B-FREDHOLM AND DRAZIN INVERTIBLE OPERATORS THROUGH LOCALIZED SVEP

M. Amouch, Marrakech, H. Zguitti, Nador

(Received June 10, 2009)

Abstract

Let X be a Banach space and T be a bounded linear operator on X. We denote by $S(T)$ the set of all complex $\lambda \in \mathbb{C}$ such that T does not have the single-valued extension property at λ. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl's theorem for operator matrices and multiplier operators.

Keywords: B-Fredholm operator, Drazin invertible operator, single-valued extension property

MSC 2010: 47A53, 47A55, 47A10, 47A11

1. Introduction

Throughout this paper, X and Y are Banach spaces and $\mathcal{B}(X, Y)$ denotes the space of all bounded linear operators from X to Y. For $Y=X$ we write $\mathcal{B}(X, Y)=\mathcal{B}(X)$. For $T \in \mathcal{B}(X)$, let $T^{*}, N(T), R(T), \sigma(T), \sigma_{\mathrm{s}}(T), \sigma_{\mathrm{p}}(T)$ and $\sigma_{\mathrm{a}}(T)$ denote the adjoint, the null space, the range, the spectrum, the surjective spectrum, the point spectrum and the approximate point spectrum of T, respectively. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T)=\operatorname{dim} N(T)$ and $\beta(T)=\operatorname{codim} R(T)$. If the range $R(T)$ is closed and $\alpha(T)<\infty($ or $\beta(T)<\infty)$, then T is called an upper (a lower) semi-Fredholm operator. If $T \in \mathcal{B}(X)$ is either upper or lower semiFredholm, then T is called a semi-Fredholm operator, and the index of T is defined by $\operatorname{ind}(T)=\alpha(T)-\beta(T)$. If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called a Fredholm operator. An operator T is called Weyl if it is Fredholm of index zero. The Weyl spectrum $\sigma_{\mathrm{W}}(T)$ is defined by $\sigma_{\mathrm{W}}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Weyl $\}$.

For $T \in \mathcal{B}(X)$ and a nonnegative integer n define $T_{[n]}$ to be the restriction of T to $R\left(T^{n}\right)$ viewed as a map from $R\left(T^{n}\right)$ into $R\left(T^{n}\right)$ (in particular $T_{[0]}=T$). If for some
integer n the range space $R\left(T^{n}\right)$ is closed and $T_{[n]}$ is an upper (or a lower) semiFredholm operator, then T is called an upper (a lower) semi-B-Fredholm operator. In this case the index of T is defined to be the index of the semi-Fredholm operator $T_{[n]}$. Moreover, if $T_{[n]}$ is a Fredholm operator, then T is called a B-Fredholm operator. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator ([6], [8], [13]). The upper semi-B-Fredholm spectrum $\sigma_{\mathrm{UBF}}(T)$, the lower semi-B-Fredholm spectrum $\sigma_{\mathrm{LBF}}(T)$ and the B-Fredholm spectrum $\sigma_{\mathrm{BF}}(T)$ of T are defined by

$$
\begin{aligned}
\sigma_{\mathrm{UBF}}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not an upper semi-B-Fredholm operator }\}, \\
\sigma_{\mathrm{LBF}}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not a lower semi-B-Fredholm operator }\}, \\
\sigma_{\mathrm{BF}}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not a B-Fredholm operator }\} .
\end{aligned}
$$

We have

$$
\sigma_{\mathrm{BF}}(T)=\sigma_{\mathrm{UBF}}(T) \cup \sigma_{\mathrm{LBF}}(T) .
$$

An operator $T \in \mathcal{B}(X)$ is said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{\mathrm{BW}}(T)$ of T is defined by

$$
\sigma_{\mathrm{BW}}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not a B-Weyl operator }\} .
$$

From [8, Lemma 4.1], T is a B-Weyl operator if and only if $T=F \oplus N$, where F is a Fredholm operator of index zero and N is a nilpotent operator.

We shall denote by $\mathrm{SBF}_{+}^{-}(X)$ (or $\mathrm{SBF}_{-}^{+}(X)$) the class of all T upper semi-BFredholm operators (T lower semi-B-Fredholm operators) such that $\operatorname{ind}(T) \leqslant 0$ ($\operatorname{ind}(T) \geqslant 0$). The spectrum associated with $\operatorname{SBF}_{+}^{-}(X)$ is called the semi-essential approximate point spectrum and is denoted by $\sigma_{\mathrm{SBF}_{+}^{-}}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin$ $\left.\mathrm{SBF}_{+}^{-}(X)\right\}$, while the spectrum associated with $\mathrm{SBF}_{-}^{+}(X)$ is denoted by $\sigma_{\mathrm{SBF}_{-}^{+}}(T)=$ $\left\{\lambda \in \mathbb{C}: T-\lambda I \notin \operatorname{SBF}_{-}^{+}(X)\right\}$.

The ascent $a(T)$ and the descent $d(T)$ of T are given by $a(T)=\inf \left\{n: N\left(T^{n}\right)=\right.$ $\left.N\left(T^{n+1}\right)\right\}$ and $d(T)=\inf \left\{n: R\left(T^{n}\right)=R\left(T^{n+1}\right)\right\}$, with $\inf \emptyset=\infty$. It is well-known that if $a(T)$ and $d(T)$ are both finite then they are equal, see [16, Proposition 38.3].

Recall that an operator T is Drazin invertible if it has a finite ascent and descent. It is well known that T is Drazin invertible if and only if $T=R \oplus N$ where R is invertible and N is nilpotent (see [20, Corollary 2.2]). The Drazin spectrum is defined by $\sigma_{\mathrm{D}}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Drazin invertible $\}$. From [8, Lemma 4.1] and [20, Corollary 2.2] we have

$$
\sigma_{\mathrm{BW}}(T) \subseteq \sigma_{\mathrm{D}}(T)
$$

Define the set $\mathrm{LD}(X)$ as

$$
\mathrm{LD}(X)=\left\{T \in \mathcal{B}(X): a(T)<\infty \text { and } R\left(T^{a(T)+1}\right) \text { is closed }\right\}
$$

From $[21], \mathrm{LD}(X)$ is a regularity and it is the dual version of the regularity $\mathrm{RD}(X)=$ $\left\{T \in \mathcal{B}(X): d(T)<\infty\right.$ and $R\left(T^{d(T)}\right)$ is closed $\}$. An operator $T \in \mathcal{B}(X)$ is said to be left (or right) Drazin invertible if $T \in \operatorname{LD}(X)(T \in \operatorname{RD}(X))$. The left Drazin spectrum $\sigma_{\mathrm{lD}}(T)$ and the right Drazin spectrum $\sigma_{\mathrm{rD}}(T)$ are defined by $\sigma_{\mathrm{lD}}(T)=$ $\{\lambda \in \mathbb{C}: T-\lambda I \notin \operatorname{LD}(X)\}$ and $\sigma_{\mathrm{rD}}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin \mathrm{RD}(X)\}$. It is not difficult to see that

$$
\sigma_{\mathrm{D}}(T)=\sigma_{\mathrm{lD}}(T) \cup \sigma_{\mathrm{rD}}(T)
$$

2. Preliminary results

An operator $T \in \mathcal{B}(X)$ has the single-valued extension property at $\lambda_{0} \in \mathbb{C}$ (the SVEP for short) if for every open disc $D_{\lambda_{0}}$ centered at λ_{0}, the only analytic function $f: D_{\lambda_{0}} \longrightarrow X$ which satisfies $(T-\lambda I) f(\lambda)=0$ for all $\lambda \in D_{\lambda_{0}}$ is the function $f \equiv 0$. Trivially, every operator T has the SVEP at all points of the resolvent; also T has the SVEP at $\lambda \in$ iso $\sigma(T)$ (iso $\sigma(T)$ is the set of all isolated points of $\sigma(T)$). We say that T has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$, [15]. We denote by $\mathcal{S}(T)$ the set of all $\lambda \in \mathbb{C}$ such that T does not have the single-valued extension property at λ. Note that (see [15], [19]) $\mathcal{S}(T) \subseteq \sigma_{\mathrm{p}}(T)$ and $\sigma(T)=\mathcal{S}(T) \cup \sigma_{\mathrm{s}}(T)$. In particular, if T (or T^{*}) has the SVEP then $\sigma(T)=\sigma_{\mathrm{s}}(T)\left(\sigma(T)=\sigma_{\mathrm{a}}(T)\right.$).

Recall that if $T-\lambda I$ has a finite ascent then it has the SVEP ([18]). Thus we have

$$
\mathcal{S}(T) \subseteq \sigma_{\mathrm{lD}}(T) \text { and } \mathcal{S}\left(T^{*}\right) \subseteq \sigma_{\mathrm{rD}}(T)
$$

In the following theorem, we prove equality up to $\mathcal{S}(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum.

Theorem 2.1. Let $T \in \mathcal{B}(X)$. Then

$$
\sigma_{\mathrm{lD}}(T)=\sigma_{\mathrm{UBF}}(T) \cup \mathcal{S}(T)=\sigma_{\mathrm{SBF}_{+}^{-}}(T) \cup \mathcal{S}(T)
$$

Proof. Let $\lambda \notin \sigma_{\mathrm{lD}}(T)$, without loss of generality we assume that $\lambda=0$. Then $R\left(T^{a(T)+1}\right)$ is closed. Hence $R\left(T^{a(T)}\right)$ is closed by [21, Lemma 12]. We shall prove that $T_{[a(T)]}$ is upper semi-Fredholm. Let $x \in N\left(T_{[a(T)]}\right)$ then $x \in N(T) \cap$ $R\left(T^{a(T)}\right)$. Hence $x=T^{a(T)} y$ for some $y \in X$. Then $0=T x=T^{a(T)+1} y$. Thus
$y \in N\left(T^{a(T)+1}\right)=N\left(T^{a(T)}\right)$. Therefore $x=0$ and hence $T_{[a(T-\lambda I)]}$ is injective. On the other hand, $R\left(T_{[a(T)]}\right)=R\left(T^{a(T)+1}\right)$ is closed. Thus $T_{[a(T)]}$ is upper semiFredholm and hence $0 \notin \sigma_{\mathrm{UBF}}(T)$. Since $\mathcal{S}(T) \subseteq \sigma_{\mathrm{ID}}(T)$ we have

$$
\sigma_{\mathrm{UBF}}(T) \cup \mathcal{S}(T) \subseteq \sigma_{\mathrm{lD}}(T)
$$

Now let $0 \notin\left[\sigma_{\mathrm{UBF}}(T) \cup(\mathcal{S}(T)]\right.$, then T is an upper semi-B-Fredholm operator. Hence it follows from [7, Proposition 3.2] that there exist n such that $R\left(T^{n}\right)$ is closed and $T_{[n]}$ is semi-regular. Since T has the SVEP at 0 then $T_{[n]}$ has also the SVEP at 0 . Then from [1, Theorem 3.14], we conclude that $T_{[n]}$ is injective with closed range. Let $x \in N\left(T^{n+1}\right)$, then $T T^{n} x=0$. Hence $T^{n} x \in N(T) \cap R\left(T^{n}\right)=N\left(T_{[n]}\right)=\{0\}$. Thus $x \in N\left(T^{n}\right)$, and hence $N\left(T^{n}\right)=N\left(T^{n+1}\right)$. So T is of finite ascent and $a(T) \leqslant n$. We have $R\left(T^{n+1}\right)=R\left(T_{[n]}\right)$ is closed with $a(T)+1 \leqslant n+1$. Hence $R\left(T^{a(T)+1}\right)$ is closed by [21, Lemma 12]. Thus T is left Drazin invertible. Therefore $\sigma_{\mathrm{ID}}(T) \subseteq \sigma_{\mathrm{UBF}}(T) \cup \mathcal{S}(T)$.

From [13, Lemma 2.12] we have $\sigma_{\mathrm{SBF}_{+}^{-}}(T) \subseteq \sigma_{\mathrm{lD}}(T)$ and since $\sigma_{\mathrm{UBF}}(T) \subseteq$ $\sigma_{\mathrm{SBF}_{+}^{-}}(T)$ we infer $\sigma_{\mathrm{lD}}(T)=\sigma_{\mathrm{UBF}}(T) \cup \mathcal{S}(\stackrel{+}{T})=\sigma_{\mathrm{SBF}_{+}^{-}}(T) \cup \mathcal{S}(T)$.

A useful consequence of the preceding result is that under the assumption of the SVEP for T, the spectra $\sigma_{\mathrm{lD}}(T), \sigma_{\mathrm{UBF}}(T)$ and $\sigma_{\mathrm{SBF}_{+}^{-}}(T)$ are equal.

Corollary 2.1. If $T \in \mathcal{B}(X)$ has the SVEP then

$$
\sigma_{\mathrm{lD}}(T)=\sigma_{\mathrm{UBF}}(T)=\sigma_{\mathrm{SBF}_{+}^{-}}(T)
$$

By duality we get a similar result for the right Drazin spectrum.
Theorem 2.2. Let $T \in \mathcal{B}(X)$. Then

$$
\sigma_{\mathrm{rD}}(T)=\sigma_{\mathrm{LBF}}(T) \cup \mathcal{S}\left(T^{*}\right)=\sigma_{\mathrm{SBF}_{-}^{+}}(T) \cup \mathcal{S}\left(T^{*}\right)
$$

Proof. Since $\sigma_{\mathrm{LBF}}(T)=\sigma_{\mathrm{UBF}}\left(T^{*}\right), \sigma_{\mathrm{SBF}_{-}^{+}}(T)=\sigma_{\mathrm{SBF}_{+}^{-}}\left(T^{*}\right)$ and $\sigma_{\mathrm{rD}}(T)=$ $\sigma_{\mathrm{lD}}\left(T^{*}\right)$ the assertion follows by Theorem 2.1.

Corollary 2.2. If $T^{*} \in \mathcal{B}(X)$ has the SVEP then

$$
\sigma_{\mathrm{rD}}(T)=\sigma_{\mathrm{LBF}}(T)=\sigma_{\mathrm{SBF}_{-}^{+}}(T)
$$

From Theorem 2.1 and Theorem 2.2 we get the following corollary.
Corollary 2.3. Let $T \in \mathcal{B}(X)$. Then

$$
\begin{equation*}
\sigma_{\mathrm{D}}(T)=\sigma_{\mathrm{BF}}(T) \cup\left[\mathcal{S}(T) \cup \mathcal{S}\left(T^{*}\right)\right]=\sigma_{\mathrm{BW}}(T) \cup\left[\mathcal{S}(T) \cup \mathcal{S}\left(T^{*}\right)\right] \tag{2.1}
\end{equation*}
$$

In particular if T and T^{*} have the SVEP then

$$
\sigma_{\mathrm{D}}(T)=\sigma_{\mathrm{BF}}(T)=\sigma_{\mathrm{BW}}(T)
$$

The equality in (2.1) may be refined for $\sigma_{\mathrm{D}}(T)$ and $\sigma_{\mathrm{BW}}(T)$. More precisely, we have

Theorem 2.3. Let $T \in \mathcal{B}(X)$ then

$$
\sigma_{\mathrm{D}}(T)=\sigma_{\mathrm{BW}}(T) \cup\left[\mathcal{S}(T) \cap \mathcal{S}\left(T^{*}\right)\right] .
$$

Proof. Since $\sigma_{\mathrm{BW}}(T) \cup\left(\mathcal{S}(T) \cap \mathcal{S}\left(T^{*}\right)\right) \subseteq \sigma_{\mathrm{D}}(T)$ always holds, let $\lambda \notin \sigma_{\mathrm{BW}}(T) \cup$ $\left(\mathcal{S}(T) \cap \mathcal{S}\left(T^{*}\right)\right)$. Without loss of generality we assume that $\lambda=0$. Then T is a BFredholm operator of index zero.

Case 1. If $0 \notin \mathcal{S}(T)$: Since T is a B-Fredholm operator of index zero, it follows from [8, Lemma 4.1] that there exists a Fredholm operator F of index zero and a nilpotent operator N such that $T=F \oplus N$. If $0 \notin \sigma(F)$, then F is invertible and hence T is Drazin invertible. Now assume that $0 \in \sigma(F)$. Since T has the SVEP at $0, F$ has also the SVEP at 0 . Hence it follows from [1, Theorem 3.16] that $a(F)$ is finite. F is a Fredholm operator of index zero, hence it follows from [1, Theorem 3.4] that $d(F)$ is also finite. Then $a(F)=d(F)<\infty$ which implies that 0 is a pole of F and hence an isolated point of $\sigma(F)$. Operator N is nilpotent, hence 0 is an isolated point of $\sigma(T)$. From [8, Theorem 4.2] we get $0 \notin \sigma_{D}(T)$.

Case 2. If $0 \notin \mathcal{S}\left(T^{*}\right)$, the proof goes similarly.
Corollary 2.4 ([12]). If T or T^{*} has the SVEP then

$$
\sigma_{\mathrm{D}}(T)=\sigma_{\mathrm{BW}}(T)
$$

Recall that T is a Browder operator if T is a Fredholm operator of finite ascent and descent. Let $\sigma_{\mathrm{B}}(T)$ be the Browder spectrum defined as the set of all $\lambda \in \mathbb{C}$ such that $T-\lambda I$ is not Browder. Analogously, T is a B -Browder operator if for some integer $n, R\left(T^{n}\right)$ is closed and $T_{[n]}$ is Browder. Let $\sigma_{\mathrm{BB}}(T)$ be the B-Browder spectrum. In [1, Corollary 3.53] it is proved that if T or T^{*} has the SVEP, then

$$
\sigma_{\mathrm{W}}(T)=\sigma_{\mathrm{B}}(T) .
$$

From [7, Theorem 3.6] we have $\sigma_{\mathrm{D}}(T)=\sigma_{\mathrm{BB}}(T)$, hence by Corollary 2.4, if T or T^{*} has the SVEP then

$$
\sigma_{\mathrm{BW}}(T)=\sigma_{\mathrm{BB}}(T) .
$$

Theorem 2.4. Let $T \in \mathcal{B}(X)$ and let f be an analytic function on some open neighborhood of $\sigma(T)$ which is nonconstant on any connected component of $\sigma(T)$. Then

$$
f\left(\sigma_{\mathrm{BW}}(T) \cup\left[\mathcal{S}(T) \cap \mathcal{S}\left(T^{*}\right)\right]\right)=\sigma_{\mathrm{BW}}(f(T)) \cup\left[\mathcal{S}(f(T)) \cap \mathcal{S}\left(f\left(T^{*}\right)\right)\right]
$$

Proof. According to [21] the Drazin spectrum satisfies the spectral mapping theorem for such a function f, hence the result follows at once from Theorem 2.3.

It is well known that if T has the SVEP then $f(T)$ has also the SVEP [19]. Now we retrieve the result proved in [2], [23]: $f\left(\sigma_{\mathrm{BW}}(T)\right)=\sigma_{\mathrm{BW}}(f(T))$ whenever T or T^{*} has the SVEP. Note that in [2], [23] the condition " f is nonconstant on any connected component of $\sigma(T)$ " is dropped.

3. Applications

3.1. Perturbations.

Lemma 3.1. Let $T \in \mathcal{B}(X)$. Let $N \in \mathcal{B}(X)$ be a nilpotent operator such that $T N=N T$. Then

$$
\mathcal{S}(T+N)=\mathcal{S}(T)
$$

Proof. See for instance [5, Lemma 2.1].
Lemma 3.2. Let $T \in \mathcal{B}(X)$. If $N \in \mathcal{B}(X)$ is a nilpotent operator which commutes with T then

$$
\sigma_{\mathrm{lD}}(T+N)=\sigma_{\mathrm{lD}}(T)
$$

Proof. Assume that $\lambda=0 \notin \sigma_{\mathrm{lD}}(T)$. Then $a(T)$ is finite and $R\left(T^{a(T)+1}\right)$ is closed. Let m be the nonnegative integer such that $N^{m}=0 \neq N^{m-1}$. Let $s=\max (a(T), m)$. Then

$$
\begin{aligned}
(T+N)^{2 s} & =\sum_{k=0}^{2 s}\binom{k}{2 s} T^{k} N^{2 s-k} \\
& =\binom{0}{2 s} N^{2 s}+\ldots+\binom{s}{2 s} T^{s} N^{s}+\binom{s+1}{2 s} T^{s+1} N^{s-1}+\ldots+\binom{2 s}{2 s} T^{2 s} \\
& =\binom{s+1}{2 s} T^{s+1} N^{s-1}+\ldots+\binom{2 s}{2 s} T^{2 s} \\
& =T^{s}\left[\binom{s+1}{2 s} T^{1} N^{s-1}+\ldots+\binom{2 s}{2 s} T^{s}\right]
\end{aligned}
$$

Now let $x \in N(T)^{2 s}=N(T)^{s}$ that is $(T)^{2 s} x=0$. Then it follows from the above equality that $(T+N)^{2 s} x=0$. Hence $N(T)^{2 s} \subseteq N(T+N)^{2 s}$. With the same argument for $T+N$ and $-N$ we have $N(T+N)^{2 s} \subseteq N(T)^{2 s}$. Thus $N(T)^{2 s}=N(T+N)^{2 s}$. Since $N\left(T^{s}\right)=N\left(T^{2 s}\right)=N\left(T^{2 s+1}\right)$, we get $N(T+N)^{2 s}=N(T+N)^{2 s+1}$. Therefore $T+N$ is of finite ascent. On the other hand, $R(T+N)^{2 s} \subseteq R\left(T^{s}\right)$ is closed. Hence by [21, Lemma 12] $R(T+N)^{2 s+1}$ is closed. Thus $0 \notin \sigma_{\mathrm{lD}}(T+N)$. Hence $\sigma_{\mathrm{lD}}(T+N) \subseteq$ $\sigma_{\mathrm{lD}}(T)$. With the same argument for $T+N$ and $-N$ we get $\sigma_{\mathrm{lD}}(T) \subseteq \sigma_{\mathrm{lD}}(T+N)$.

The next result follows from Theorem 2.1, Lemma 3.1 and Lemma 3.2.

Theorem 3.1. Let $T \in \mathcal{B}(X)$. Let $N \in \mathcal{B}(X)$ be a nilpotent operator which commutes with T. Then

$$
\sigma_{\mathrm{SBF}_{+}^{-}}(T+N) \cup \mathcal{S}(T)=\sigma_{\mathrm{SBF}_{+}^{-}}(T) \cup \mathcal{S}(T)
$$

The following corollary which is proved in [3] gives an affirmative answer to the question posed by Berkani-Amouch [9] in the case when T has the SVEP.

Corollary 3.1. Let $T \in \mathcal{B}(X)$ have the SVEP. Let $N \in \mathcal{B}(X)$ be a nilpotent operator which commutes with T. Then

$$
\sigma_{\mathrm{SBF}_{+}^{-}}(T+N)=\sigma_{\mathrm{SBF}_{+}^{-}}(T) .
$$

3.2. Generalized Weyl's theorem for operator matrices. Berkani [8, Theorem 4.5] has shown that every normal operator T acting on a Hilbert space H satisfies

$$
\begin{equation*}
\sigma(T) \backslash E(T)=\sigma_{\mathrm{BW}}(T), \tag{3.1}
\end{equation*}
$$

where $E(T)$ is the set of all isolated eigenvalues of T. We say that the generalized Weyl's theorem holds for T if equality (3.1) holds. This gives a generalization of the classical Weyl's theorem. Recall that $T \in \mathcal{B}(X)$ obeys Weyl's theorem if

$$
\begin{equation*}
\sigma(T) \backslash E_{0}(T)=\sigma_{\mathrm{W}}(T) \tag{3.2}
\end{equation*}
$$

where $E_{0}(T)$ denotes the set of the isolated points of $\sigma(T)$ which are eigenvalues of finite multiplicity. By [13, Theorem 3.9] the generalized Weyl's theorem implies Weyl's theorem and generally the reverse is not true.

For $A \in \mathcal{B}(X), B \in \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$ we denote by M_{C} the operator defined on $X \oplus Y$ by

$$
M_{C}=\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right] .
$$

In general the fact that the generalized Weyl's theorem holds for A and B does not imply that the generalized Weyl's theorem holds for $M_{0}=\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$. Indeed, let I_{1} and I_{2} be the identities on \mathbb{C} and l_{2}, respectively. Let S_{1} and S_{2} be defined on l_{2} by

$$
S_{1}\left(x_{1}, x_{2}, \ldots\right)=\left(0, \frac{1}{3} x_{1}, \frac{1}{3} x_{2}, \ldots\right), \quad S_{2}\left(x_{1}, x_{2}, \ldots\right)=\left(0, \frac{1}{2} x_{1}, \frac{1}{3} x_{2}, \ldots\right) .
$$

Let $T_{1}=I_{1} \oplus S_{1}, T_{2}=S_{2}-I_{2}, A=T_{1}^{2}$ and $B=T_{2}^{2}$, then from [23, Example 1] we have A and B obey the generalized Weyl's theorem but M_{0} does not obey it. It also may happen that M_{C} obeys the generalized Weyl's theorem while M_{0} does not obey it. Let A be the unilateral unweighted shift operator. For $B=A^{*}$ and $C=I-A A^{*}$, we have that M_{C} is unitary without eigenvalues. Hence M_{C} satisfies the generalized Weyl's theorem (see [10, Remark 3.5]). But $\sigma_{\mathrm{W}}\left(M_{0}\right)=\{\lambda:|\lambda|=1\}$ and $\sigma\left(M_{0}\right) \backslash E_{0}\left(M_{0}\right)=\{\lambda:|\lambda| \leqslant 1\}$. Hence M_{0} does not satisfy the Weyl's theorem and so by [13, Theorem 3.9] it does not satisfy the generalized Weyls theorem either.

A bounded linear operator T is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T.

Proposition 3.1. Let A and B be isoloids. Assume that $\sigma_{\mathrm{BW}}\left(M_{0}\right)=\sigma_{\mathrm{BW}}(A) \cup$ $\sigma_{\mathrm{BW}}(B)$. If A and B obey the generalized Weyl's theorem, then M_{0} obeys the generalized Weyl's theorem.

Proof. Since A and B are isoloids, we have

$$
E\left(M_{0}\right)=[E(A) \cap \varrho(B)] \cup[\varrho(A) \cap E(B)] \cup[E(A) \cap E(B)] .
$$

Now if A and B obey the generalized Weyl's theorem, then

$$
\begin{aligned}
E\left(M_{0}\right) & =[\sigma(A) \cup \sigma(B)] \backslash\left[\sigma_{\mathrm{BW}}(A) \cup \sigma_{\mathrm{BW}}(B)\right] \\
& =\sigma\left(M_{0}\right) \backslash \sigma_{\mathrm{BW}}\left(M_{0}\right) .
\end{aligned}
$$

Then M_{0} obeys the generalized Weyl's theorem.
Lemma 3.3. Let $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y)$ have the SVEP. Then

$$
\sigma_{\mathrm{BW}}\left(M_{C}\right)=\sigma_{\mathrm{BW}}(A) \cup \sigma_{\mathrm{BW}}(B)
$$

for all $C \in \mathcal{B}(Y, X)$.
Proof. Since A and B have the SVEP, then it follows from [17, Proposition 3.1] that M_{C} also has the SVEP. Hence $\sigma_{\mathrm{BW}}\left(M_{C}\right)=\sigma_{\mathrm{D}}\left(M_{C}\right)$ by Corollary 2.4. Also since A and B have the SVEP, it follows from [24, Corollary 2.1] that $\sigma_{\mathrm{D}}\left(M_{C}\right)=$ $\sigma_{\mathrm{D}}(A) \cup \sigma_{\mathrm{D}}(B)$. Therefore $\sigma_{\mathrm{BW}}\left(M_{C}\right)=\sigma_{\mathrm{BW}}(A) \cup \sigma_{\mathrm{BW}}(B)$ by Corollary 2.4.

Theorem 3.2. Let A and B be isoloids with the SVEP. If A and B obey the generalized Weyl's theorem, then M_{C} obeys the generalized Weyl's theorem for every $C \in \mathcal{B}(Y, X)$.

Proof. It follows from Proposition 3.1 and Lemma 3.3 that

$$
E\left(M_{0}\right)=\sigma\left(M_{0}\right) \backslash \sigma_{\mathrm{BW}}\left(M_{0}\right)=\sigma\left(M_{C}\right) \backslash \sigma_{\mathrm{BW}}\left(M_{C}\right)
$$

Hence it is enough to show that $E\left(M_{0}\right)=E\left(M_{C}\right)$. Let $\lambda \in E\left(M_{C}\right)$. Then $\lambda \in$ $\sigma_{\mathrm{p}}\left(M_{C}\right) \subseteq \sigma_{\mathrm{p}}(A) \cup \sigma_{\mathrm{p}}(B)$. Hence $\lambda \in \sigma_{\mathrm{p}}\left(M_{0}\right)$. Since $\lambda \in$ iso $\sigma\left(M_{C}\right)=$ iso $\sigma\left(M_{0}\right)$ we have $\lambda \in E\left(M_{0}\right)$. Now let $\lambda \in E\left(M_{0}\right)$. If $\lambda \in \sigma(A)$ then $\lambda \in$ iso $\sigma(A)$. Since A is an isoloid, we have $\lambda \in \sigma_{\mathrm{p}}(A) \subseteq \sigma_{\mathrm{p}}\left(M_{C}\right)$. Hence $\lambda \in E\left(M_{C}\right)$. If $\lambda \in \sigma(B) \backslash \sigma(A)$, then $\lambda \in \sigma_{\mathrm{p}}(B)$. Since A is invertible, we conclude that $\lambda \in \sigma_{\mathrm{p}}\left(M_{C}\right)$. Thus $\lambda \in E\left(M_{C}\right)$. Therefore $E\left(M_{0}\right)=E\left(M_{C}\right)$.

Let $\pi(T)$ be the set of all poles of the resolvent of T. Recall from [14] that T is a polaroid if iso $\sigma(T) \subseteq \pi(T)$. Since $\pi(T) \subseteq E(T)$ holds without restriction on T, then if T is a polaroid then $E(T)=\pi(T)$.

Corollary 3.2. Let A and B be polaroids with the SVEP. Then M_{C} obeys the generalized Weyl's theorem for every $C \in \mathcal{B}(Y, X)$.

Proof. $\quad A$ and B are polaroids hence $E(A)=\pi(A)$ and $E(B)=\pi(B)$. Since A and B have the SVEP, we have by [4] that A and B satisfy the generalized Weyl's theorem. Hence we complete the proof by Theorem 3.2.
3.3. Multipliers on a commutative Banach algebra. Let \mathcal{A} be a semi-simple commutative Banach algebra. A mapping $T: \mathcal{A} \longrightarrow \mathcal{A}$ is called a multiplier if

$$
T(x) y=x T(y) \quad \text { for all } x, y \in \mathcal{A}
$$

By semi-simplicity of \mathcal{A}, every multiplier is a bounded linear operator on \mathcal{A}. Also the semi-simplicity of \mathcal{A} implies that every multiplier has the SVEP (see [1], [19]).

By [1, Theorem 4.36], for every multiplier T on a semi-simple commutative Banach algebra $\mathcal{A}, E(T)=\pi(T)$ and since T has the SVEP we get from [4]

Proposition 3.2. Every multiplier on a semi-simple commutative Banach algebra \mathcal{A} obeys the generalized Weyl's theorem.

Proposition 3.3 ([11]). Let T be a multiplier on a semi-simple commutative Banach algebra \mathcal{A}. Then the following assertions are equivalent:
i) T is B-Fredholm of index zero.
ii) T is Drazin invertible.

Now if we assume in addition that \mathcal{A} is regular and Tauberian (see [19] for definition) then every multiplier T has the weak decomposition property (δ_{w}) and then T^{*} has also the SVEP (see [22] for definition and details). Hence we get from Corollary 2.3

Proposition 3.4. Let T be a multiplier on a semi-simple regular Tauberian commutative Banach algebra \mathcal{A}. Then the following assertions are equivalent:
i) T is B-Fredholm.
ii) T is Drazin invertible.

For G a locally compact abelian group, let $L^{1}(G)$ be the space of \mathbb{C}-valued functions on G integrable with respect to Haar measure and $M(G)$ the Banach algebra of regular complex Borel measures on G. We recall that $L^{1}(G)$ is a regular semi-simple Tauberian commutative Banach algebra. Then we have

Corollary 3.3. Let G be a locally compact abelian group, $\mu \in M(G)$ and $X=$ $L^{1}(G)$. Then every convolution operator $T_{\mu}: X \longrightarrow X, T_{\mu}(k)=\mu \star k$ is B-Fredholm if and only if it is Drazin invertible.

Acknowledgement. The authors are indebted to the referee for several helpful remarks and suggestions.

References

[1] P. Aiena: Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht, 2004.
[2] M. Amouch: Weyl type theorems for operators satisfying the single-valued extension property. J. Math. Anal. Appl. 326 (2007), 1476-1484.
[3] M. Amouch: Polaroid operators with SVEP and perturbations of property ($g w$). Mediterr. J. Math. 6 (2009), 461-470.
[4] M. Amouch, H. Zguitti: On the equivalence of Browder's and generalized Browder's theorem. Glasg. Math. J. 48 (2006), 179-185.
[5] C. Benhida, E. H. Zerouali, H. Zguitti: Spectral properties of upper triangular block operators. Acta Sci. Math. (Szeged) 71 (2005), 681-690.
[6] M. Berkani: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249.
[7] M. Berkani: Restriction of an operator to the range of its powers. Stud. Math. 140 (2000), 163-175.
zbl
[8] M. Berkani: Index of Fredholm operators and generalization of a Weyl theorem. Proc. Am. Math. Soc. 130 (2002), 1717-1723.
zbl
[9] M. Berkani, M. Amouch: Preservation of property ($g w$) under perturbations. Acta Sci. Math. (Szeged) 74 (2008), 769-781.
zbl
[10] M. Berkani, A. Arroud: Generalized Weyl's theorem and hyponormal operators. J. Aust. Math. Soc. 76 (2004), 291-302.
[11] M. Berkani, A. Arroud: B-Fredholm and spectral properties for multipliers in Banach algebras. Rend. Circ. Mat. Palermo 55 (2006), 385-397.
zbl
[12] M. Berkani, N. Castro, S. V. Djordjević: Single valued extension property and generalized Weyl's theorem. Math. Bohem. 131 (2006), 29-38.
zbl
[13] M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (2003), 359-376.
zbl
[14] B. P. Duggal, R. Harte, I. H. Jeon: Polaroid operators and Weyl's theorem. Proc. Am. Math. Soc. 132 (2004), 1345-1349.
zbl
[15] J. K. Finch: The single valued extension property on a Banach space. Pacific J. Math. 58 (1975), 61-69.
zbl
[16] H. G. Heuser: Functional Analysis. John Wiley, Chichester, 1982.
zbl
[17] M. Houimdi, H. Zguitti: Propriétés spectrales locales d'une matrice carrée des opérateurs. Acta Math. Vietnam. 25 (2000), 137-144.
[18] K. B. Laursen: Operators with finite ascent. Pacific J. Math. 152 (1992), 323-336.
[19] K. B. Laursen, M. M. Neumann: An Introduction to Local Spectral Theory. Clarendon, Oxford, 2000.
zbl
[20] D. C. Lay: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184 (1970), 197-214.
[21] M. Mbekhta, V. Müller: Axiomatic theory of spectrum II. Stud. Math. 119 (1996), 129-147.
zbl
[22] E. H. Zerouali, H. Zguitti: On the weak decomposition property (δ_{w}). Stud. Math. 167 (2005), 17-28.
zbl
[23] H. Zguitti: A note on generalized Weyl's theorem. J. Math. Anal. Appl. 316 (2006), 373-381.
zbl
[24] H. Zguitti: On the Drazin inverse for upper triangular operator matrices. Bull. Math. Anal. Appl. 2 (2010), 27-33.

Authors' addresses: M. Amouch, Departement de Mathematiques, Faculte des Sciences Semlalia, B. P: 2390 Marrakech, Morocco, e-mail: m.amouch@ucam.ac.ma; H. Zguitti, Departement de Mathematiques et Informatique, Faculte Pluridisciplinaire de Nador, B. P: 300 Selouane, 62700 Nador, Morocco, e-mail: zguitti@hotmail.com.

