B-FREDHOLM AND DRAZIN INVERTIBLE OPERATORS THROUGH LOCALIZED SVEP

M. AMOUCH, Marrakech, H. ZGUITTI, Nador

(Received June 10, 2009)

Abstract. Let X be a Banach space and T be a bounded linear operator on X. We denote by S(T) the set of all complex $\lambda \in \mathbb{C}$ such that T does not have the single-valued extension property at λ . In this note we prove equality up to S(T) between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl's theorem for operator matrices and multiplier operators.

Keywords: B-Fredholm operator, Drazin invertible operator, single-valued extension property

MSC 2010: 47A53, 47A55, 47A10, 47A11

1. INTRODUCTION

Throughout this paper, X and Y are Banach spaces and $\mathcal{B}(X, Y)$ denotes the space of all bounded linear operators from X to Y. For Y = X we write $\mathcal{B}(X, Y) = \mathcal{B}(X)$. For $T \in \mathcal{B}(X)$, let T^* , N(T), R(T), $\sigma(T)$, $\sigma_s(T)$, $\sigma_p(T)$ and $\sigma_a(T)$ denote the adjoint, the null space, the range, the spectrum, the surjective spectrum, the point spectrum and the approximate point spectrum of T, respectively. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T) = \dim N(T)$ and $\beta(T) = \operatorname{codim} R(T)$. If the range R(T) is closed and $\alpha(T) < \infty$ (or $\beta(T) < \infty$), then T is called an *upper* (a *lower*) *semi-Fredholm* operator. If $T \in \mathcal{B}(X)$ is either upper or lower semi-Fredholm, then T is called a *semi-Fredholm* operator, and the *index* of T is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$. If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called a *Fredholm* operator. An operator T is called *Weyl* if it is Fredholm of index zero. The Weyl spectrum $\sigma_W(T)$ is defined by $\sigma_W(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl}\}$.

For $T \in \mathcal{B}(X)$ and a nonnegative integer *n* define $T_{[n]}$ to be the restriction of *T* to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_{[0]} = T$). If for some

integer *n* the range space $R(T^n)$ is closed and $T_{[n]}$ is an upper (or a lower) semi-Fredholm operator, then *T* is called an *upper* (a *lower*) *semi-B-Fredholm* operator. In this case the *index* of *T* is defined to be the index of the semi-Fredholm operator $T_{[n]}$. Moreover, if $T_{[n]}$ is a Fredholm operator, then *T* is called a *B-Fredholm* operator. A *semi-B-Fredholm* operator is an upper or a lower semi-B-Fredholm operator ([6], [8], [13]). The *upper semi-B-Fredholm spectrum* $\sigma_{\text{UBF}}(T)$, the *lower semi-B-Fredholm spectrum* $\sigma_{\text{LBF}}(T)$ and the *B-Fredholm spectrum* $\sigma_{\text{BF}}(T)$ of *T* are defined by

 $\sigma_{\text{UBF}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not an upper semi-B-Fredholm operator}\},\\ \sigma_{\text{LBF}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a lower semi-B-Fredholm operator}\},\\ \sigma_{\text{BF}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a B-Fredholm operator}\}.$

We have

$$\sigma_{\rm BF}(T) = \sigma_{\rm UBF}(T) \cup \sigma_{\rm LBF}(T).$$

An operator $T \in \mathcal{B}(X)$ is said to be a *B-Weyl* operator if it is a B-Fredholm operator of index zero. The *B-Weyl spectrum* $\sigma_{BW}(T)$ of *T* is defined by

$$\sigma_{\rm BW}(T) = \{ \lambda \in \mathbb{C} : \ T - \lambda I \text{ is not a B-Weyl operator} \}.$$

From [8, Lemma 4.1], T is a B-Weyl operator if and only if $T = F \oplus N$, where F is a Fredholm operator of index zero and N is a nilpotent operator.

We shall denote by $\text{SBF}^-_+(X)$ (or $\text{SBF}^+_-(X)$) the class of all T upper semi-B-Fredholm operators (T lower semi-B-Fredholm operators) such that $\text{ind}(T) \leq 0$ ($\text{ind}(T) \geq 0$). The spectrum associated with $\text{SBF}^-_+(X)$ is called the *semi-essential approximate point spectrum* and is denoted by $\sigma_{\text{SBF}^+_+}(T) = \{\lambda \in \mathbb{C} \colon T - \lambda I \notin \text{SBF}^+_+(X)\}$, while the spectrum associated with $\text{SBF}^+_-(X)$ is denoted by $\sigma_{\text{SBF}^+_-}(T) = \{\lambda \in \mathbb{C} \colon T - \lambda I \notin \text{SBF}^+_-(T)\}$.

The ascent a(T) and the descent d(T) of T are given by $a(T) = \inf\{n: N(T^n) = N(T^{n+1})\}$ and $d(T) = \inf\{n: R(T^n) = R(T^{n+1})\}$, with $\inf \emptyset = \infty$. It is well-known that if a(T) and d(T) are both finite then they are equal, see [16, Proposition 38.3].

Recall that an operator T is *Drazin invertible* if it has a finite ascent and descent. It is well known that T is Drazin invertible if and only if $T = R \oplus N$ where R is invertible and N is nilpotent (see [20, Corollary 2.2]). The Drazin spectrum is defined by $\sigma_D(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Drazin invertible}\}$. From [8, Lemma 4.1] and [20, Corollary 2.2] we have

$$\sigma_{\rm BW}(T) \subseteq \sigma_{\rm D}(T).$$

Define the set LD(X) as

$$LD(X) = \{T \in \mathcal{B}(X) \colon a(T) < \infty \text{ and } R(T^{a(T)+1}) \text{ is closed}\}.$$

From [21], LD(X) is a regularity and it is the dual version of the regularity RD(X) = $\{T \in \mathcal{B}(X) : d(T) < \infty \text{ and } R(T^{d(T)}) \text{ is closed}\}$. An operator $T \in \mathcal{B}(X)$ is said to be *left* (or *right*) *Drazin invertible* if $T \in \text{LD}(X)$ ($T \in \text{RD}(X)$). The *left Drazin spectrum* $\sigma_{\text{ID}}(T)$ and the *right Drazin spectrum* $\sigma_{\text{rD}}(T)$ are defined by $\sigma_{\text{ID}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin \text{LD}(X)\}$ and $\sigma_{\text{rD}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin \text{RD}(X)\}$. It is not difficult to see that

$$\sigma_{\rm D}(T) = \sigma_{\rm lD}(T) \cup \sigma_{\rm rD}(T).$$

2. Preliminary results

An operator $T \in \mathcal{B}(X)$ has the single-valued extension property at $\lambda_0 \in \mathbb{C}$ (the SVEP for short) if for every open disc D_{λ_0} centered at λ_0 , the only analytic function $f: D_{\lambda_0} \longrightarrow X$ which satisfies $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in D_{\lambda_0}$ is the function $f \equiv 0$. Trivially, every operator T has the SVEP at all points of the resolvent; also T has the SVEP at $\lambda \in \text{iso } \sigma(T)$ (iso $\sigma(T)$ is the set of all isolated points of $\sigma(T)$). We say that T has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$, [15]. We denote by $\mathcal{S}(T)$ the set of all $\lambda \in \mathbb{C}$ such that T does not have the single-valued extension property at λ . Note that (see [15], [19]) $\mathcal{S}(T) \subseteq \sigma_{\mathrm{p}}(T)$ and $\sigma(T) = \mathcal{S}(T) \cup \sigma_{\mathrm{s}}(T)$. In particular, if T (or T^*) has the SVEP then $\sigma(T) = \sigma_{\mathrm{s}}(T)$ ($\sigma(T) = \sigma_{\mathrm{a}}(T)$).

Recall that if $T - \lambda I$ has a finite ascent then it has the SVEP ([18]). Thus we have

$$\mathcal{S}(T) \subseteq \sigma_{\mathrm{lD}}(T) \text{ and } \mathcal{S}(T^*) \subseteq \sigma_{\mathrm{rD}}(T).$$

In the following theorem, we prove equality up to $\mathcal{S}(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum.

Theorem 2.1. Let $T \in \mathcal{B}(X)$. Then

$$\sigma_{\rm lD}(T) = \sigma_{\rm UBF}(T) \cup \mathcal{S}(T) = \sigma_{\rm SBF^-}(T) \cup \mathcal{S}(T).$$

Proof. Let $\lambda \notin \sigma_{\mathrm{ID}}(T)$, without loss of generality we assume that $\lambda = 0$. Then $R(T^{a(T)+1})$ is closed. Hence $R(T^{a(T)})$ is closed by [21, Lemma 12]. We shall prove that $T_{[a(T)]}$ is upper semi-Fredholm. Let $x \in N(T_{[a(T)]})$ then $x \in N(T) \cap R(T^{a(T)})$. Hence $x = T^{a(T)}y$ for some $y \in X$. Then $0 = Tx = T^{a(T)+1}y$. Thus $y \in N(T^{a(T)+1}) = N(T^{a(T)})$. Therefore x = 0 and hence $T_{[a(T-\lambda I)]}$ is injective. On the other hand, $R(T_{[a(T)]}) = R(T^{a(T)+1})$ is closed. Thus $T_{[a(T)]}$ is upper semi-Fredholm and hence $0 \notin \sigma_{\text{UBF}}(T)$. Since $\mathcal{S}(T) \subseteq \sigma_{\text{ID}}(T)$ we have

$$\sigma_{\rm UBF}(T) \cup \mathcal{S}(T) \subseteq \sigma_{\rm lD}(T).$$

Now let $0 \notin [\sigma_{\text{UBF}}(T) \cup (\mathcal{S}(T)]$, then T is an upper semi-B-Fredholm operator. Hence it follows from [7, Proposition 3.2] that there exist n such that $R(T^n)$ is closed and $T_{[n]}$ is semi-regular. Since T has the SVEP at 0 then $T_{[n]}$ has also the SVEP at 0. Then from [1, Theorem 3.14], we conclude that $T_{[n]}$ is injective with closed range. Let $x \in N(T^{n+1})$, then $TT^n x = 0$. Hence $T^n x \in N(T) \cap R(T^n) = N(T_{[n]}) = \{0\}$. Thus $x \in N(T^n)$, and hence $N(T^n) = N(T^{n+1})$. So T is of finite ascent and $a(T) \leq n$. We have $R(T^{n+1}) = R(T_{[n]})$ is closed with $a(T) + 1 \leq n + 1$. Hence $R(T^{a(T)+1})$ is closed by [21, Lemma 12]. Thus T is left Drazin invertible. Therefore $\sigma_{\text{ID}}(T) \subseteq \sigma_{\text{UBF}}(T) \cup \mathcal{S}(T)$.

From [13, Lemma 2.12] we have $\sigma_{\mathrm{SBF}^-_+}(T) \subseteq \sigma_{\mathrm{lD}}(T)$ and since $\sigma_{\mathrm{UBF}}(T) \subseteq \sigma_{\mathrm{SBF}^-_+}(T)$ we infer $\sigma_{\mathrm{lD}}(T) = \sigma_{\mathrm{UBF}}(T) \cup \mathcal{S}(T) = \sigma_{\mathrm{SBF}^-_+}(T) \cup \mathcal{S}(T)$. \Box

A useful consequence of the preceding result is that under the assumption of the SVEP for T, the spectra $\sigma_{\text{ID}}(T)$, $\sigma_{\text{UBF}}(T)$ and $\sigma_{\text{SBF}^-_+}(T)$ are equal.

Corollary 2.1. If $T \in \mathcal{B}(X)$ has the SVEP then

$$\sigma_{\rm lD}(T) = \sigma_{\rm UBF}(T) = \sigma_{\rm SBF^-}(T).$$

By duality we get a similar result for the right Drazin spectrum.

Theorem 2.2. Let $T \in \mathcal{B}(X)$. Then

$$\sigma_{\rm rD}(T) = \sigma_{\rm LBF}(T) \cup \mathcal{S}(T^*) = \sigma_{\rm SBF^+}(T) \cup \mathcal{S}(T^*).$$

Proof. Since $\sigma_{\text{LBF}}(T) = \sigma_{\text{UBF}}(T^*)$, $\sigma_{\text{SBF}^+}(T) = \sigma_{\text{SBF}^+}(T^*)$ and $\sigma_{\text{rD}}(T) = \sigma_{\text{lD}}(T^*)$ the assertion follows by Theorem 2.1.

Corollary 2.2. If $T^* \in \mathcal{B}(X)$ has the SVEP then

$$\sigma_{\rm rD}(T) = \sigma_{\rm LBF}(T) = \sigma_{\rm SBF^+}(T).$$

From Theorem 2.1 and Theorem 2.2 we get the following corollary.

Corollary 2.3. Let $T \in \mathcal{B}(X)$. Then

(2.1)
$$\sigma_{\rm D}(T) = \sigma_{\rm BF}(T) \cup [\mathcal{S}(T) \cup \mathcal{S}(T^*)] = \sigma_{\rm BW}(T) \cup [\mathcal{S}(T) \cup \mathcal{S}(T^*)].$$

In particular if T and T^* have the SVEP then

$$\sigma_{\rm D}(T) = \sigma_{\rm BF}(T) = \sigma_{\rm BW}(T).$$

The equality in (2.1) may be refined for $\sigma_{\rm D}(T)$ and $\sigma_{\rm BW}(T)$. More precisely, we have

Theorem 2.3. Let $T \in \mathcal{B}(X)$ then

$$\sigma_{\rm D}(T) = \sigma_{\rm BW}(T) \cup [\mathcal{S}(T) \cap \mathcal{S}(T^*)].$$

Proof. Since $\sigma_{BW}(T) \cup (\mathcal{S}(T) \cap \mathcal{S}(T^*)) \subseteq \sigma_D(T)$ always holds, let $\lambda \notin \sigma_{BW}(T) \cup (\mathcal{S}(T) \cap \mathcal{S}(T^*))$. Without loss of generality we assume that $\lambda = 0$. Then T is a B-Fredholm operator of index zero.

Case 1. If $0 \notin S(T)$: Since T is a B-Fredholm operator of index zero, it follows from [8, Lemma 4.1] that there exists a Fredholm operator F of index zero and a nilpotent operator N such that $T = F \oplus N$. If $0 \notin \sigma(F)$, then F is invertible and hence T is Drazin invertible. Now assume that $0 \in \sigma(F)$. Since T has the SVEP at 0, F has also the SVEP at 0. Hence it follows from [1, Theorem 3.16] that a(F)is finite. F is a Fredholm operator of index zero, hence it follows from [1, Theorem 3.4] that d(F) is also finite. Then $a(F) = d(F) < \infty$ which implies that 0 is a pole of F and hence an isolated point of $\sigma(F)$. Operator N is nilpotent, hence 0 is an isolated point of $\sigma(T)$. From [8, Theorem 4.2] we get $0 \notin \sigma_D(T)$.

Case 2. If $0 \notin \mathcal{S}(T^*)$, the proof goes similarly.

Corollary 2.4 ([12]). If T or T^* has the SVEP then

$$\sigma_{\rm D}(T) = \sigma_{\rm BW}(T).$$

Recall that T is a *Browder* operator if T is a Fredholm operator of finite ascent and descent. Let $\sigma_{\rm B}(T)$ be the *Browder spectrum* defined as the set of all $\lambda \in \mathbb{C}$ such that $T - \lambda I$ is not Browder. Analogously, T is a B-*Browder* operator if for some integer $n, R(T^n)$ is closed and $T_{[n]}$ is Browder. Let $\sigma_{\rm BB}(T)$ be the B-*Browder* spectrum. In [1, Corollary 3.53] it is proved that if T or T^* has the SVEP, then

$$\sigma_{\rm W}(T) = \sigma_{\rm B}(T).$$

From [7, Theorem 3.6] we have $\sigma_{\rm D}(T) = \sigma_{\rm BB}(T)$, hence by Corollary 2.4, if T or T* has the SVEP then

$$\sigma_{\rm BW}(T) = \sigma_{\rm BB}(T).$$

43

Theorem 2.4. Let $T \in \mathcal{B}(X)$ and let f be an analytic function on some open neighborhood of $\sigma(T)$ which is nonconstant on any connected component of $\sigma(T)$. Then

$$f(\sigma_{\rm BW}(T) \cup [\mathcal{S}(T) \cap \mathcal{S}(T^*)]) = \sigma_{\rm BW}(f(T)) \cup [\mathcal{S}(f(T)) \cap \mathcal{S}(f(T^*))].$$

Proof. According to [21] the Drazin spectrum satisfies the spectral mapping theorem for such a function f, hence the result follows at once from Theorem 2.3. \Box

It is well known that if T has the SVEP then f(T) has also the SVEP [19]. Now we retrieve the result proved in [2], [23]: $f(\sigma_{BW}(T)) = \sigma_{BW}(f(T))$ whenever T or T^* has the SVEP. Note that in [2], [23] the condition "f is nonconstant on any connected component of $\sigma(T)$ " is dropped.

3. Applications

3.1. Perturbations.

Lemma 3.1. Let $T \in \mathcal{B}(X)$. Let $N \in \mathcal{B}(X)$ be a nilpotent operator such that TN = NT. Then

$$\mathcal{S}(T+N) = \mathcal{S}(T).$$

Proof. See for instance [5, Lemma 2.1].

Lemma 3.2. Let $T \in \mathcal{B}(X)$. If $N \in \mathcal{B}(X)$ is a nilpotent operator which commutes with T then

$$\sigma_{\rm lD}(T+N) = \sigma_{\rm lD}(T).$$

Proof. Assume that $\lambda = 0 \notin \sigma_{\rm lD}(T)$. Then a(T) is finite and $R(T^{a(T)+1})$ is closed. Let m be the nonnegative integer such that $N^m = 0 \neq N^{m-1}$. Let $s = \max(a(T), m)$. Then

$$(T+N)^{2s} = \sum_{k=0}^{2s} \binom{k}{2s} T^k N^{2s-k}$$

= $\binom{0}{2s} N^{2s} + \dots + \binom{s}{2s} T^s N^s + \binom{s+1}{2s} T^{s+1} N^{s-1} + \dots + \binom{2s}{2s} T^{2s}$
= $\binom{s+1}{2s} T^{s+1} N^{s-1} + \dots + \binom{2s}{2s} T^{2s}$
= $T^s \left[\binom{s+1}{2s} T^1 N^{s-1} + \dots + \binom{2s}{2s} T^s \right].$

44

Now let $x \in N(T)^{2s} = N(T)^s$ that is $(T)^{2s}x = 0$. Then it follows from the above equality that $(T+N)^{2s}x = 0$. Hence $N(T)^{2s} \subseteq N(T+N)^{2s}$. With the same argument for T+N and -N we have $N(T+N)^{2s} \subseteq N(T)^{2s}$. Thus $N(T)^{2s} = N(T+N)^{2s}$. Since $N(T^s) = N(T^{2s}) = N(T^{2s+1})$, we get $N(T+N)^{2s} = N(T+N)^{2s+1}$. Therefore T+N is of finite ascent. On the other hand, $R(T+N)^{2s} \subseteq R(T^s)$ is closed. Hence by [21, Lemma 12] $R(T+N)^{2s+1}$ is closed. Thus $0 \notin \sigma_{\rm ID}(T+N)$. Hence $\sigma_{\rm ID}(T+N) \subseteq \sigma_{\rm ID}(T)$. With the same argument for T+N and -N we get $\sigma_{\rm ID}(T) \subseteq \sigma_{\rm ID}(T+N)$.

The next result follows from Theorem 2.1, Lemma 3.1 and Lemma 3.2.

Theorem 3.1. Let $T \in \mathcal{B}(X)$. Let $N \in \mathcal{B}(X)$ be a nilpotent operator which commutes with T. Then

$$\sigma_{\mathrm{SBF}^-}(T+N)\cup\mathcal{S}(T)=\sigma_{\mathrm{SBF}^-}(T)\cup\mathcal{S}(T).$$

The following corollary which is proved in [3] gives an affirmative answer to the question posed by Berkani-Amouch [9] in the case when T has the SVEP.

Corollary 3.1. Let $T \in \mathcal{B}(X)$ have the SVEP. Let $N \in \mathcal{B}(X)$ be a nilpotent operator which commutes with T. Then

$$\sigma_{\rm SBF^-}(T+N) = \sigma_{\rm SBF^-}(T).$$

3.2. Generalized Weyl's theorem for operator matrices. Berkani [8, Theorem 4.5] has shown that every normal operator T acting on a Hilbert space H satisfies

(3.1)
$$\sigma(T) \setminus E(T) = \sigma_{\rm BW}(T),$$

where E(T) is the set of all isolated eigenvalues of T. We say that the generalized Weyl's theorem holds for T if equality (3.1) holds. This gives a generalization of the classical Weyl's theorem. Recall that $T \in \mathcal{B}(X)$ obeys Weyl's theorem if

(3.2)
$$\sigma(T) \setminus E_0(T) = \sigma_{\mathrm{W}}(T)$$

where $E_0(T)$ denotes the set of the isolated points of $\sigma(T)$ which are eigenvalues of finite multiplicity. By [13, Theorem 3.9] the generalized Weyl's theorem implies Weyl's theorem and generally the reverse is not true.

For $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$ we denote by M_C the operator defined on $X \oplus Y$ by

$$M_C = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$$

In general the fact that the generalized Weyl's theorem holds for A and B does not imply that the generalized Weyl's theorem holds for $M_0 = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$. Indeed, let I_1 and I_2 be the identities on \mathbb{C} and l_2 , respectively. Let S_1 and S_2 be defined on l_2 by

$$S_1(x_1, x_2, \ldots) = (0, \frac{1}{3}x_1, \frac{1}{3}x_2, \ldots), \quad S_2(x_1, x_2, \ldots) = (0, \frac{1}{2}x_1, \frac{1}{3}x_2, \ldots).$$

Let $T_1 = I_1 \oplus S_1$, $T_2 = S_2 - I_2$, $A = T_1^2$ and $B = T_2^2$, then from [23, Example 1] we have A and B obey the generalized Weyl's theorem but M_0 does not obey it. It also may happen that M_C obeys the generalized Weyl's theorem while M_0 does not obey it. Let A be the unilateral unweighted shift operator. For $B = A^*$ and $C = I - AA^*$, we have that M_C is unitary without eigenvalues. Hence M_C satisfies the generalized Weyl's theorem (see [10, Remark 3.5]). But $\sigma_W(M_0) = \{\lambda : |\lambda| = 1\}$ and $\sigma(M_0) \setminus E_0(M_0) = \{\lambda : |\lambda| \leq 1\}$. Hence M_0 does not satisfy the Weyl's theorem and so by [13, Theorem 3.9] it does not satisfy the generalized Weyls theorem either.

A bounded linear operator T is said to be *isoloid* if every isolated point of $\sigma(T)$ is an eigenvalue of T.

Proposition 3.1. Let A and B be isoloids. Assume that $\sigma_{BW}(M_0) = \sigma_{BW}(A) \cup \sigma_{BW}(B)$. If A and B obey the generalized Weyl's theorem, then M_0 obeys the generalized Weyl's theorem.

Proof. Since A and B are isoloids, we have

$$E(M_0) = [E(A) \cap \varrho(B)] \cup [\varrho(A) \cap E(B)] \cup [E(A) \cap E(B)].$$

Now if A and B obey the generalized Weyl's theorem, then

$$E(M_0) = [\sigma(A) \cup \sigma(B)] \setminus [\sigma_{BW}(A) \cup \sigma_{BW}(B)]$$

= $\sigma(M_0) \setminus \sigma_{BW}(M_0).$

Then M_0 obeys the generalized Weyl's theorem.

Lemma 3.3. Let $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y)$ have the SVEP. Then

$$\sigma_{\rm BW}(M_C) = \sigma_{\rm BW}(A) \cup \sigma_{\rm BW}(B)$$

for all $C \in \mathcal{B}(Y, X)$.

Proof. Since A and B have the SVEP, then it follows from [17, Proposition 3.1] that M_C also has the SVEP. Hence $\sigma_{BW}(M_C) = \sigma_D(M_C)$ by Corollary 2.4. Also since A and B have the SVEP, it follows from [24, Corollary 2.1] that $\sigma_D(M_C) = \sigma_D(A) \cup \sigma_D(B)$. Therefore $\sigma_{BW}(M_C) = \sigma_{BW}(A) \cup \sigma_{BW}(B)$ by Corollary 2.4.

Theorem 3.2. Let A and B be isoloids with the SVEP. If A and B obey the generalized Weyl's theorem, then M_C obeys the generalized Weyl's theorem for every $C \in \mathcal{B}(Y, X)$.

Proof. It follows from Proposition 3.1 and Lemma 3.3 that

$$E(M_0) = \sigma(M_0) \setminus \sigma_{\rm BW}(M_0) = \sigma(M_C) \setminus \sigma_{\rm BW}(M_C).$$

Hence it is enough to show that $E(M_0) = E(M_C)$. Let $\lambda \in E(M_C)$. Then $\lambda \in \sigma_p(M_C) \subseteq \sigma_p(A) \cup \sigma_p(B)$. Hence $\lambda \in \sigma_p(M_0)$. Since $\lambda \in iso \sigma(M_C) = iso \sigma(M_0)$ we have $\lambda \in E(M_0)$. Now let $\lambda \in E(M_0)$. If $\lambda \in \sigma(A)$ then $\lambda \in iso \sigma(A)$. Since A is an isoloid, we have $\lambda \in \sigma_p(A) \subseteq \sigma_p(M_C)$. Hence $\lambda \in E(M_C)$. If $\lambda \in \sigma(B) \setminus \sigma(A)$, then $\lambda \in \sigma_p(B)$. Since A is invertible, we conclude that $\lambda \in \sigma_p(M_C)$. Thus $\lambda \in E(M_C)$. Therefore $E(M_0) = E(M_C)$.

Let $\pi(T)$ be the set of all poles of the resolvent of T. Recall from [14] that T is a *polaroid* if iso $\sigma(T) \subseteq \pi(T)$. Since $\pi(T) \subseteq E(T)$ holds without restriction on T, then if T is a polaroid then $E(T) = \pi(T)$.

Corollary 3.2. Let A and B be polaroids with the SVEP. Then M_C obeys the generalized Weyl's theorem for every $C \in \mathcal{B}(Y, X)$.

Proof. A and B are polaroids hence $E(A) = \pi(A)$ and $E(B) = \pi(B)$. Since A and B have the SVEP, we have by [4] that A and B satisfy the generalized Weyl's theorem. Hence we complete the proof by Theorem 3.2.

3.3. Multipliers on a commutative Banach algebra. Let \mathcal{A} be a semi-simple commutative Banach algebra. A mapping $T: \mathcal{A} \longrightarrow \mathcal{A}$ is called a *multiplier* if

$$T(x)y = xT(y)$$
 for all $x, y \in \mathcal{A}$.

By semi-simplicity of \mathcal{A} , every multiplier is a bounded linear operator on \mathcal{A} . Also the semi-simplicity of \mathcal{A} implies that every multiplier has the SVEP (see [1], [19]).

By [1, Theorem 4.36], for every multiplier T on a semi-simple commutative Banach algebra $\mathcal{A}, E(T) = \pi(T)$ and since T has the SVEP we get from [4]

Proposition 3.2. Every multiplier on a semi-simple commutative Banach algebra \mathcal{A} obeys the generalized Weyl's theorem.

From Corollary 2.4 we have

Proposition 3.3 ([11]). Let T be a multiplier on a semi-simple commutative Banach algebra \mathcal{A} . Then the following assertions are equivalent:

- i) T is B-Fredholm of index zero.
- ii) T is Drazin invertible.

Now if we assume in addition that \mathcal{A} is regular and Tauberian (see [19] for definition) then every multiplier T has the weak decomposition property (δ_{w}) and then T^* has also the SVEP (see [22] for definition and details). Hence we get from Corollary 2.3

Proposition 3.4. Let T be a multiplier on a semi-simple regular Tauberian commutative Banach algebra A. Then the following assertions are equivalent:

- i) T is B-Fredholm.
- ii) T is Drazin invertible.

For G a locally compact abelian group, let $L^1(G)$ be the space of \mathbb{C} -valued functions on G integrable with respect to Haar measure and M(G) the Banach algebra of regular complex Borel measures on G. We recall that $L^1(G)$ is a regular semi-simple Tauberian commutative Banach algebra. Then we have

Corollary 3.3. Let G be a locally compact abelian group, $\mu \in M(G)$ and $X = L^1(G)$. Then every convolution operator $T_{\mu} \colon X \longrightarrow X$, $T_{\mu}(k) = \mu \star k$ is B-Fredholm if and only if it is Drazin invertible.

A c k n o w l e d g e m e n t. The authors are indebted to the referee for several helpful remarks and suggestions.

References

- [1] *P. Aiena*: Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht, 2004. zbl
- M. Amouch: Weyl type theorems for operators satisfying the single-valued extension property. J. Math. Anal. Appl. 326 (2007), 1476–1484.
- [3] *M. Amouch*: Polaroid operators with SVEP and perturbations of property (gw). Mediterr. J. Math. 6 (2009), 461–470.
- [4] M. Amouch, H. Zguitti: On the equivalence of Browder's and generalized Browder's theorem. Glasg. Math. J. 48 (2006), 179–185.
- [5] C. Benhida, E. H. Zerouali, H. Zguitti: Spectral properties of upper triangular block operators. Acta Sci. Math. (Szeged) 71 (2005), 681–690.
- [6] M. Berkani: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244–249.

 \mathbf{zbl}

[7]	M. Berkani: Restriction of an operator to the range of its powers. Stud. Math. 140
r - 1	(2000), 163–175. zbl
[8]	<i>M. Berkani</i> : Index of Fredholm operators and generalization of a Weyl theorem. Proc.
	Am. Math. Soc. 130 (2002), 1717–1723.
[9]	M. Berkani, M. Amouch: Preservation of property (gw) under perturbations. Acta Sci.
r 1	Math. (Szeged) 74 (2008), 769–781.
[10]	M. Berkani, A. Arroud: Generalized Weyl's theorem and hyponormal operators. J. Aust.
r 1	Math. Soc. 76 (2004), 291–302.
[11]	M. Berkani, A. Arroud: B-Fredholm and spectral properties for multipliers in Banach
	algebras. Rend. Circ. Mat. Palermo 55 (2006), 385–397. zbl
[12]	
r 1	ized Weyl's theorem. Math. Bohem. 131 (2006), 29–38.
[13]	M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators. Acta Sci.
	Math. (Szeged) 69 (2003), 359–376.
[14]	B. P. Duggal, R. Harte, I. H. Jeon: Polaroid operators and Weyl's theorem. Proc. Am.
[Math. Soc. 132 (2004), 1345–1349.
[15]	J. K. Finch: The single valued extension property on a Banach space. Pacific J. Math.
[+ 0]	58 (1975), 61–69. zbl
L	H. G. Heuser: Functional Analysis. John Wiley, Chichester, 1982.
[17]	M. Houimdi, H. Zguitti: Propriétés spectrales locales d'une matrice carrée des opéra-
r 1	teurs. Acta Math. Vietnam. 25 (2000), 137–144.
L 1	K. B. Laursen: Operators with finite ascent. Pacific J. Math. 152 (1992), 323–336. zbl
[19]	K. B. Laursen, M. M. Neumann: An Introduction to Local Spectral Theory. Clarendon,
[0.0]	Oxford, 2000.
[20]	D. C. Lay: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184
[04]	(1970), 197–214. zbl
[21]	M. Mbekhta, V. Müller: Axiomatic theory of spectrum II. Stud. Math. 119 (1996),
[00]	129–147. Zbl
[22]	E. H. Zerouali, H. Zguitti: On the weak decomposition property (δ_w) . Stud. Math. 167
[0.9]	(2005), 17–28. Zbl
[23]	H. Zguitti: A note on generalized Weyl's theorem. J. Math. Anal. Appl. 316 (2006),
[0.4]	373–381. zbl
[24]	
	Anal. Appl. 2 (2010), 27–33.

Authors' addresses: M. Amouch, Departement de Mathematiques, Faculte des Sciences Semlalia, B. P: 2390 Marrakech, Morocco, e-mail: m.amouch@ucam.ac.ma; H. Zguitti, Departement de Mathematiques et Informatique, Faculte Pluridisciplinaire de Nador, B. P: 300 Selouane, 62700 Nador, Morocco, e-mail: zguitti@hotmail.com.