucial assessment of different methods in the local contact
search procedure. A series of calculations was performed with the aim to monitor the effectiveness
of all methods. Note that the Illinois algorithm was used as the step length procedure for the line
search methods. The results are summarized in Table 6.1 for different values of penalty parameters
εN. The cost of analysis was measured by the number of iterations NITER and total CPU time.
In order to achieve convergence for higher values of the penalty parameter, it was necessary to
introduce the load subincrementation controlled by user-defined number NSUBI. In Table 6.1,
parameter NSUBI indicates a minimum value of the load subincrement for which the numerical
solution was obtained. If a method did not converge even for NSUBI = 1000, the calculation was
considered to be divergent.

It is clear that increasing the values of the penalty parameter εN places higher requirements on
the robustness of the local contact search procedure. Table 6.1 shows that only the simplex method
and the combination of the Newton-Raphson method with the simplex method converge to the
solution even for the penalty parameter εN = 1014 Nm−3. Furthermore, both of these methods need
only a small amount of load subincrementation in contrast to other methods with the exception of
the BFGS, the Newton-Raphson with modified Hessian and the torus approximation method.
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εN ( Nm−3) NSUBI NITER CPU time (s)

1010 1 9 5
1011 1 15 9
1012 2 46 32
1013 8 232 253
1014 ***

(a) : Newton-Raphson method

εN ( Nm−3) NSUBI NITER CPU time (s)

1010 1 9 5
1011 2 24 16
1012 10 151 101
1013 64 1442 1090
1014 ***

(b) : Least square projection method

εN ( Nm−3) NSUBI NITER CPU time (s)

1010 1 9 5
1011 1 16 11
1012 1 29 23
1013 4 189 172
1014 ***

(c) : Sphere approximation method

εN ( Nm−3) NSUBI NITER CPU time (s)

1010 1 9 5
1011 1 14 9
1012 1 23 24
1013 3 42 56
1014 ***

(d) : Torus approximation method

εN ( Nm−3) NSUBI NITER CPU time (s)

1010 1 9 6
1011 2 24 16
1012 10 151 108
1013 69 1715 1291
1014 ***

(e) : Steepest descent method

εN ( Nm−3) NSUBI NITER CPU time (s)

1010 1 9 5
1011 1 15 9
1012 3 63 43
1013 82 1676 1270
1014 ***

(f) : Broyden’s method

εN [N/m3] NSUBI NITER CPU time [s]

1010 1 9 5
1011 1 15 9
1012 1 26 19
1013 2 90 127
1014 ***

(g) : BFGS method

εN [N/m3] NSUBI NITER CPU time [s]

1010 1 9 6
1011 1 15 11
1012 1 26 23
1013 2 90 156
1014 7 1151 3345

(h) : Simplex method

εN [N/m3] NSUBI NITER CPU time [s]

1010 1 9 6
1011 1 15 11
1012 1 25 23
1013 2 88 143
1014 7 1458 2955
(i) : Newton-Raphson + Simplex method

εN [N/m3] NSUBI NITER CPU time [s]

1010 1 9 5
1011 1 15 10
1012 1 26 35
1013 3 127 207
1014 ***
(j) : Newton-Raphson with modified Hessian

Table 6.1: Effectiveness of methods in local contact search.
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As far as the influence of the local contact search procedure on the convergence rate of the
contact algorithm is concerned, the torus approximation method and the quasi-Newton BFGS
method remain the fastest ones. The combination of the Newton-Raphson method with the
simplex method is slightly slower. For lower penalty values the method preserves the quadratic
convergence properties of the pure Newton-Raphson method. On the other hand, for higher
penalty parameters, the simplex modification helps to increase the robustness of the local contact
search and hence the effectiveness of the complete contact algorithm. The convergence rate of
remaining methods is significantly worse.

6.1.7 3D ironing problem

In the last static numerical example, the finite deformation contact of a cylindrical elastic die with
a rubber block is analyzed. This problem was first formulated in the work of Puso and Laursen [44,
p. 614] and similar investigations were made by Popp et al. [38, p. 1448].

The Poisson’s ratio and Young’s modulus of the elastic die are E = 1000 Pa, ν = 0.3 and of the
rubber block E = 1 Pa, ν = 0.3. The conventional incompressible neo-Hookean material model is
considered [179, p. 183]. The dimensions of the block are L1 = 9 m, L2 = 4 m, and L3 = 3 m. The
cylindrical die has outer radius L4 = 3 m, width L5 = 5.2 m, and wall thickness L6 = 0.2 m. Note
that only 90 deg sector of the cylinder is considered, in order to represent the die only by single
patch.
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L5

Figure 6.16: Geometry setting of the 3D ironing problem.

Both the die and the block are discretized by one trivariate NURBS patch of first order in each
parametric dimension. The exception is the rounded direction where second order is considered in
order to exactly describe the geometry. The die consists of n(1)

1 = 10, n(1)
2 = 6, and n(1)

3 = 2 control
points in each parametric dimension. Similarly the block is discretized by n(2)

1 = 21, n(2)
2 = 7, and

n
(2)
3 = 4 control points. Uniform knot vectors are considered.
The initial position of the die centre is 2.5 m from the left edge of the block and 3.0 m from

the top surface of the block. The die is first pressed into the block by prescribing a vertical
displacement u(1)

z = −1.4 m. This stage is recorded in Figure 6.17a. Then it slides along the block
until a horizontal displacement u(1)

x = 4.0 m in the x-direction is reached. The moment when the
die is in the middle of the block is illustrated in Figure 6.17b. It can be concluded that presented
contact formulation is capable to solve finite sliding contact problems.
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Figure 6.17: Two characteristic stages of deformation of the ironing problem.

6.2 Dynamic contact problems

Two 1D impact problems are presented in this section to demonstrate the critical time-step
estimate derived in Section 5.3. Next, the study of influence of mass matrix lumping is performed
by means of 2D dynamic Hertz problem in Section 6.2.3. Finally, the 3D impact of two tubes
in Section 6.2.4 demonstrates the performance of the new local contact search procedure on the
contact-impact problem.

6.2.1 1D impact of a bar with a rigid obstacle

In this section, the stability of explicit contact-impact algorithm using bipenalty technique was
studied on the dynamic Signorini problem, which was represented by the motion of a bar that
comes into contact with a rigid obstacle (see Figure 6.18). The bar of length L1 = 1 m with the
initial velocity V (1)

0x = −1 m · s−1 is situated at distance of g0
N = 0 m in front of the obstacle. The

area of the bar section A (m2), Young’s modulus E (MPa) and density ρ0 (kg ·m−3) were chosen
to be unit.

g0
N

E,A, ρ0
V(1)

0

L1

x

Figure 6.18: 1D dynamic Signorini problem.

The bar was discretized by a regular finite element mesh containing one hundred 1D constant
strain truss elements. For the effective integration of equilibrium equations by the CDM the
consistent mass matrix was diagonalized by the row sum technique. The maximum eigenfrequency
was ωmax = 200 s−1.

Let us introduce following dimensionless quantities

t∗ = c0t

L1
, x∗ = x

L1
, u∗ = u|x=0

L1
, F ∗c = c0Fc

V0xEA
, σ∗ = σA

Fc
, (6.3)

88



......................................... 6.2. Dynamic contact problems

where t∗, x∗, u∗, F ∗c , σ∗ are the dimensionless time, coordinate, contact displacement, contact force,
stress, respectively. In the following figures, the results for the standard penalty method (left) and
the bipenalty method (right) are plotted.
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Figure 6.19: Time distribution of the balance of energy for βs = 1.5.

The dimensionless stiffness penalty βs was chosen equal to 1.5. In order to verify derived formula
of the stability (5.16) the Courant number Cr was set to 0.82, which was slightly higher than
the critical value Cr = 0.81649658 for the penalty method. The results are shown in Figure 6.19,
where time distributions of the kinetic energy, Ekin, the potential energy, Epot, the total energy,
Etot, and the work done by contact forces, Wcon, are plotted. It was confirmed that the stability
of the CDM was lost for the penalty method (see Figure 6.19a), whereas the solution obtained by
the bipenalty method still perfectly conserved the total energy, as is shown in Figure 6.19b. When
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the Courant number Cr was set to 0.5 both methods were stable (see Figures 6.19c and 6.19d).

Note that the work of contact force is almost zero. In fact, it should be exactly zero because the
displacement of the contact force was restricted by the rigid obstacle. However, in the penalty-like
methods, contact forces perform a spurious work on penetrations. This work converges to zero
as βs tends to infinity. Nevertheless, a finite value of the stiffness penalty parameter always
results in a non-zero work of contact force. One can also notice the presence of oscillations in the
distributions of the potential energy and the work of contact forces, which result in oscillations in
the distributions of the total energy. This phenomenon is primarily caused by the oscillations in
the gap function, which will be discussed further.
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Figure 6.20: Time distribution of the dimensionless contact displacement for Cr = 0.5.

Figure 6.20 shows time distribution of the dimensionless contact displacement for βs = 1.5 and
Cr = 0.5. The gap should be equal to zero during the impact, which is indicated by the dashed
line in the Figure 6.20. It is well known that penalty-like methods allow certain penetration
of contact interfaces. As a result, the oscillations of kinematic and stress quantities can occur
in impact problems. Figure 6.20b displays an attenuation of the oscillations for the bipenalty
approach in comparison with the penalty method in Figure 6.20a. However, from a certain value
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of the dimensionless stiffness penalty βs it was observed that the amplitude of oscillations were
even higher for the bipenalty method than for the penalty method. An example is shown in
Figures 6.20c and 6.20c, where βs = 3.5 was considered. The reason probably is that the oscillation
of the contact displacement overshot zero value. Thus, the contact constraint was deactivated and
the contact force disappeared. In consequent iterations, the contact constraint was again activated.
Therefore, the system was switching between two states which generated the oscillations.

This phenomenon can also be observed in Figures 6.21a and 6.21b, where time distribution
of the dimensionless contact force is plotted. Both distributions are bounded by zero value. On
the other hand, for the previously chosen value of dimensionless stiffness penalty βs = 1.5 time
dependence of of the dimensionless contact force oscillated around the exact solution as indicated in
Figures 6.21c and 6.21d. Similarly to distribution of the contact displacement in Figure 6.20b the
bipenalty method dumped oscillations in the distribution of contact force depicted in Figure 6.21d.
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Figure 6.21: Time distribution of the dimensionless contact force for and Cr = 0.5.

Figure 6.22 shows spatial distribution stress along the bar when the wavefront reached a half of
the bar. In addition to contact analysis, a reference calculation was performed, where the axial
displacement of the contact node was fixed. Stress distributions for both the penalty and the
bipenalty method was in a good agreement with the reference solution. The reason probably
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is that the finite element mesh behaves as a low-pass filter [180] and therefore high frequency
oscillations introduced by the penalty-like methods do not affect the solution.
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Figure 6.22: Spatial distribution of the dimensionless stress for Cr = 0.5.
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6.2.2 1D impact of two bars with different lengths

In this example, we follow the work by Huněk [181], where the contact-impact problem of two bars
of identical materials and with different lengths are studied. A scheme of this test is depicted in
Figure 6.23. The left bar is moving to the right with a constant velocity V (1)

0x . The right bar with
fixed end is at rest. The geometrical, material and numerical parameters were adopted from [181]
as follows: the lengths L1 = 10 m and L2 = 20 m, the Young’s modulus E(1) = E(2) = 100 Pa, the
mass density ρ(1)

0 = ρ
(2)
0 = 0.01 kg ·m−3, the cross-sectional area A(1) = A(2) = 1 m2, the initial

impact velocities V (1)
0x = 0.1 m/s and V (1)

0x = 0 m/s, the number of elements n(1)
nel = 50, n(2)

nel = 100,
thus the finite element lengths are set up as h(1) = h(2) = 0.2 m, the initial contact gap g0

N = 0 m,
the duration time T = 0.7 s. The analytical solution for the contact force is Fc = 0.05 N for
t ∈ (0; 0.2) and t ∈ (0.4; 0.6) and zero otherwise.

E(1), A(1), ρ
(1)
0

V(1)
0

g0
N L2

E(2), A(2), ρ
(2)
0

L1
x

Figure 6.23: A scheme of the Huněk test.

Figures 6.24 and 6.25 show time distribution of the contact force on the contacting node of
the left bar for the Courant numbers Cr = 0.2 and Cr = 0.999, respectively. The influence of the
stiffness penalty parameters βs = 0.125, 0.25, and 1 together with the corresponding mass penalty
parameters for the penalty method (r = ∞) and the bipenalty method given by the CPR the
value (r = 1) are investigated. For Cr = 0.2 (see Figure 6.24) the results exhibit a stable character.
For the value of the stiffness parameter βs = 1 both penalty and bipenalty method suffer from
oscillations. On the other hand, the results show a delay effect in contact force distribution for
smaller values of the stiffness parameters βs = 0.124 and βs = 0.25, respectively. This effect
could be theoretically explained based on the reflection-transmission analysis [190, p. 10–13]. For
Cr = 0.999 (see Figure 6.25) the results for the penalty method (r =∞) show unstable character
while for the bipenalty method with the CPR exhibit stable behaviour, regardless of the choice of
stiffness parameters. However, the distribution of the contact forces indicate large oscillations.
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Figure 6.24: Contact force with respect to time for Huněk test for the Courant number Cr = 0.2.
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Figure 6.25: Contact force with respect to time for Huněk test for the Courant number Cr = 0.999.
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6.2.3 2D Hertz dynamic problem

The purpose of this example is to illustrate the performance of the classic FEA and IGA contact-
impact explicit algorithm [203, 195, 211, 196]. The example deals with Hertz dynamic problem, a
classical benchmark due to the availability of an analytical solution [182, p. 117]. In the example,
the effect of mass lumping is investigated. The comparisons in this section are limited to the
second order elements. In particular, quadratic serendipity eight-node finite elements are used in
the case of FEA, and second order basis function for IGA.

The presented numerical example deal with frictionless impact of two cylinders of radius
L1 = 4 m, see Figure 6.26. The material of each of the cylinders is linearly elastic with Young’s
modulus E = 1000 MPa, Poisson’s ratio ν = 0.2, and density ρ0 = 1 kg ·m3. The non-zero
components of the initial velocity vectors are V (1)

0y = 2 m · s−1 and V (2)
0y = −2 m · s−1. In the initial

configuration the cylinders just touches each other in a point. Due to symmetry, only the half of
each cylinder is considered. The penalty parameter is εN = 1× 105 N ·m−2.

L1

L1

V(2)
0

V(1)
0

x

y

Figure 6.26: Dynamic Hertz problem.

The explicit time integration by CDM is performed for T = 0.9 s with the time step ∆t =
5× 10−4 s. It should be noted that only one mesh is considered. The effect of mesh refinement
will be studied in the further work.

Figure 6.27 shows the contact force and the maximal contact pressure obtained for both FEA
and IGA with HRZ mass lumping technique [204, 197]. The HRZ method was chosen because in
case of second order Lagrange elements the row sum method leads to negative mass on diagonal,
which is not admissible. Results show a satisfactory agreement with the analytical solution. One
can notice that the FEA solution in comparison with IGA solution exhibits lower oscillations.

In order to evaluate the effect of mass lumping techniques on the oscillations of the contact forces
and contact pressure distribution in IGA, further analyses are performed by using consistent mass
matrix and mass matrix lumped by the row sum method. Figure 6.28 illustrates that consistent
mass matrix delivers a more accurate contact pressure distribution than row sum and HRZ mass
lumping techniques.
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Figure 6.27: Comparison of classic FEA and IGA solution of contact forces and contact pressures for
HRZ mass lumping method.
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Figure 6.28: Influence of mass lumping techniques on contact forces and contact pressures for IGA.

6.2.4 3D contact-impact between two tubes

In order to demonstrate the robustness of the new local contact search procedure, impact between
two tubes was studied [212, 189]. It was a challenging problem since the contact conditions are
enforced on the three-dimensional surface which rapidly changes its curvature during iterative
solution. The example was originally presented in [183]. Two perpendicular tubes shown in
Figure 6.29 are in contact with each other and the non-zero components of the initial velocity
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vectors are prescribed as V (1)

0x = 35 m ·s−1 and V (2)
0x = −35 m ·s−1. The length, radius and thickness

of the tubes are L1 = 0.46 m, L2 = 0.1 m and L3 = 0.003 m, respectively. The tubes consist of
elastic-perfectly plastic material with Young’s modulus E = 2× 105 MPa, Poisson’s ratio ν = 0.3
and yield stress σY = 200 MPa. The density is ρ0 = 7 840 kg ·m−3.

x

z

y

L1

L2 L3

A

V(1)
0

V(2)
0

Figure 6.29: Initial configuration of impacting tubes.

Based on the recommendation of a choice of permissible dimensionless wavelengths for quadratic
serendipity finite element meshes to suppress the dispersion errors [184], each of the tubes was
discretized by 600 quadratic twenty-node elements. The central difference method with the
diagonal mass matrix was used to solve the problem. The diagonal mass matrix was assembled
by HRZ (Hinton-Rock-Zienkiewicz) lumping scheme [156]. The value of the penalty parameter
was set to εN = 1012 N/m3. It is well known that the penalty method tends to decrease the
critical time step in conditionally stable explicit time integration schemes. The time step was
set carefully to ∆t = 0.005µs and the stability of the integration process was ensured by energy
balance monitoring. The impact response of the tubes was calculated for T = 8µs.

Several distorted configurations in selected times are shown in Figures 6.30b–6.30f depicted
for the central section of one of the tubes, which is perpendicular to the axis of the other tube
simultaneously (see Figure 6.30a). One can observe how the contact zone changes its size and
position during the impact. As the starting approximation, the contact is realized by a single
point as is shown in Figure 6.30b. For a short time after impact, the centre of contact area comes
unstuck. As the deformation continues, the contact zone moves near to the edge of the tubes,
so that finite sliding is involved. Finally, the plastically deformed tubes rebound as Figure 6.30f
shows.

By means of this example, it was confirmed that the proposed local contact search procedure
significantly increased the effectiveness of the numerical solution of contact-impact problem between
two tubes.
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(a) : t = 0µs (3d) (b) : t = 0µs

(c) : t = 1µs (d) : t = 2µs

(e) : t = 6µs (f) : t = 8µs

Figure 6.30: Distorted configurations of impact between two tubes in selected times.
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6.3 An engineering application

The chapter about numerical examples is closed by a presentation of a real-world engineering
problem which involved a creep analysis of a turbine casing. Only a brief description of the task
is provided. An emphasis is placed on the contact analysis of the upper and lower parts at the
dividing plane.

6.3.1 High pressure steam turbine inner casing

Methods developed in this dissertation were implemented in the FEM software PMD [2] and used
to solve a real-world engineering problem which involved the thermal, static, and creep analysis
of the high pressure (HP) steam turbine inner casing. Namely static heat conduction, elastic,
elasto-plastic, and creep problems were solved using a complex creep model [185]. The aim of the
work was to evaluate residual deformations after 10 000 and 200 000 operation hours in selected
control point of the dividing plane after relieving, cooling and dismantling the turbine inner casing.
Further details on the load and material parameters can be found in the report [200].

Figure 6.31: Finite element mesh of the upper and lower part of the turbine casing.

A finite element mesh of 400 869 quadratic 10-node tetrahedral elements with 671 212 nodes in
total, which was taken over from the assignor — Doosan Škoda Power, is shown in Figure 6.31.
The total number of degrees of freedom was 2 006 153. The contact interface was discretized by
20 149 quadratic 6-node triangle elements. The 7-point Gauss quadrature rule [13, p. 467] was
employed to integrate the contact virtual work term. As a consequence, the contact detection had
to be perform among 141 043 points and 20 149 contact segments, i.e. 2 841 875 407 combinations
would be necessary to evaluate if an all-to-all contact detection algorithm was used. If we further
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realize that contact detection is repeated for each integration step of the temporal integration
scheme [186] of the creep model and each iteration of the non-linear solver, the calculation could
not be completed in a satisfactorily short time. One execution of the all-to-all contact detection
algorithm for so many combinations takes a few hours. Unfortunately, one iteration of the all-to-all
algorithm is performed in the initialization phase of the current contact algorithm [1, p. 2626].
Therefore, the global contact search algorithm [91] was implemented which uses a linked-list data
structure to effectively sort and search for contact pairs. Contact detection with this type of global
contact search algorithm takes only a few seconds. Another improvement of the contact algorithm
was achieved by considering the inexact linearization of the contact residual. Figure 6.32 shows
the positive effect of the approximative contact tangent matrix on the number of iteration of the
non-linear solver.
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Figure 6.32: Dependence of the residual norm convergence on the number of iterations obtained for
the therom-elastic calculation.

Further in this section, several selected results will be presented. In Figure 6.33, there are
contours of Huber-von Mises-Hencky (HMH) reduced stress after thermo-elasto-plastic calculation.
One may notice the values of yield stress, especially on the outer and inner parts of the inlet where
the part is exposed to high temperatures and pressures. In these places, permanent deformations
occur due to creep after 10 000 operation hours. Specific locations and creep strain values are
shown in Figure 6.34. In this state, pressure unloading, cooling and subsequent disassembly
are performed. As the result of this, the contact surface of the the upper and lower parts are
permanently deformed. The contours of z-displacements on the contact interface are depicted
in Figure 6.35. It should be noted that the results obtained by the FEA software PMD were
validated with a measurement and an alternative computation in FEA software ANSYS with a
different creep model. Both the measurement and the alternative computation were done by the
assignor. All three approaches were in a very good agreement and confirmed the hypothesis, that
the real component was permanently distorted due to creep deformations.

101



6. Numerical examples.............................................

(a) : Inner view. (b) : Outer view.

HMH (MPa)
0 35028021014070

Figure 6.33: Contours of HMH reduced stress on the inner and outer surface of the turbine casing.

(a) : Inner (b) : Outer

εc
0 1e-46.7e-53.3e-5

Figure 6.34: Contours of creep strain, εC, on the inner and outer surface of the turbine casing.
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(a) : Inner view. (b) : Outer view.

z-displacement (mm)
-0.85 0.850.510.17-0.17-0.51

(c) : Detail of the upper dividing plane.

(d) : Detail of the lower dividing plane.

Figure 6.35: Geometry of the upper and lower part of the turbine casing with contours of the
z-displacement at the dividing plane. 103
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Chapter 7
Theoretical and Practical Outcomes of the Thesis

Regarding the theoretical outcomes of the thesis, the greatest contribution is the development
of an isogeometric finite element explicit contact-impact algorithm. Motivated by the desire for an
accurate numerical solution of impact problems and stress wave propagation in materials, attention
was paid to the study of numerical properties of the new spatial discretization method — the
isogeometric analysis. For this purpose, a completely new finite element software was developed.
Its general design enabled to solve even complex geometries consisting of multiple patches, which
were exploited in the works [187, 188]. Comparison of frictionless contact treatment in classical
finite element analysis and isogeometric analysis in static regime was presented in [205, 193, 206].
The algorithm was further extended for dynamic problems with particular attention paid to the
accuracy of contact forces and contact pressures [203, 211, 196, 212], mass matrix lumping [204,
197] and contact detection [195].

Next theoretical outcome of the thesis is the proposal of a new local contact search procedure
[189]. The design of a new method was preceded by a critical assessment of a set of unconstrained
optimization methods [198, 207, 208]. The assessment included not only static, but also dynamic
contact problems [209, 199, 210]. The fundamental purpose of the local contact search procedure
is the fast and accurate resolution of the closest point projection (CPP) problem. The CPP is a
general problem which can be encountered across the various technological applications; computer
graphics, CAD, CAM, robotics, to name some. Therefore, it is believed that the newly proposed
method can find application also in other fields.

The third contribution of this work is the utilization of the bipenalty method for contact-impact
problems [190]. It is well known that the pure penalty method negatively influences the critical time
step of an explicit temporal integration scheme. The bipenalty method was originally proposed for
the time domain computational dynamics and for arbitrary multipoint constraints. The theoretical
contribution of this work lies in the derivation of a critical time step estimate for the penalty and
bipenalty method first published in [192] and applied for explicit IGA [202] contact-impact analysis.
The stability and reflection-transmission properties of the bipenalty method for contact-impact
problems in 1D homogeneous case was studied in [190].

Regarding the practical outcomes of the thesis, the stability of the BFGS algorithm for
a constrained system was improved by considering a new initial tangent matrix enriched by
approximative linearization of the contact residual term. Further, the new local contact search
procedure was implemented into the FE system PMD [2]. The resulting adjustment of the
BFGS algorithm an the local contact search procedure were successfully tested and applied to an
engineering problem of high pressure steam turbine inner casing [200, 201].
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Chapter 8
Conclusions and Future Prospectives

The presented dissertation aimed to increase the efficiency and robustness of the finite element
contact algorithm for resolution of the general static and dynamic large deformation contact
problems. Three objectives were defined to achieve this goal. First, develop an original isogeometric
contact formulation. Second, propose a new method for local contact searching. And third, expand
the bipenalty method for the solution of the contact-impact problems.

Regarding the first objective, the originality consists in connecting the symmetry preserving
contact formulation and isogeometric analysis. By the symmetry preserving formulation is meant
an unbiased treatment of the contact residual, thanks to which there is no need to distinguish
between the master and slave bodies. The isogeometric analysis is a modern method of spatial
discretization, which utilizes as basis functions various types of splines, most frequently NURBS.
The most attractive feature of the isogeometric contact analysis is the ability to control the
geometric continuity on the interface of finite elements. While the basis functions of the classical
FEA are only C0 continuous at the interface of elements, the continuity of IGA basis functions can
be up to Cp−1, where p is the order. Consequently, the isogeometric contact analysis in comparison
with the conventional finite element method gives smoother contact forces and pressures. This is
mainly due to an unambiguous definition of the normal vector field at the contact interface. The
performance of the newly developed isogeometric contact formulation was tested by mean of several
numerical examples involving 2D contact patch test, 2D Hertz-Signorini problem, 2D/3D large
deformation bending problems, 2D frictional/3D frictionless ironing problems and 3D frictional
sliding of a cube on a rigid plate.

The newly developed isogeometric contact formulation was also extended into the explicit
contact-impact algorithm for the numerical solution of dynamic and wave propagation problems. A
particular attention was paid to the influence of the mass matrix lumping on the contact pressure
oscillations. Two main conclusions for explicit dynamic application may be drawn: First, for higher
order elements and mass matrix lumped by the HRZ method, IGA in comparison with classic
FEA leads to a more oscillatory contact force and consequently also contact pressure. Second, the
oscillations of the contact forces in IGA are minimal for consistent mass matrix.

As far as the second objective is concerned, today’s implementations of the local contact search
procedure most frequently employs the Newton-Raphson method. Although this method works
passably for linear elements, it suffers from convergence difficulties for higher-order elements.
This is due to the fact that the Hessian matrix of the square distance function to be minimized
is not positive definite in general. Therefore, various alternative methods were tested. Beside
the geometric iteration methods, namely the least square projection, the sphere and torus ap-
proximation methods, and the standard gradient methods such as the steepest descent method
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were considered. Next, two quasi-Newton methods — the Broyden and the BFGS method —
were examined. Finally, the simplex method was chosen as a representative of the derivative-free
methods.

The assessment of the methods was performed in a benchmark problem based on the geometry of
a real distorted master segment of the second order serendipity element and the position of a slave
point. The detailed behaviour of each method was monitored for seven chosen initial estimates.
In order to increase the validity of obtained results, the benchmark problem was extended to
a performance test involving an equally spaced three-dimensional grid of slave points, which
were projected onto this master segment. Again, the behaviour of each method was thoroughly
tested. It was shown that only the second order geometric iteration methods and the simplex
method were robust because only these three methods converged in all 27 225 cases. Rectifying this
shortcoming for the line search methods was solved using the Illinois algorithm as an alternative to
the quadratic interpolation technique. Next, different possibilities to improve the Newton-Raphson
method were considered, taking into account the Hessian modification or coupling with the steepest
descent method or the simplex method. Based on the results of the performance test, the torus
approximation method, the combination of the Newton-Raphson method with the simplex method,
the Newton-Raphson method with Hessian modification and the BFGS method utilizing Illinois
line search were the most cost-effective methods for local contact search.

Finally, the methods were implemented to the local contact search procedure of the FEA
software PMD and tested through the numerical example which involved the bending of two
elastic rectangular plates over an elastic cylinder. For lower values of the penalty parameter the
torus approximation method seemed to be the most efficient ones. Note that the Newton-Raphson
method with modified Hessian was not very efficient. This is probably due to the low size of the
Hessian matrix. Once the Hessian modification has to be carried out, there is left only one search
direction given by the remaining eigenvector, which need not be effective. It can be concluded,
based on overall results, that the torus approximation method is the most effective method for the
local contact searching.

Regarding the thirds objective of this dissertation, the stability of an explicit contact-impact
algorithm using the existing bipenalty approach in finite element analysis has been studied and
analyzed for one-dimensional problems. The main attention has been paid on an upper bound
estimation of the stable Courant number for the bipenalty method with respect to stiffness penalty
and mass penalty parameters. It was shown that the critical Courant number tends towards zero
for the stiffness penalty parameter approaching infinity whereas the mass penalty parameter is
considered to be zero, i.e. when only a pure penalty formulation is considered. On the other hand,
setting the penalty ratio between mass and stiffness penalty parameters to the critical penalty ratio
preserves the stable Courant number at the level of the unpenalized system for an arbitrary value
of the stiffness penalty parameter. The original method for computation of the critical penalty
ratio is based on the highest frequency of a one-element subproblem with one active constraint
with a rigid body. It considers cases for two-node bar, Euler-Bernoulli beam and two-dimensional
solid elements with lumped and consistent mass matrix approximations.

The theoretical derivations are verified via numerical examples. The stability estimate gives
correct critical Courant number for a simple 1D dynamic Signorini problem and the Huněk test.
Predicted dependencies of the critical time step are confirmed: pure penalty method decreases the
critical time step size and the bipenalty method with critical penalty ratio preserves the critical
time step. It is an excellent property of the bipenalty method, which can be employed in real
numerical solutions of contact-impact problems. The two numerical contact-impact examples also

108



......................................8. Conclusions and Future Prospectives

revealed that both (penalty and bipenalty) methods caused spurious oscillations in the distributions
of displacement and the contact force. This effect was especially obvious for higher values of
stiffness penalty parameters, where contact damping is often employed. Solutions with bipenalty
method tend to have less spurious oscillations.

The estimation of the penalty parameter ensuring non-oscillating behavior of both methods will
be investigated in further work together with implementation and testing the bipenalty method
in multi-dimensional contact-impact problems. Further, the analysis of the bipenalty method in
contact-impact problems for one- and multi-dimensional heterogeneous bodies will be investigated
in detail.

Let us recall that the theoretical and practical outcomes of the thesis were highlighted in the
previous chapter. At the end, it is concluded that all aims of the thesis have been fulfilled.
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Appendix A
Derivation of contact kinematic quantities

A.1 Minimization of the squared distance function

One can obtain stationary point of the squared distance function (2.7) by putting all its partial
derivatives with respect to convective coordinates equal to zero

∂d(ξ)
∂ξα

= ∂

∂ξα

[1
2

∥∥∥x(i)(X(i), t)− x(k)(X(k)(ξ), t)
∥∥∥2
]

(A.1)

= ∂

∂ξα

[1
2
(
x(i) − x(k)

)
·
(
x(i) − x(k)

)]
(A.2)

= 1
2

(
− ∂x(k)

∂X(k)
∂X(k)

∂ξα

)
·
(
x(i) − x(k)

)
(A.3)

+ 1
2
(
x(i) − x(k)

)
·
(
− ∂x(k)

∂X(k)
∂X(k)

∂ξα

)
(A.4)

= −
(
x(i) − x(k)

)
· ∂x(k)

∂X(k)
∂X(k)

∂ξα
= 0, (A.5)

which yields minimizer, ξ̄, as the solution of the implicit term

[
x(i)(X(i), t)− x(k)(X(k)(ξ̄), t)

]
· ∂x(k)(X(k)(ξ̄), t)

∂X(k)
∂X(k)(ξ̄)
∂ξα

= 0. (A.6)

A.2 The time derivative of convective coordinates

The unknown velocity ˙̄ξα can be obtained by differentiating the orthogonality condition (2.12)
with respect to time
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∂
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∂x(i)

∂t
− ∂x̄(i)

∂t
− F̄(k)T̄ (k)

β

∂ξ̄β

∂t

)
· τ̄ (k)

α +
(
x(i) − x̄(k)

)
· ˙̄τ (k)

α = 0, (A.9)(
V(i) − V̄(k) − τ̄ (k)

β
˙̄ξβ
)
· τ̄ (k)

α +
(
x(i) − x̄(k)

)
· ˙̄τ (k)

α = 0, (A.10)(
V(i) − V̄(k) − τ̄ (k)

β
˙̄ξβ
)
· τ̄ (k)

α − g
(i)
N n̄(k) · ˙̄τ (k)

α = 0, (A.11)

where the identity
(
x(i) − x̄(k)

)
= −g(i)

N n̄(k) has been exploited. The derivative of the tangent
vector with respect to time is

˙̄τ (k)
α = ∂

∂t

[
∂x(k)(ξ̄, t)

∂ξα

]
(A.12)

= ∂x(k)(ξ̄, t)
∂ξα∂t

+ ∂x(k)(ξ̄)
∂ξα∂ξβ

˙̄ξβ (A.13)

= ∂V̄(k)

∂ξα
+ ∂x̄(k)

∂ξα∂ξβ
˙̄ξβ. (A.14)

Substitution of the expression for ˙̄τα back to A.11 yields

0 =
(
V(i) − V̄(k) − ˙̄ξβ τ̄ (k)

β

)
· τ̄ (k)

α − g
(i)
N n̄(k) ·

(
∂V̄(k)

∂ξα
+ ∂x̄(k)

∂ξα∂ξβ
˙̄ξβ
)

(A.15)

=
(
V(i) − V̄(k)

)
· τ̄ (k)

α −
˙̄ξβ τ̄ (k)

β · τ̄
(k)
α − g

(i)
N n̄(k) ·

(
∂V̄(k)

∂ξα
+ ∂x̄(k)

∂ξα∂ξβ
˙̄ξβ
)

(A.16)

=
(
V(i) − V̄(k)

)
· τ̄ (k)

α −
˙̄ξβ τ̄ (k)

β · τ̄
(k)
α − g

(i)
N n̄(k) ·

(
∂V̄(k)

∂ξα
+ ∂x̄(k)

∂ξα∂ξβ
˙̄ξβ
)

(A.17)

=
(
V(i) − V̄(k)

)
· τ̄ (k)

α − m̄
(k)
αβ

˙̄ξβ − g(i)
N n̄(k) · ∂V̄(k)

∂ξα
− g(i)

N n̄(k) · ∂x̄(k)

∂ξα∂ξβ
˙̄ξβ (A.18)

=
(
V(i) − V̄(k)

)
· τ̄ (k)

α − m̄
(k)
αβ

˙̄ξβ − g(i)
N n̄(k) · ∂V̄(k)

∂ξα
− g(i)

N κ̄
(k)
αβ

˙̄ξβ, (A.19)

where (2.15) and (2.30) have been employed. From the last equation one finally obtains

˙̄ξβ =
(
m̄

(k)
αβ + g

(i)
N κ̄

(k)
αβ

)−1
[(

V(i) − V̄(k)
)
· τ̄ (k)

α − g
(i)
N n̄(k) · ∂V̄(k)

∂ξα

]
. (A.20)
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Appendix B
Variations of contact quantities

During the linearization of the contact residual term (2.111) the variation of several contact
quantities has appears. The first variation of a functional F at point u(i) in the direction of δu(i)

is defined as

δδu(i) [F ] (u(i)) := d
dθF (u(i) + θδu(i))

∣∣∣∣
θ=0

. (B.1)

In what fallow a shorter notation will be employed. Namely, only δ symbol before varied quantities
will indicate the variation

δ• := δδu(i) [•] (u(i)). (B.2)

Moreover, partial derivatives with respect to convective coordinates will be indicated as a subscript
α, β, γ after the comma

∂•
∂ξα

= •,α. (B.3)

The tangent vector

The first variation of the tangent vector (2.14) in the direction of δu(k) is

δτ̄ (k)
α = δx̄(k)

,α (B.4)

= δū(k)
,α + x̄(k)

,αβδξ̄
β. (B.5)

δτ̄ (k)
α = δū(k)

,α + x̄(k)
,αβδξ̄

β. (B.6)

The normal vector

An elegant way how to derive the first variation of the normal vector (2.19) in the direction of
δu(k) is to come out from the orthogonality condition for normal and tangent vector
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B. Variations of contact quantities........................................

n̄(k) · τ̄ (k)
α = 0, (B.7)

δ
(
n̄(k) · τ̄ (k)

α

)
= 0, (B.8)

δn̄(k) · τ̄ (k)
α + n̄(k) · δτ̄ (k)

α = 0, (B.9)
δn̄(k) · τ̄ (k)

α = −n̄(k) · δτ̄ (k)
α . (B.10)

In the last term the dot product on the left hand side expresses covariant components of the
vector δn̄(k). So if the whole equation is premultiplied by the vector τ̄ (k)α, one gets the vector
δn̄(k) expressed in the contravariant basis

(
δn̄(k) · τ̄ (k)

α

)
τ̄ (k)α =

(
−n̄(k) · δτ̄ (k)

α

)
τ̄ (k)α, (B.11)

δn̄(k) =
(
−n̄(k) · δτ̄ (k)

α

)
τ̄ (k)α, (B.12)

and after substitution from (B.5)

δn̄(k) =
[
−n̄(k) ·

(
δū(k)

,α + x̄(k)
,αβδξ̄

β
)]
τ̄ (k)α. (B.13)

Recall that the contravariant basis can be calculated using the metric tensor (2.16) as

τ̄ (k)α =
(
m̄−1

)(k)

αβ
τ̄

(k)
β , (B.14)

the first variation of the normal vector is

δn̄(k) =
[
−n̄(k) ·

(
δū(k)

,α + x̄(k)
,αβδξ̄

β
)] (

m̄−1
)(k)

αγ
τ̄ (k)
γ . (B.15)

The normal gap function

The first variation of the normal gap function (2.21) in the direction of δu(i) is

δg
(i)
N = δ

[
−
(
x(i) − x̄(k)

)
· n̄(k)

]
(B.16)

= −
(
δx(i) − δx̄(k) − x̄(k)

,α δξ̄
α
)
· n̄(k) −

(
x(i) − x̄(k)

)
· δn̄(k) (B.17)

= −
(
δu(i) − δū(k) − τ̄ (k)

α δξ̄α
)
· n̄(k) + g

(i)
N n̄(k) · δn̄(k). (B.18)

If two kinds of orthogonality are further exploited. Namely, the obvious orthogonality of the
normal and tangent vector and a little more complicated orthogonality of the normal vector and
its variations

δn̄(k) · n̄(k) =
(
−n̄(k) · δτ̄α

)
τ̄α · n̄ = 0, (B.19)

which follows after substituting (B.12) from the orthogonality of the normal and contravariant
tangent vector. For the first variation of the normal gap function one can finally write

δg
(i)
N = −

(
δu(i) − δū(k)

)
· n̄(k). (B.20)
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........................................B. Variations of contact quantities
The convective coordinates

The first variation of the convective coordinate in the direction of δu(i) will be derived from the
orthogonality condition (2.12) as

δ
[(

x(i) − x̄(k)
)
· τ̄ (k)

α

]
= 0, (B.21)(

δu(i) − δū(k) − x̄(k)
,β δξ̄

β
)
· τ̄ (k)

α +
(
x(i) − x̄(k)

)
· δτ̄ (k)

α = 0, (B.22)(
δu(i) − δū(k) − τ̄ (k)

β δξ̄β
)
· τ̄ (k)

α − g
(i)
N n̄(k) · δτ̄ (k)

α = 0, (B.23)(
δu(i) − δū(k) − τ̄ (k)

β δξ̄β
)
· τ̄ (k)

α − g
(i)
N n̄(k) ·

(
δū(k)

,α + x̄(k)
,αβδξ̄

β
)

= 0, (B.24)(
δu(i) − δū(k)

)
· τ̄ (k)

α −
(
τ̄ (k)
α · τ̄

(k)
β

)
δξ̄β − g(i)

N n̄(k) ·
(
δū(k)

,α + x̄(k)
,αβδξ̄

β
)

= 0, (B.25)(
δu(i) − δū(k)

)
· τ̄ (k)

α − m̄
(k)
αβ δξ̄

β − g(i)
N n̄(k) · δū(k)

,α − g
(i)
N n̄k · x̄(k)

,αβδξ̄
β = 0, (B.26)[(

δu(i) − δū(k)
)
· τ̄ (k)

α − g
(i)
N n̄(k) · δū(k)

,α

]
−
(
m̄

(k)
αβ + g

(i)
N κ̄

(k)
αβ

)
δξ̄β = 0. (B.27)

Further, δξ̄β can be expressed as

δξ̄β =
(
m̄

(k)
αβ + g

(i)
N κ̄

(k)
αβ

)−1 [(
δu(i) − δū(k)

)
· τ̄ (k)

α − g
(k)
N n̄(k) · δū(k)

,α

]
. (B.28)

The normal gap function is equal to zero on the contact boundary Γ(i)
c , therefore, the last relation

can be further simplified

δξ̄β =
(
m̄−1

)(k)

αβ

(
δu(i) − δū(k)

)
· τ̄ (k)

α , (B.29)

or employing (2.16)

δξ̄β =
(
δu(i) − δū(k)

)
· τ̄ (k)β. (B.30)

Note that one more useful relation follows from the expression of the components (B.23) in the
contravariant basis

[(
δu(i) − δū(k) − τ̄ (k)

β δξ̄β
)
· τ̄ (k)

α

]
τ̄ (k)α − g(i)

N

(
n̄(k) · δτ̄ (k)

α

)
τ̄ (k)α = 0, (B.31)(

δu(i) − δū(k) − τ̄ (k)
β δξ̄β

)
+ g

(i)
N δn̄(k) = 0, (B.32)

where in the second addend the relation (B.12) can be recognized. Finally, one gets an useful
relation

g
(i)
N δn̄(k) = −

(
δu(i) − δū(k) − τ̄ (k)

β δξ̄β
)
. (B.33)
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Appendix C
Linearization of the contact quantities

Since the linearization has the same mathematical structure as variation, the linearization of
some quantities can be obtained simply just by replacement of the symbol δ by ∆. Similar to the
previous section a shorter notation for directional derivative will be occasionally used

∆• := D∆u(i) [•] (u(i)). (C.1)

The normal gap function

The directional derivative of the normal gap function in the direction of ∆u(i) is according to
(B.20)

D∆u(i)

[
g

(i)
N

]
= −

(
∆u(i) −∆ū(k)

)
· n̄(k). (C.2)

The convective coordinates

The directional derivative of the convective coordinates in the direction of ∆u(k)

D∆u(k)

[
ξ̄β
]

=
(
m̄

(k)
αβ + g

(i)
N κ̄

(k)
αβ

)−1 [(
∆u(i) −∆ū(k)

)
· τ̄ (k)

α − g
(i)
N n̄(k) ·∆ū(k)

,α

]
. (C.3)

The tangent vector

The directional derivative of the covariant components of the tangent vector in the direction of
∆u(k) is

D∆u(k)

[
τ̄ (k)
α

]
= ∆ū(k)

,α + x̄(k)
,αβ∆ξ̄β. (C.4)

The directional derivative of the contravariant components of the tangent vector in the direction
of ∆u(k) is

D∆u(k)

[
τ̄ (k)α

]
= ∆

(
m̄(k)βγ τ̄ (k)

γ

)
(C.5)

= ∆m̄(k)βγ τ̄ (k)
γ + m̄(k)βγ∆τ̄ (k)

γ . (C.6)
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The normal vector

The directional derivative of the normal vector in the direction of ∆u(k) is

D∆u(k)

[
n̄(k)

]
=
(
−n̄(k) ·∆τ̄ (k)

α

)
τ̄ (k)α (C.7)

=
[
−n̄(k) ·

(
∆ū(k)

,α + x̄(k)
,αβ∆ξ̄β

)]
τ̄ (k)α. (C.8)

D∆u(k)

[
n̄(k)

]
=
[
−n̄(k) ·

(
∆ū(k)

,α + x̄(k)
,αβ∆ξ̄β

)]
τ̄ (k)α. (C.9)

It turns out to be useful to calculate also the directional derivative of the dot product of the
normal vector and its variations in the direction of ∆u(k) which, as we have shown in (B.19), is
equal to zero

n̄(k) · δn̄(k) = 0, (C.10)
D∆u(k)

[
n̄(k) · δn̄(k)

]
= 0, (C.11)

∆n̄(k) · δn̄(k) + n̄(k) ·∆δn̄(k) = 0, (C.12)

and from the last equality a useful identity can be expressed

n̄(k) ·∆δn̄(k) = −∆n̄(k) · δn̄(k). (C.13)

The variation of the normal gap function

When calculating the directional derivative of the variation of the normal gap function δg(i)
N in

the direction of ∆u(i), it is necessary to come out from equation (B.18), because the linearization
will no longer apply the orthogonality, which has been exploited to simplify (B.20). Thus, the
linearization of δg(i)

N will be

D∆u(i)

[
δg

(i)
N

]
= D∆u(i)

[
−
(
δu(i) − δū(k) − τ̄ (k)

α δξ̄α
)
· n̄(k) + g

(i)
N n̄(k) · δn̄(k)

]
(C.14)

= −
(
−δū(k)

,α ∆ξ̄α −∆τ̄ (k)
α δξ̄α − τ̄ (k)

α ∆δξ̄α
)
· n̄(k) (C.15)

−
(
δu(i) − δū(k) − τ̄ (k)

α δξ̄α
)
·∆n̄(k) (C.16)

+ ∆g(i)
N n̄(k) · δn̄(k) + g

(i)
N

(
∆n̄(k) · δn̄(k) + n̄(k) ·∆δn̄(k)

)
. (C.17)

Excluding the scalar products τ̄ (k)
α · n̄(k) and n̄(k) · δn̄(k), which are equal to zero, and if the

identities (C.13) and (B.33) are invoked

D∆u(i)

[
δg

(i)
N

]
=
(
δū(k)

,α ∆ξ̄α + ∆τ̄ (k)
α δξ̄α

)
· n̄(k) + g

(i)
N δn̄(k) ·∆n̄(k) (C.18)

=
[
δū(k)

,α ∆ξ̄α +
(
∆ū(k)

,α + x̄(k)
,αβ∆ξ̄β

)
δξ̄α

]
· n̄(k) + g

(i)
N δn̄(k) ·∆n̄(k) (C.19)

= n̄(k) ·
(
δū(k)

,α ∆ξ̄α + δξ̄α∆ū(k)
,α

)
+ δξ̄ακ̄

(k)
αβ∆ξ̄β + g

(i)
N δn̄(k) ·∆n̄(k), (C.20)
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and by substitution δn̄(k) from (B.13) and ∆n̄(k) from (C.7) one finally gets

D∆u(i)

[
δg

(i)
N

]
=

(
δū(k)

,α ∆ξ̄α + δξ̄α∆ū(k)
,α

)
· n̄(k) + δξ̄ακ̄

(k)
αβ∆ξ̄β

+ g
(i)
N

(
n̄(k) · δū(k)

,α + κ̄
(k)
αγ δξ̄γ

)
m̄(k)αβ

(
n̄(k) ·∆ū(k)

,α + κ̄
(k)
βγ ∆ξ̄γ

)
.

(C.21)

The variation of the convective coordinates

The directional derivative of the convective coordinates δξ̄β can be obtained by derivation of
(B.28)

(
m̄

(k)
αβ + g

(i)
N κ̄

(k)
αβ

)
∆δξ̄β = −τ̄ (k)

α ·
(
∆ū(k)

,β δξ̄
β + δū(k)

,β ∆ξ̄β
)

−
(
τ̄

(k)
α · x̄(k)

,βγ + g
(i)
N n̄(k) · x̄(k)

,αβγ

)
∆ξ̄γδξ̄β

− g
(i)
N n̄(k) ·

(
δū(k)

,αβ∆ξ̄β + ∆ū(k)
,αβδξ̄

β
)

−
(
δū(k)

,α + x̄(k)
,αγδξ̄γ

)
· τ̄ (k)

β ∆ξ̄β −
(
∆ū(k)

,α + x̄(k)
,αγ∆ξ̄γ

)
· τ̄ (k)

β δξ̄β

+
(
δu(i) − δū(k)

)
·
(
∆ū(k)

,α + x̄(k)
,αγ∆ξ̄γ

)
+

(
∆u(i) −∆ū(k)

)
·
(
δū(k)

,α + x̄(k)
,αγδξ̄γ

)
.

(C.22)

The relative slip rate

The directional derivative of components of the relative slip rate vector in the direction of ∆u(i)

are

D∆u(i)

[
ġ

(i)
Tβ

]
= ∆

( ˙̄ξαm̄(k)
αβ

)
(C.23)

= ∆ ˙̄ξαm̄(k)
αβ + ˙̄ξα∆m̄(k)

αβ . (C.24)

D∆u(i)

[
ġ

(i)
Tβ

]
= ∆ ˙̄ξαm̄αβ + ˙̄ξα∆m̄(k)

αβ . (C.25)

The metric tensor

The directional derivative of the components of the metric tensor in the direction of ∆u(k) is

D∆u(k)

[
m̄

(k)
αβ

]
= ∆

(
τ̄ (k)
α · τ̄

(k)
β

)
(C.26)

= ∆τ̄ (k)
α · τ̄

(k)
β + τ̄ (k)

α ·∆τ̄
(k)
β (C.27)

=
(
∆ū(k)

,α + x̄(k)
,αγ∆ξ̄γ

)
· τ̄ (k)

β + τ̄ (k)
α ·

(
∆ū(k)

,β + x̄(k)
,βγ∆ξ̄γ

)
. (C.28)

D∆u(k)

[
m̄

(k)
αβ

]
=
(
∆ū(k)

,α + x̄(k)
,αγ∆ξ̄γ

)
· τ̄ (k)

β + τ̄ (k)
α ·

(
∆ū(k)

,β + x̄(k)
,βγ∆ξ̄γ

)
. (C.29)
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The unit tangent traction vector

The directional derivative of components of the unit tangent traction vector in the direction of
∆u(i) is

D∆u(i)

 t
(i)
Tα∥∥∥t(i)
T

∥∥∥
 = D∆u(i)

[
t
(i)
Tα

(
t
(i)
Tβm̄

(k)βγt
(i)
Tγ

)− 1
2
]

(C.30)

= ∆t(i)Tα∥∥∥t(i)
T

∥∥∥ − 1
2 t

(i)
Tα

(
t
(i)
Tβm̄

(k)βγt
(i)
Tγ

)− 3
2 ∆

(
t
(i)
Tδm̄

(k)δηt
(i)
Tη

)
(C.31)

= ∆t(i)Tα∥∥∥t(i)
T

∥∥∥ − 1
2 t

(i)
Tα

∆
(
t
(i)
Tβm̄

(k)βγt
(i)
Tγ

)
∥∥∥t(i)

T

∥∥∥ ∥∥∥t(k)
T

∥∥∥2 (C.32)

= ∆t(i)Tα∥∥∥t(i)
T

∥∥∥ − 1
2
t
(i)
Tα∥∥∥t(i)
T

∥∥∥
∆t(i)Tβm̄

(k)βγt
(i)
Tγ + t

(i)
Tβ∆m̄(k)βγt

(i)
Tγ + t

(i)
Tβm̄

(k)βγ∆t(i)Tγ∥∥∥t(i)
T

∥∥∥2 (C.33)

= ∆t(i)Tα∥∥∥t(i)
T

∥∥∥ − 1
2
t
(i)
Tα∥∥∥t(i)
T

∥∥∥
2∆t(i)Tβm̄

(k)βγt
(i)
Tγ + t

(i)
Tβ∆m̄(k)βγt

(i)
Tγ∥∥∥t(i)

T

∥∥∥2 (C.34)

= ∆t(i)Tα∥∥∥t(i)
T

∥∥∥ − t
(i)
Tα∥∥∥t(i)
T

∥∥∥
∆t(i)Tβt

(i)β
T∥∥∥t(i)

T

∥∥∥2 − t
(i)
Tα∥∥∥t(i)
T

∥∥∥
t
(i)
Tβ∆m̄(k)βγt

(i)
Tγ

2
∥∥∥t(i)

T

∥∥∥2 (C.35)

= ∆t(i)Tα∥∥∥t(i)
T

∥∥∥
δαβ − t

(i)
Tα∥∥∥t(i)
T

∥∥∥ t
(i)β
T∥∥∥t(i)
T

∥∥∥
− t

(i)
Tα∥∥∥t(i)
T

∥∥∥
t
(i)
Tβ∆m̄(k)βγt

(i)
Tγ

2
∥∥∥t(i)

T

∥∥∥2 (C.36)

= ∆t(i)Tα∥∥∥t(i)
T

∥∥∥
δαβ − t

(i)
Tα∥∥∥t(i)
T

∥∥∥ t
(i)β
T∥∥∥t(i)
T

∥∥∥
− t

(i)
Tα∥∥∥t(i)
T

∥∥∥
t
(i)
Tβ∥∥∥t(i)
T

∥∥∥∆m̄(k)βγ

2
t
(i)
Tγ∥∥∥t(i)
T

∥∥∥ (C.37)

= ∆t(i)Tα∥∥∥t(i)
T

∥∥∥
δαβ − t

(i)
Tα∥∥∥t(i)
T

∥∥∥ t
(i)β
T∥∥∥t(i)
T

∥∥∥
− t

(i)
Tα∥∥∥t(i)
T

∥∥∥
t
(i)
Tβ∥∥∥t(i)
T

∥∥∥∆τ̄ (k)β · τ̄ (k)γ t
(i)
Tγ∥∥∥t(i)
T

∥∥∥ . (C.38)

D∆u(i)

 t
(i)
Tα∥∥∥t(i)
T

∥∥∥
 = ∆t(i)Tα∥∥∥t(i)

T

∥∥∥
δαβ − t

(i)
Tα∥∥∥t(i)
T

∥∥∥ t
(i)β
T∥∥∥t(i)
T

∥∥∥
− t

(i)
Tα∥∥∥t(i)
T

∥∥∥
t
(i)
Tβ∥∥∥t(i)
T

∥∥∥∆τ̄ (k)β · τ̄ (k)γ t
(i)
Tγ∥∥∥t(i)
T

∥∥∥ . (C.39)

The contact pressure

The directional derivative of the contact pressure in the direction of ∆u(i) is
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D∆u(i)

[
p(i)

c

]
= D∆u(i)

[
εN
〈
g

(i)
N

〉]
(C.40)

= εN
∂
〈
g

(i)
N

〉
∂g

(i)
N

D∆u(i)

[
∆g(i)

N

]
(C.41)

= εNH
(
g

(i)
N

)
D∆u(i)

[
∆g(i)

N

]
. (C.42)

where H stands for Heaviside function.

D∆u(i)

[
p(i)

c

]
= εNH

(
g

(i)
N

)
D∆u(i)

[
∆g(i)

N

]
. (C.43)

The tangential components of the contact traction vector

For the directional derivative of tangential components of the contact traction vector in the
direction of ∆u(i) it is necessary to distinguish between the state of sticking and slipping. It is
advantageous to come from Equation (2.169). In the case of sticking, for which ∆λn+1 = 0

D∆u(i)

[
t
n+1(i)
Tα

]
= D∆u(i)

[
t
n(i)
Tα − εTm̄

n(k)
αβ

(
ξ̄n+1β − ξ̄nβ

)]
(C.44)

= D∆u(i)

[
−εTm̄

n(k)
αβ

(
ξ̄n+1β − ξ̄nβ

)]
(C.45)

= D∆u(i)

[
−εTm̄

n(k)
αβ

] (
ξ̄n+1β − ξ̄nβ

)
− εTm̄

n(k)
αβ D∆u(i)

[(
ξ̄n+1β − ξ̄nβ

)]
(C.46)

= −εT∆m̄n(k)
αβ

(
ξ̄n+1β − ξ̄nβ

)
− εTm̄

n(k)
αβ ∆ξ̄n+1β. (C.47)

D∆u(i)

[
t
n+1(i)
Tα

]
= −εT∆m̄n(k)

αβ

(
ξ̄n+1β − ξ̄nβ

)
− εTm̄

n(k)
αβ ∆ξ̄n+1β. (C.48)

In the case of sliding, it is also advantageous to start with Equation (2.169) where for the Coulomb
friction law it holds ∆λn+1(i) = −Φn+1(i)

trial
εT

t
n+1(i)
Tα = t

n(i)
Tα + εT

−Φn+1(i)
trial
εT

t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥ − m̄n(k)
αβ

(
ξ̄n+1β − ξ̄nβ

) (C.49)

= tnTα + εT

−
∥∥∥tn+1(i)

Ttrial

∥∥∥+ µp
n+1(i)
c

εT

t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥ − m̄n(k)
αβ

(
ξ̄n+1β − ξ̄nβ

) (C.50)

= tnTα +

−
∥∥∥tn+1(i)

Ttrial

∥∥∥ tn+1(i)
Tαtrial∥∥∥tn+1(i)

Ttrial

∥∥∥ + µpn+1(i)
c

t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥ − εTm̄n(k)
αβ

(
ξ̄n+1β − ξ̄nβ

) (C.51)

= tnTα − t
n+1(i)
Tαtrial

+ µpn+1(i)
c

t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥ + t
n+1(i)
Tαtrial

(C.52)

= tnTα + µpn+1(i)
c

t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥ . (C.53)
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So that

D∆u(i)

[
t
n+1(i)
Tα

]
= D∆u(i)

tnTα + µpn+1(i)
c

t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥
 (C.54)

= D∆u(i)

µpn+1(i)
c

t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥
 (C.55)

= D∆u(i)

[
pn+1(i)

c

]
µ
t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥ + µpn+1(i)
c D∆u(i)

 t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥
 . (C.56)

where the terms D∆u(i)

[
p
n+1(i)
c

]
and D∆u(i)

 t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥
 have been derived in the previous text.

Note that for the trial solution it holds

ttrial
Tα = tnTα + εTm̄

n(k)
αβ

(
ξ̄n+1β − ξ̄nβ

)
. (C.57)

D∆u(i)

[
t
n+1(i)
Tα

]
= D∆u(i)

[
pn+1(i)

c

]
µ
t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥ + µpn+1(i)
c D∆u(i)

 t
n+1(i)
Tαtrial∥∥∥tn+1(i)
Ttrial

∥∥∥
 . (C.58)
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Appendix D
Matrix notation of the contact kinematic quantities

The gap function

The gap function (2.21) can be discretized as

g
(i)
N = −NTx. (D.1)

The variation of the gap function

The variation of the gap function (B.20) can be written in the discrete form as

δg
(i)
N = −cTN. (D.2)

The linearization of the gap function

The linearization of the gap function (C.2) can be discretized as

∆g(i)
N = −NT∆d. (D.3)

The curvature tensor

The components of the curvature tensor (2.30) can be written in the discrete form as

κ̄
(k)
αβ = −NT

αβx. (D.4)

The variation of convective coordinates

The variation of convective coordinates (B.28) can be discretized as

δξ̄α =
(
A−1

)
αβ

(
cTTβ − gNcTNβ

)
, (D.5)

where auxiliary matrix expressions have been introduced as
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Aαβ = m̄
(k)
αβ + g

(i)
N κ̄

(k)
αβ , (D.6)

(
δu(i) − δū(k)

)
· τ̄ (k)

α = cTTα, (D.7)

δū(k)
,α · n̄(k) = −cTNα, (D.8)

∆ū(k)
,α · n̄(k) = −NT

α∆d, (D.9)

The term (2.30) can be further simplified by introducing the matrix Dα as

Dα = (Aαβ)−1 (Tβ − gNNβ) . (D.10)

Finally, one can write

δξ̄α = cTDα. (D.11)

The linearization of the convective coordinates

The linearization of the convective coordinates (C.3) can be expressed analogously to (D.11)

∆ξ̄α = DT
α∆d. (D.12)

The linearization of the variation of the normal gap function

The linearization of the variation of the normal gap function (C.21) can be discretized as

∆δgh(i)
N =

(
−cTNαDT

α∆d− cTDαNT
α∆d

)
+ cTDακ̄

(k)
αβDT

β∆d (D.13)

+ g
(i)
N

(
−cTNα + κ̄(k)

αγ cTDγ

)
m̄(k)αβ

(
−NT

β∆d + κ̄
(k)
βγDT

γ ∆d
)

(D.14)

= cT
[(
−NαDT

α −DαNT
α

)
+ Dακ̄

(k)
αβDT

β (D.15)

+g(i)
N

(
−Nα + κ̄(k)

αγDγ

)
m̄(k)αβ

(
−NT

β + κ̄
(k)
βγDT

γ

)]
∆d. (D.16)

If another auxiliary matrix will be introduced as

N̄α = Nα − κ̄αβDβ, (D.17)

one can finally write

∆δgh(i)
N = cT

[(
−NαDT

α −DαNT
α

)
+
(
Dακ̄

(k)
αβDT

β

)
+
(
gNm̄

(k)αβN̄αN̄β

)]
∆d. (D.18)
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The linearization of the variation of convective coordinate

Before the linearization of the variations of convective coordinate (C.22) will be written in the
matrix notation, the attention will be first focused on its last addend. Here the subtraction of
linearized displacement vectors will be useful to express using the dot product of the covariant
components with its contravariant basis

(
∆u(i) −∆ū(k)

)
·
(
δū(k)

,α + x̄(k)
,αγδξ̄

γ
)

=
{(
−∆g(i)

N

)
n̄(k) +

[(
∆u(i) −∆ū(k)

)
· τ̄ (k)

β

]
τ̄ (k)β

}
·
(
δū(k)

,α + x̄(k)
,αγδξ̄

γ
)

(D.19)

= −∆g(i)
N

(
n̄(k) · δū(k)

,α + n̄(k) · x̄(k)
,αγδξ̄

γ
)

+
[(

∆u(i) −∆ū(k)
)
· τ̄ (k)

β

]
m̄(k)βδτ̄

(k)
δ

·
(
δū(k)

,α + x̄(k)
,αγδξ̄

γ
)

(D.20)

= NT∆d
(
−cTNα + κ̄

(k)
αβcTDα

)
+ TT

β∆dm̄(k)βδ
(
−cTTδα + τ̄ (k)

δ · x̄
(k)
,αγcTDγ

)
(D.21)

= cT
[
−
(
Nα + κ̄

(k)
αβDα

)
NT

−m̄(k)βδ
(
Tδα − τ̄

(k)
δ · x̄

(k)
,αγDγ

)
TT
β

]
∆d, (D.22)

(
∆u(i) −∆ū(k)

)
·
(
δū(k)

,α + x̄(k)
,αγδξ̄

γ
)

= cT
[
−N̄αNT − m̄(k)βδT̄δαTT

β

]
∆d, (D.23)

where at the last line a new substitution has been introduced

T̄δα = Tδα −
(
τ̄

(k)
δ · x̄

(k)
,αγ

)
Dγ . (D.24)

Analogy can be followed also for the penultimate addend in the equation (C.22)(
δu(i) − δū(k)

)
·
(
∆ū(k)

,α + x̄(k)
,αγ∆ξ̄γ

)
= cT

[
−NN̄T

α − m̄(k)βδTβT̄T
δα

]
∆d. (D.25)

Before expressing the final relation (C.22) in the matrix notation, some auxiliary matrices for
several entities will be introduced

τ̄ (k)
α ·∆ū(k)

,β = −TT
αβ∆d, (D.26)

τ̄ (k)
α · δū

(k)
,β =− cTTαβ, (D.27)

n̄(k) ·∆ū(k)
,αβ = −Nαβ∆d, (D.28)

n̄(k) · δū(k)
,αβ = −cTNαβ. (D.29)

With their help and with the aid of previously established substitutions, the equation (C.22) can
be written as
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(Aαβ) ∆δξ̄α =
(
cTDβTT

αβ∆d + cTTαβDT
β∆d

)
−
(
τ̄ (k)
α · x̄

(k)
,βγ + g

(i)
N n̄(k) · x̄(k)

,αβγ

)
cTDβDT

γ ∆d

+ g
(i)
N

(
cTNαβDT

β∆d + cTDβNT
αβ∆d

)
+
[
cTTβαDT

β∆d− cT
(
x̄(k)
,αγ · τ̄

(k)
β

)
DγDT

β∆d
]

+
[
cTDβTT

βα∆d− cT
(
x̄(k)
,αγ · τ̄

(k)
β

)
DβDT

γ ∆d
]

+ cT
(
−NN̄T

α − m̄(k)βδTβT̄T
δα

)
∆d

+ cT
(
−N̄αNT − m̄(k)βδT̄δαTT

β

)
∆d, (D.30)

where in the fourth row one can recognize the already established substitution

cT
[
Tβα −

(
x̄(k)
,αγ · τ̄ β

)
Dγ

]
DT
β∆d = cTT̄βαDT

β∆d, (D.31)

cT
[
DβTT

βα −
(
x̄(k)
,αγ · τ̄ β

)
DβDT

γ

]
∆d = cTDβT̄T

βα∆d, (D.32)

so the linearization of the variation of convective coordinates (C.22) can be written in matrix
notation as

∆δξ̄α = cTAαβ
[(

DβTT
αβ + TαβDT

β

)
−
(
τ̄α · x̄(k)

,βγ + g
(i)
N n̄(k) · x̄(k)

,αβγ

)
DβDT

γ

+g(i)
N

(
NαβDT

β + DβNT
αβ

)
+
(
T̄βαDT

β + DβT̄T
βα

)
+
(
−NN̄T

α − m̄(k)βδTβT̄T
δα

)
+
(
−N̄αNT − m̄(k)βδT̄δαTT

β

)]
∆d.

(D.33)

The linearization of the contact pressure

The linearization of the contact pressure (C.43) in matrix form is

∆p(i)
c = εNH

(
g

(i)
N

)
∆g(i)

N , (D.34)

= εNH
(
g

(i)
N

) (
−NT∆d

)
. (D.35)

The linearization of the metric tensor

The linearization of the metric tensor (C.29) in matrix form is

∆m(k)
αβ =

(
∆ū(k)

,α + x̄(k)
,αγ∆ξ̄γ

)
· τ̄ (k)

β + τ̄ (k)
α ·

(
∆ū(k)

,β + x̄(k)
,βγ∆ξ̄γ

)
(D.36)

=
(
−TT

αβ + τ̄ (k)
β · x̄

(k)
,αγDT

γ

)
∆d +

(
−TT

βα + τ̄ (k)
α · x̄

(k)
,βγD

T
γ

)
∆d, (D.37)

= −
(
T̄αβ + T̄βα

)
∆d. (D.38)

∆m(k)
αβ = −

(
T̄αβ + T̄βα

)
∆d. (D.39)

146



............................... D. Matrix notation of the contact kinematic quantities

The linearization of the unit tangent traction vector

The linearization of the unit tangent traction vector (C.39) in matrix form is

D∆u(i)

 t
(i)
Tα∥∥∥t(i)
T

∥∥∥
 = ∆ttrial(i)

Tα∥∥∥t(i)
T

∥∥∥
δαβ − t

(i)
Tα∥∥∥t(i)
T

∥∥∥ t
(i)β
T∥∥∥t(i)
T

∥∥∥
− t

(i)
Tα∥∥∥t(i)
T

∥∥∥
t
(i)
Tβ∥∥∥t(i)
T

∥∥∥∆τ̄ (k)β · τ̄ (k)γ t
(i)
Tγ∥∥∥t(i)
T

∥∥∥ (D.40)

= ∆ttrial(i)
Tα∥∥∥t(i)
T

∥∥∥
(
δαβ − p

(i)
Tαp

(i)β
T

)
− p(i)

Tαp
(i)
Tβ∆τ̄ (k)β · p(i)

T , (D.41)

where substitution

p(i)
T = t

(i)
Tα∥∥∥t(i)
T

∥∥∥ τ̄ (k)α, (D.42)

for unit tangent traction vector has been introduced.

D∆u(i)

 t
(i)
Tα∥∥∥t(i)
T

∥∥∥
 =

∆ttrial(i)
Tβ∥∥∥t(i)
T

∥∥∥
(
δαβ − p

(i)
Tαp

(i)β
T

)
− p(i)

Tαp
(i)
Tβ∆τ̄ (k)β · p(i)

T

=
∆ttrial(i)

Tβ∥∥∥t(i)
T

∥∥∥
(
δαβ − p

(i)
Tαp

(i)β
T

)
− p(i)

Tαp
(i)
Tβ

(
∆m(k)βγ τ̄ (k)

γ +m(k)βγ∆τ̄ (k)
γ

)
· p(i)

T

=
∆ttrial(i)

Tβ∥∥∥t(i)
T

∥∥∥
(
δαβ − p

(i)
Tαp

(i)β
T

)
−
(
p

(i)
Tαp

(i)
Tβ∆m(k)βγ τ̄ (k)

γ · pT + p
(i)
Tαp

(i)
Tβm

(k)βγ∆τ̄ (k)
γ · p

(i)
T

)
=

∆ttrial(i)
Tβ∥∥∥t(i)
T

∥∥∥
(
δαβ − p

(i)
Tαp

(i)β
T

)
− p(i)

Tαp
(i)β
T ∆τ̄ (k)

β · p
(i)
T

− p(i)
Tαp

(i)
Tβ∆m(k)βγ τ̄ (k)

γ · p
(i)
T

=
∆ttrial(i)

Tβ∥∥∥t(i)
T

∥∥∥
(
δαβ − p

(i)
Tαp

(i)β
T

)
− p(i)

Tαp
(i)β
T

(
−p(i)γ

T P̄γ∆u
)

− p(i)
Tαp

(i)
Tβ

[
−
(
T̄βγ + T̄γβ

)
∆u

]
τ̄ (k)
γ · p

(i)
T

=
∆ttrial(i)

Tβ∥∥∥t(i)
T

∥∥∥
(
δαβ − p

(i)
Tαp

(i)β
T

)
+ p

(i)
Tαp

(i)β
T P̄β∆u (D.43)

+ p
(i)
Tαp

(i)
Tβ

(
T̄βγ + T̄γβ

)
∆uτ̄ (k)

γ · p
(i)
T , (D.44)

where the term
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∆τ̄ (k)
α · pT =

(
∆ū(k)

,α + x̄(k)
,αβ∆ξβ

)
· p(i)

T (D.45)

=
[
PT
α −

(
p(i)

T · x̄
(k)
,αβ

)
DT
β

]
∆d (D.46)

= P̄T
α∆d, (D.47)

was described with the aid of matrices Pα and P̄α

Pα :=



0
...
0

−N1,αp(i)
T

...
−N

n
(2)
sn ,α

p(i)
T


, (D.48)

P̄α := Pα −
(
p(i)

T · x̄
(k)
,αγ

)
Dγ . (D.49)

So that

D∆u(i)

 t
(i)
Tα∥∥∥t(i)
T

∥∥∥
 = ∆ttrial(i)

Tβ∥∥∥t(i)
T

∥∥∥
(
δαβ − p

(i)
Tαp

(i)β
T

)
+ p

(i)
Tαp

(i)β
T P̄β∆d

+ p
(i)
Tαp

(i)
Tβ

(
T̄βγ + T̄γβ

)
∆dτ̄ (k)

γ · p(i)
T .

(D.50)

The linearization of the tangential components of the contact traction vector

Again, it is necessary to distinguish between the state of sticking and slipping. In the case of
sticking

D∆u(i)

[
t
n+1(i)
Tα

]
= D∆u(i)

[
t
n+1(i)
Tαtrial

]
(D.51)

= −εTm̄n(k)
αβ ∆ξ̄n+1β − εT∆m̄n(k)

αβ

(
ξ̄n+1β − ξ̄nβ

)
(D.52)

= −εT
[
m̄
n(k)
αβ DT

β∆d−
(
T̄αβ + T̄βα

)
∆d

(
ξ̄n+1β − ξ̄nβ

)]
, (D.53)

D∆u(i)

[
t
n+1(i)
Tαtrial

]
= εT

(
T̄αβ + T̄βα

)
∆d

(
ξ̄n+1β − ξ̄nβ

)
− εTm̄αβDT

β∆d, (D.54)

and for the case of slipping

D∆u(i)

[
t
n+1(i)
Tα

]
= D∆u(i)

[
pn+1(i)

c

]
µp

(i)
Tα + µpn+1(i)

c D∆u(i)

[
p

(i)
Tα

]
. (D.55)
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............................... D. Matrix notation of the contact kinematic quantities

D∆u(i)

[
t
n+1(i)
Tα

]
= −εNµp(i)

TαH
(
g

(i)
N

)
NT∆d

+µpn+1(i)
c

[
εT
(
T̄αβ + T̄βα

)
∆d

(
ξ̄n+1β − ξ̄nβ

)
− εTm̄αβDT

β∆d
] (δαβ−p(i)

Tαp
(i)β
T

)
∥∥∥t(i)

T

∥∥∥
+µpn+1(i)

c p
(i)
Tαp

(i)β
T P̄β∆d

+µpn+1(i)
c p

(i)
Tαp

(i)
Tβ

(
T̄βγ + T̄γβ

)
∆dτ̄ (k)

γ · p(i)
T .

(D.56)
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