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Abstract. The objective of this paper is to obtain sharp upper bound for the function f

for the second Hankel determinant |a2a4 − a23|, when it belongs to the class of functions
whose derivative has a positive real part of order α (0 6 α < 1), denoted by RT (α). Further,
an upper bound for the inverse function of f for the nonlinear functional (also called the
second Hankel functional), denoted by |t2t4 − t23|, was determined when it belongs to the
same class of functions, using Toeplitz determinants.
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1. Introduction

Let A denote the class of functions f of the form

(1.1) f(z) = z +

∞∑

n=2

anz
n

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of

univalent functions.

In 1976, Noonan and Thomas [11] defined the qth Hankel determinant of f for

q > 1 and n > 1 as

(1.2) Hq(n) =

∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣
.
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This determinant has been considered by several authors. For example, Noor [12]

determined the rate of growth of Hq(n) as n → ∞ for the functions in S with

a bounded boundary. Ehrenborg [3] studied the Hankel determinant of exponential

polynomials. The Hankel transform of an integer sequence and some of its properties

were discussed by Layman in [7]. One can easily observe that the Fekete-Szegő

functional is H2(1). Fekete-Szegő then further generalized the estimate of |a3 −µa22|

with µ real and f ∈ S. Ali [2] found sharp bounds on the first four coefficients

and sharp estimate for the Fekete-Szegő functional |γ3 − tγ2
2 |, where t is real, for

the inverse function of f defined as f−1(w) = w +
∞∑
n=2

γnw
n to the class of strongly

starlike functions of order α (0 < α 6 1) denoted by S̃T (α). For our discussion

in this paper, we consider the Hankel determinant in the case of q = 2 and n = 2,

known as the second Hankel determinant, given by

(1.3) H2(2) =

∣∣∣∣
a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23.

Janteng, Halim and Darus [6] have considered the functional |a2a4 − a23| and found

a sharp bound for the function f in the subclass RT of S, consisting of functions

whose derivative has a positive real part studied by MacGregor [8]. In their work,

they have shown that if f ∈ RT then |a2a4 − a23| 6 4/9.

The same authors [5] also obtained the second Hankel determinant and sharp

bounds for the familiar subclasses of S, namely, starlike and convex functions denoted

by ST and CV and showed that |a2a4 − a23| 6 1 and |a2a4 − a23| 6 1/8, respectively.

Similarly, the same coefficient inequality was calculated for certain subclasses of

analytic functions by many authors ([1], [9], [10]).

Motivated by the results obtained by different authors in this direction mentioned

above, in the present paper we obtain an upper bound for the nonlinear functional

|a2a4−a23| for the function f and its inverse belonging to the classRT (α) (0 6 α < 1),

defined as follows.

Definition 1.1. A function f(z) ∈ A is said to be a function whose derivative

has a positive real part of order α (0 6 α < 1), denoted by f ∈ RT (α), if and only if

Re{f ′(z)} > α, ∀ z ∈ E.

Observe that for α = 0, we obtain RT (0) = RT .

We first state some preliminary lemmas required for proving our results.
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2. Preliminary results

Let P denote the class of functions p analytic in E for which Re{p(z)} > 0,

(2.1) p(z) = (1 + c1z + c2z
2 + c3z

3 + . . .) =

[
1 +

∞∑

n=1

cnz
n

]
, ∀ z ∈ E.

Lemma 2.1 ([13], [14]). If p ∈ P, then |ck| 6 2 for each k > 1.

Lemma 2.2 ([4]). The power series for p given in (2.1) converges in the unit

disc E to a function in P if and only if the Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣

2 c1 c2 . . . cn

c−1 2 c1 . . . cn−1

...
...

...
...

...

c−n c−n+1 c−n+2 . . . 2

∣∣∣∣∣∣∣∣∣
, n = 1, 2, 3, . . .

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =
m∑

k=1

̺kp0(exp(itk)z), ̺k > 0, tk real and tk 6= tj , for k 6= j; in this case Dn > 0 for

n < m− 1 and Dn
.
= 0 for n > m.

This necessary and sufficient condition due to Carathéodory and Toeplitz, can be

found in [4]. We may assume without restriction that c1 > 0. Using Lemma 2.2 for

n = 2 and n = 3, respectively, we obtain

(2.2) D2 =

∣∣∣∣∣∣

2 c1 c2
c1 2 c1

c2 c1 2

∣∣∣∣∣∣
= [8 + 2Re {c21c2} − 2|c2|

2 − 4c21] > 0,

2c2 ≡ {c21 + x(4 − c21)} for some x, |x| 6 1;

D3 =

∣∣∣∣∣∣∣∣

2 c1 c2 c3
c1 2 c1 c2

c2 c1 2 c1
c3 c2 c1 2

∣∣∣∣∣∣∣∣
, D3 > 0,

(2.3) |(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)
2| 6 2(4− c21)

2 − 2|(2c2 − c21)|
2.

From the relations (2.2) and (2.3), after simplifying, we get

(2.4) 4c3 ≡ {c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z}

for some real value of z with |z| 6 1.
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3. Main results

Theorem 3.1. If f(z) = z +
∞∑

n=2

anz
n ∈ RT (α) for 0 6 α < 1 then

|a2a4 − a23| 6
4

9
(1− α)2

and the inequality is sharp.

P r o o f. Since f(z) = z +
∞∑

n=2

anz
n ∈ RT (α), by virtue of Definition 1.1 there

exists an analytic function p ∈ P in the unit disc E with p(0) = 1 and [Re p(z)] > 0

such that

(3.1)
{f ′(z)− α

1− α

}
= p(z) ⇒ {f ′(z)− α} = (1− α)p(z).

Replacing f ′(z) and p(z) by their equivalent series expressions in (3.1), we have

[(
1 +

∞∑

n=2

nanz
n−1

)
− α

]
= (1− α)

{
1 +

∞∑

n=1

cnz
n

}
.

Upon simplification, we obtain

(3.2) [2a2 + 3a3z + 4a4z
2 + . . .] = (1− α)[c1 + c2z + c3z

2 + . . .].

Equating the coefficients of the like powers of z0, z and z2, respectively, on both

sides of (3.2) and simplifying, we get

(3.3)
{
a2 =

1− α

2
c1; a3 =

1− α

3
c2; a4 =

1− α

4
c3

}
.

Substituting the values of a2, a3 and a4 from (3.3) in the second Hankel functional

|a2a4 − a23| for the function f ∈ RT (α), upon simplification we obtain

(3.4) |a2a4 − a23| =
(1 − α)2

72
× |9c1c3 − 8c22|.

Substituting the values of c2 and c3 from (2.2) and (2.4), respectively, from Lem-

ma 2.2 in the right hand side of (3.4), we have

(3.5) |9c1c3 − 8c22| =
∣∣∣9c1 ×

1

4
{c31 + 2c1(4− c21)x − c1(4− c21)x

2

+ 2(4− c21)(1 − |x|2)z} − 8×
1

4
{c21 + x(4 − c21)}

2

∣∣∣.
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Using the facts |z| < 1 and |xa + yb| 6 |x||a| + |y||b|, where x, y, a and b are real

numbers, in the expression (3.5), after simplifying we get

(3.6) 4|9c1c3 − 8c22| 6 |c41 + 18c1(4− c21) + 2c21(4 − c21)|x|

− (c1 + 2)(c1 + 16)(4− c21)|x|
2|.

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) > (c1 − a)(c1 − b), where a, b > 0

on the right hand side of (3.6), upon simplification we obtain

(3.7) 4|9c1c3 − 8c22| 6 |c41 + 18c1(4− c21) + 2c21(4 − c21)|x|

− (c1 − 2)(c1 − 16)(4− c21)|x|
2|.

Choosing c1 = c ∈ [0, 2], applying the triangle inequality and replacing x by µ on

the right hand side of the above inequality, we have

(3.8) 4|9c1c3 − 8c22| 6 [c4 + {18c+ 2c2µ+ (c− 2)(c− 16)µ2} × (4− c2)]

= F (c, µ), for 0 6 µ = |x| 6 1.

We next maximize the function F (c, µ) on the closed region [0, 2]× [0, 1]. Differen-

tiating F (c, µ) partially with respect to µ, we get

(3.9)
∂F

∂µ
= 2[c2 + (c− 2)(c− 16)µ]× (4 − c2).

For 0 < µ < 1 and for fixed c with 0 < c < 2, from (3.9) we observe that ∂F/∂µ > 0.

Therefore, F (c, µ) is an increasing function of µ and hence it cannot have the max-

imum value in the interior of the closed region [0, 2] × [0, 1]. Moreover, for fixed

c ∈ [0, 2] we have

(3.10) max
06µ61

F (c, µ) = F (c, 1) = G(c).

Therefore, replacing µ by 1 in F (c, µ), upon simplification we obtain

G(c) = (−2c4 − 20c2 + 128),(3.11)

G′(c) = (−8c3 − 40c).(3.12)

From (3.12), we observe that G′(c) 6 0 for every c ∈ [0, 2]. Therefore, G(c) is

a decreasing function of c in the interval c ∈ [0, 2], whose maximum value occurs at

c = 0. From (3.11), at c = 0 we obtain the G-maximum as

(3.13) Gmax = G(0) = 128.
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From the relations (3.8) and (3.13), after simplifying, we get

(3.14) |9c1c3 − 8c22| 6 32.

From the expressions (3.4) and (3.14), upon simplification, we obtain

(3.15) |a2a4 − a23| 6
4

9
(1− α)2.

By setting c1 = c = 0 and selecting x = −1 in the expressions (2.2) and (2.4), we

find that c2 = −2 and c3 = 0, respectively. Using these values in (3.14), we observe

that equality is attained, which shows that our result is sharp. This completes the

proof of our Theorem 3.1. �

R em a r k 3.2. For the choice of α = 0, we get RT (0) = RT , for which, from

(3.15), we obtain |a2a4− a23| 6 4/9. This inequality is sharp and the result coincides

with that of Janteng, Halim and Darus [6].

Theorem 3.2. If f(z) = z +
∞∑

n=2

anz
n ∈ RT (α) (0 6 α < 1/4) and f−1(w) =

w +
∞∑

n=2

tnw
n near w = 0 is the inverse function of f , then

|t2t4 − t23| 6
[ (1− α)2(432α2 − 312α− 137)

144(9α2 − 6α− 2)

]
.

P r o o f. Since f(z) = z +
∞∑
n=2

anz
n ∈ RT (α), from the definition of the inverse

function of f we have

(3.16) w = f{f−1(w)} ⇔ {(t2 + a2)w
2 + (t3 + 2a2t2 + a3)w

3

+ (t4 + 2a2t3 + a2t
2
2 + 3a3t2 + a4)w

4 + . . .} = 0.

Equating the coefficients of the like powers of w2, w3 and w4 on both sides of (3.16),

respectively, after simplifying we get

(3.17) {t2 = −a2; t3 = {−a3 + 2a22}; t4 = {−a4 + 5a2a3 − 5a32}}.

Using the values of a2, a3 and a4 in (3.3) along with (3.17), upon simplification we

obtain

(3.18)
{
t2 = −

(1− α)

2
c1; t3 = −

(1− α)

6
{3(1− α)c21 − 2c2};

t4 = −
(1− α)

24
{−6c3 + 20(1− α)c1c2 − 15(1− α)2c31}

}
.
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Substituting the values of t2, t3 and t4 from (3.18) in the second Hankel functional

|t2t4 − t23| for the inverse function of f ∈ RT (α), after simplifying we get

|t2t4 − t23| =
(1− α)2

144
× |18c1c3 − 12(1− α)c21c2 − 16c22 + 9(1− α)2c41|.

The above expression is equivalent to

(3.19) |t2t4 − t23| =
(1 − α)2

144
× |d1c1c3 + d2c

2
1c2 + d3c

2
2 + d4c

4
1|

where

(3.20) {d1 = 18; d2 = −12(1− α); d3 = −16; d4 = 9(1− α)2}.

Substituting the values of c2 and c3 from (2.2) and (2.4), respectively, from Lem-

ma 2.2 in the right hand side of (3.19), applying the same procedure as described in

Theorem 3.1, we obtain

(3.21) |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| 6 |(d1 + 2d2 + d3 + 4d4)c

4
1 + [2d1c1

+ 2(d1 + d2 + d3)c
2
1|x| − {(d1 + d3)c

2
1 + 2d1c1 − 4d3}|x|

2]× (4− c21)|.

Using the values of d1, d2, d3 and d4 from the relation (3.20), upon simplification we

obtain

{(d1 + 2d2 + d3 + 4d4) = (18α2 − 24α+ 7); d1 = 18;(3.22)

(d1 + d2 + d3) = (12α− 10)},

{(d1 + d3)c
2
1 + 2d1c1 − 4d3} = {(c1 − 2)(c1 − 16)}.(3.23)

Substituting the calculated values from (3.22) and (3.23) in the right hand side of

(3.21), we have

2|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| 6 |(18α2 − 24α+ 7)c41 + {18c1 + (12α− 10)c21|x|

− (c1 − 2)(c1 − 16)|x|2} × (4− c21)|.

Choosing c1 = c ∈ [0, 2], applying the triangle inequality and replacing |x| by µ on

the right hand side of the above inequality, we get

(3.24) 2|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1|

6 [(18α2 − 24α+ 7)c4 + {18c+ (10− 12α)c2µ+ (c− 2)(c− 16)µ2}(4− c2)]

= F (c, µ), for 0 6 µ = |x| 6 1
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where

(3.25) F (c, µ) = [(18α2 − 24α+ 7)c4 + {18c+ (10− 12α)c2µ

+ (c− 2)(c− 16)µ2} × (4− c2)].

Applying the same procedure as described in Theorem 3.1, we get

(3.26)
∂F

∂µ
= [(10− 12α)c2 + 2{(c− 2)(c− 16)}µ]× (4− c2).

For 0 < µ < 1, for fixed c with 0 < c < 2 and 0 6 α < 1/4, from (3.26) we observe

that ∂F/∂µ > 0. Therefore, F (c, µ) is an increasing function of µ and hence it

cannot have the maximum value at any point in the interior of the closed region

[0, 2]× [0, 1]. Further, for a fixed c ∈ [0, 2], we have

(3.27) max
06µ61

F (c, µ) = F (c, 1) = G(c).

Therefore, from (3.25) and (3.27), upon simplification, we obtain

G(c) = {2(9α2 − 6α− 2)c4 + 12(1− 4α)c2 + 128},(3.28)

G′(c) = {8(9α2 − 6α− 2)c3 + 24(1− 4α)c},(3.29)

G′′(c) = {24(9α2 − 6α− 2)c2 + 24(1− 4α)}.(3.30)

For the extreme values of G(c), consider G′(c) = 0. From (3.29), we get

(3.31) 8c{(9α2 − 6α− 2)c2 + 3(1− 4α)} = 0.

We now discuss the following cases.

Case 1. If c = 0, then, from (3.30), we obtain

G′′(c) = 24(1− 4α) > 0 for 0 6 α <
1

4
.

From the second derivative test, G(c) has the minimum value at c = 0.

Case 2. If c 6= 0, then, from (3.31), we get

(3.32) c2 =
{
−

3(1− 4α)

(9α2 − 6α− 2)

}
∈ [0, 2] for 0 6 α <

1

4
.

Using the value of c2 given in (3.32) in (3.31), upon simplification we obtain

G′′(c) = −48(1− 4α) < 0 for 0 6 α <
1

4
.
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By the second derivative test, G(c) has the maximum value at c, where c2 given

in (3.32). Using the value of c2 in (3.28), after simplifying we get

(3.33) max
06c62

G(c) =
[2(432α2 − 312α− 137)

(9α2 − 6α− 2)

]
.

Considering the maximum value of G(c) only at c2, from (3.24) and (3.33), upon

simplification we obtain

(3.34) |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| 6

[ (432α2 − 312α− 137)

(9α2 − 6α− 2)

]
.

From (3.19) and (3.34) we get

(3.35) |t2t4 − t23| 6
[ (1− α)2(432α2 − 312α− 137)

144(9α2 − 6α− 2)

]
.

This completes the proof of our theorem. �

R em a r k 3.4. Choosing α = 0, we have RT (0) = RT , for which, from (3.35), we

get |t2t4 − t23| 6 137/288.
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