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Abstract. The objective of this paper is to obtain sharp upper bound for the function f
for the second Hankel determinant |asay — a§|7 when it belongs to the class of functions
whose derivative has a positive real part of order a (0 < o < 1), denoted by RT(«). Further,
an upper bound for the inverse function of f for the nonlinear functional (also called the
second Hankel functional), denoted by |toty — t3|, was determined when it belongs to the
same class of functions, using Toeplitz determinants.
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1. INTRODUCTION

Let A denote the class of functions f of the form
(1.1) f(z) :z—i—Zanz"
n=2

in the open unit disc E = {z: |z| < 1}. Let S be the subclass of A consisting of
univalent functions.

In 1976, Noonan and Thomas [11] defined the gth Hankel determinant of f for
g=landn>1as

Ay, an+1 - Gn4q—1
Ap+1 Ap+2 ... An+4q
(1.2) Hq(n) =
On+q-1 Ont+q --- Ont2¢-2
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This determinant has been considered by several authors. For example, Noor [12]
determined the rate of growth of Hy(n) as n — oo for the functions in S with
a bounded boundary. Ehrenborg [3] studied the Hankel determinant of exponential
polynomials. The Hankel transform of an integer sequence and some of its properties
were discussed by Layman in [7]. One can easily observe that the Fekete-Szegd
functional is H2(1). Fekete-Szegd then further generalized the estimate of |az — pa3|
with g real and f € S. Ali [2] found sharp bounds on the first four coefficients
and sharp estimate for the Fekete-Szegé functional |ys — tv2|, where t is real, for
&)

the inverse function of f defined as f~!(w) = w + Y. vy,w™ to the class of strongly

n=2 .
starlike functions of order @ (0 < a < 1) denoted by ST («). For our discussion
in this paper, we consider the Hankel determinant in the case of ¢ = 2 and n = 2,
known as the second Hankel determinant, given by

ags as

(13) H2(2) = = a2a4 — a%.

az a4

Janteng, Halim and Darus [6] have considered the functional |azas — a3| and found
a sharp bound for the function f in the subclass RT of S, consisting of functions
whose derivative has a positive real part studied by MacGregor [8]. In their work,
they have shown that if f € RT then |asas — a3| < 4/9.

The same authors [5] also obtained the second Hankel determinant and sharp
bounds for the familiar subclasses of S, namely, starlike and convex functions denoted
by ST and CV and showed that |asas — a2| < 1 and |azays — a3| < 1/8, respectively.
Similarly, the same coefficient inequality was calculated for certain subclasses of
analytic functions by many authors ([1], [9], [10]).

Motivated by the results obtained by different authors in this direction mentioned
above, in the present paper we obtain an upper bound for the nonlinear functional
|agas —a3| for the function f and its inverse belonging to the class RT (o) (0 < o < 1),
defined as follows.

Definition 1.1. A function f(z) € A is said to be a function whose derivative
has a positive real part of order @ (0 < o < 1), denoted by f € RT(«), if and only if

Re{f'(z)} >a, Vz€E.

Observe that for a = 0, we obtain RT'(0) = RT.
We first state some preliminary lemmas required for proving our results.
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2. PRELIMINARY RESULTS

Let & denote the class of functions p analytic in E for which Re{p(z)} > 0,
(2.1) p(2)=(1+eciz+c2®+ce32®+..) = {1 + Z cnz”] , VzeE.
n=1

Lemma 2.1 ([13], [14]). If p € &, then |cx| < 2 for each k > 1.

Lemma 2.2 ([4]). The power series for p given in (2.1) converges in the unit
disc E to a function in & if and only if the Toeplitz determinants

2 c1 Co Cn
c_q 2 c1 co. Cp—1
D, = . . . . . , n=123 ...
Copn Con+l Con+2 ... 2

and c_y = ¢, are all non-negative. They are strictly positive except for p(z) =

m
> okpo(exp(ity)z), ox > 0, ty real and ti, # t;, for k # j; in this case D, > 0 for
k=1
n<m-—1and D, =0 forn > m.

This necessary and sufficient condition due to Carathéodory and Toeplitz, can be
found in [4]. We may assume without restriction that ¢; > 0. Using Lemma 2.2 for
n = 2 and n = 3, respectively, we obtain

2 C1 C2
(2.2) Dy= 1|2 2 c|=[8+2Re{cica} —2|cal® —4c?] >0,
s ¢1 2

{2 +x(4—c?)} for some x, |z| < 1;

2 C1 C2 C3

262

c1 2 1 o
Ds=|_" _ D3 >0,
Cy C1 2 C1

c3 C ¢ 2

(2.3)  |(4es —4derea + ) (4 — )+ c1(2c0 — 2)? < 2(4 — 2)? = 2|(2¢2 — )|
From the relations (2.2) and (2.3), after simplifying, we get
(2.4) des={S +2c(4—Ax —c1(4—cHa® +24 — )1 — |z|*)z}

for some real value of z with |z| < 1.
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3. MAIN RESULTS

Theorem 3.1. If f(z) =2+ Y an2" € RT(a) for 0 < a < 1 then

n=2

(1-a)?

O =~

|azas — aj| <
and the inequality is sharp.

&)
Proof. Since f(z) = z+4 > anz™ € RT(a), by virtue of Definition 1.1 there
=2

exists an analytic function p € 2 in the unit disc E with p(0) =1 and [Rep(2)] >0
such that

(31) (LY ) 5 (72— 0} = (1 - (o)

1 —«

Replacing f’(z) and p(z) by their equivalent series expressions in (3.1), we have

[(1 + Znanzn_l) - a} =(1- a){l + chz”}
n=2 n=1

Upon simplification, we obtain

(3.2) [2a2 + 3azz +4asz® +..] = (1 —a)[c1 +coz + 322 + ...

Equating the coefficients of the like powers of 2°, z and 22, respectively, on both
sides of (3.2) and simplifying, we get

1— 1— 1-—
(3.3) {GQZ 20401; as = 30402; a4 = 40[03}.

Substituting the values of as,as and a4 from (3.3) in the second Hankel functional
lazay — a3| for the function f € RT(«), upon simplification we obtain

(1-a)

(3.4) lasay — a§| = =

x |9cic3 — 83|

Substituting the values of ¢y and ¢z from (2.2) and (2.4), respectively, from Lem-
ma 2.2 in the right hand side of (3.4), we have

1
(3.5) 19¢1c3 — 8c3| = [9¢1 x Z{ci’ +2¢1(4 — Az —c1(4 — 3)a?
1
+2(4 = )1 = [a*)2} = 8 x el +2(4 - D)}?|.
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Using the facts |z| < 1 and |za + yb| < |z||a| + |y||b|, where x, y, a and b are real
numbers, in the expression (3.5), after simplifying we get

(3.6) 49cics — 8ca| < |ef +18¢1(4 — ) + 2¢3(4 — )|z
— (1 +2)(c1 +16)(4 — cf)|x|2|

Since ¢; € [0, 2], using the result (¢1 + a)(c1 +b) = (c1 — a)(c1 — b), where a,b > 0
on the right hand side of (3.6), upon simplification we obtain

(3.7) 409¢cics — 8ca| < |ef +18¢1(4 — ) + 2¢3(4 — )|z
—(c1 = 2)(e1 — 16)(4 — &) |z?.

Choosing ¢; = ¢ € [0, 2], applying the triangle inequality and replacing = by u on
the right hand side of the above inequality, we have

(3.8) 4|9¢cic5 — 8c3| < [¢* + {18¢c + 22 + (¢ — 2)(c — 16)p*} x (4 — 2]
=F(e,p), for0<p=]z| <1

We next maximize the function F(c, u) on the closed region [0, 2] x [0, 1]. Differen-
tiating F'(c, u) partially with respect to u, we get

oF

(3.9) i

=2[c? + (c—2)(c—16)u] x (4 — c2).

For 0 < p < 1 and for fixed ¢ with 0 < ¢ < 2, from (3.9) we observe that 0F/du > 0.
Therefore, F(c, 1) is an increasing function of p and hence it cannot have the max-
imum value in the interior of the closed region [0,2] x [0,1]. Moreover, for fixed
¢ € [0,2] we have

(3.10) 0213%(1 F(e,p) = F(c,1) = G(e).

Therefore, replacing p by 1 in F(c, 1), upon simplification we obtain

(3.11) G(e) = (—2¢* — 2062 + 128),
(3.12) G'(c) = (=8¢* — 40c).

From (3.12), we observe that G'(c) < 0 for every ¢ € [0,2]. Therefore, G(c) is
a decreasing function of ¢ in the interval ¢ € [0, 2], whose maximum value occurs at
¢ = 0. From (3.11), at ¢ = 0 we obtain the G-maximum as

(3.13) Gmax = G(0) = 128.
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From the relations (3.8) and (3.13), after simplifying, we get
(3.14) |9¢1c3 — 8c3| < 32.

From the expressions (3.4) and (3.14), upon simplification, we obtain

4
(3.15) lasay — a3| < 5(1 —a)?.
By setting ¢; = ¢ = 0 and selecting £ = —1 in the expressions (2.2) and (2.4), we
find that c; = —2 and ¢35 = 0, respectively. Using these values in (3.14), we observe
that equality is attained, which shows that our result is sharp. This completes the
proof of our Theorem 3.1. O

Remark 3.2. For the choice of & = 0, we get RT(0) = RT, for which, from
(3.15), we obtain |agas — a2| < 4/9. This inequality is sharp and the result coincides
with that of Janteng, Halim and Darus [6].

Theorem 3.2. If f(z) = z + io: an2" € RT(a) (0 €< a < 1/4) and f~Y(w) =

n=2

o0
w+ > to,w™ near w = 0 is the inverse function of f, then
n=2

(1 - «)?(432a% — 3120 — 137)}

toty — 3] <
[tats =t 144(9a2 — 6 — 2)

o0
Proof. Since f(z) = z+ > anz™ € RT (), from the definition of the inverse
function of f we have n=2

(3.16) w= f{fHw)} < {(ta + az)w?® + (t3 + 2asts + az)w?
+ (t4 + 2a0t3 + agt% + 3asts + a4)w4 + .. } =0.

Equating the coefficients of the like powers of w?, w? and w* on both sides of (3.16),
respectively, after simplifying we get

(3.17) {ty = —ay; t3 = {—az + 2a3}; ty = {—a4 + Sasaz — 5a3}}.

Using the values of a2, as and a4 in (3.3) along with (3.17), upon simplification we
obtain

(3.18) {tg __4a > D ey by = —(1;60‘){3(1 —a)e? — 2}

(1-a)
24

ty= — {—6cs +20(1 — a)eres — 15(1 — @)% }
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Substituting the values of t3,t3 and t4 from (3.18) in the second Hankel functional
taty — t3| for the inverse function of f € RT(«), after simplifying we get

a)?

1—
|tats —t2] = (T X |18¢c1e3 — 12(1 — a)cley — 162 + 9(1 — a)3cf).

The above expression is equivalent to

1 — )2
(3.19) |t2t4 — t§| = % X |d161(33 + dQC%CQ + dgcg + d4C‘11|
where
(3.20) {dy =18; dy = —12(1 — a); d3 = —16; dy = 9(1 — a)?}.

Substituting the values of ¢y and c3 from (2.2) and (2.4), respectively, from Lem-
ma 2.2 in the right hand side of (3.19), applying the same procedure as described in
Theorem 3.1, we obtain

(3.21) |dicies + dQC%CQ + dgcg + d4c‘11| < |(dy 4+ 2da + d3 + 4d4)c‘11 + [2d1cn
+2(dy +do + dg)c%|x| —{(dy + dg)C? + 2dic1 — 4d3}|x|2] x (4 — c?)|

Using the values of dy, ds, d3 and d4 from the relation (3.20), upon simplification we

obtain

(3.22) {(dy + 2dy + ds + 4dy) = (180% — 24+ 7); dy = 18;
(dl +ds + dg) = (12a — 10)},

(3.23) {(dl =+ dg)C% + 2dic; — 4d3} = {(Cl — 2)(61 — 16)}

Substituting the calculated values from (3.22) and (3.23) in the right hand side of
(3.21), we have

2|dicics 4 dacicy + daca + dact] < [(18a2 — 24+ T)cf + {18¢; + (12a — 10)c? |z
— (1 =2)(e1 = 16)[2} x (4 = ).

Choosing ¢; = ¢ € [0,2], applying the triangle inequality and replacing |z| by u on
the right hand side of the above inequality, we get

(3.24)  2|dicics + dacica + dsch + daci]
< [(18a2 — 24a + 7)c* + {18¢ + (10 — 12a)c* i + (¢ — 2)(c — 16)p*} (4 — ¢?)]
=F(c,p), for0<p=|z|<1
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where

(3.25) F(c,p) = [(18a2 — 24a + 7)c* + {18¢ + (10 — 12a)c*
+ (c—2)(c—16)u*} x (4 — ).

Applying the same procedure as described in Theorem 3.1, we get

OF
(3.26) i [(10 — 12a)c® + 2{(c — 2)(c — 16)}p] x (4 — c?).
For 0 < p < 1, for fixed ¢ with 0 < ¢ < 2 and 0 < o < 1/4, from (3.26) we observe
that 0F/0u > 0. Therefore, F(c,p) is an increasing function of p and hence it
cannot have the maximum value at any point in the interior of the closed region
[0,2] x [0, 1]. Further, for a fixed ¢ € [0, 2], we have

(3.27) max F(c,u) = F(e,1) = G(c).

ogu<kl

Therefore, from (3.25) and (3.27), upon simplification, we obtain

(3.28) G(c) = {2(9a% — 6 — 2)c* + 12(1 — 4a)c? + 128},
(3.29) G'(c) = {8(9a2 — 6 — 2)c® + 24(1 — 4a)c},
(3.30) G (c) = {24(90% — 6a — 2)c* 4 24(1 — 4a)}.

For the extreme values of G(c), consider G'(c¢) = 0. From (3.29), we get
(3.31) 8c{(9a? — 6a — 2)c? + 3(1 — 4a)} = 0.

We now discuss the following cases.
Case 1. If ¢ = 0, then, from (3.30), we obtain

G"(c)=24(1-4a) >0 for0<a<

] =

From the second derivative test, G(c) has the minimum value at ¢ = 0.
Case 2. If ¢ # 0, then, from (3.31), we get

(3.32) 022{—%}6[0,2] for0<a<

RNy

Using the value of ¢? given in (3.32) in (3.31), upon simplification we obtain

A~ =

G"(c)=—-48(1-4a) <0 for0< a<
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By the second derivative test, G(c) has the maximum value at ¢, where ¢® given
in (3.32). Using the value of ¢? in (3.28), after simplifying we get

43202 — 312a — 137)
(902 — 6a — 2)

(3.33) max G(c) = [2(

0<eL2

Considering the maximum value of G(c) only at ¢, from (3.24) and (3.33), upon
simplification we obtain

(3.34) |d161(33 + dQC%CQ + d3cg + d4cil| <

(43202 — 3120 — 137)}
(902 — 6 — 2) '

From (3.19) and (3.34) we get

(1 —)?(432a% — 312a — 137)
: toty — 3] < }
(3:35) ltats = &3] 144(902 — 60r — 2)
This completes the proof of our theorem. O

Remark 3.4. Choosing a = 0, we have RT'(0) = RT, for which, from (3.35), we
get |taty — 13| < 137/288.
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