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Abstract. Let X be a Banach space and T be a bounded linear operator on X. We
denote by S(T ) the set of all complex λ ∈ C such that T does not have the single-valued
extension property at λ. In this note we prove equality up to S(T ) between the left Drazin
spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point
spectrum. As applications, we investigate generalized Weyl’s theorem for operator matrices
and multiplier operators.
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1. Introduction

Throughout this paper, X and Y are Banach spaces and B(X, Y ) denotes the space

of all bounded linear operators from X to Y . For Y = X we write B(X, Y ) = B(X).

For T ∈ B(X), let T ∗, N(T ), R(T ), σ(T ), σs(T ), σp(T ) and σa(T ) denote the adjoint,

the null space, the range, the spectrum, the surjective spectrum, the point spectrum

and the approximate point spectrum of T , respectively. Let α(T ) and β(T ) be the

nullity and the deficiency of T defined by α(T ) = dimN(T ) and β(T ) = codimR(T ).

If the range R(T ) is closed and α(T ) < ∞ (or β(T ) < ∞), then T is called an upper

(a lower) semi-Fredholm operator. If T ∈ B(X) is either upper or lower semi-

Fredholm, then T is called a semi-Fredholm operator, and the index of T is defined

by ind(T ) = α(T ) − β(T ). If both α(T ) and β(T ) are finite, then T is called a

Fredholm operator. An operator T is called Weyl if it is Fredholm of index zero.

The Weyl spectrum σW(T ) is defined by σW(T ) = {λ ∈ C : T − λI is not Weyl}.

For T ∈ B(X) and a nonnegative integer n define T[n] to be the restriction of T to

R(T n) viewed as a map from R(T n) into R(T n) (in particular T[0] = T ). If for some
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integer n the range space R(T n) is closed and T[n] is an upper (or a lower) semi-

Fredholm operator, then T is called an upper (a lower) semi-B-Fredholm operator. In

this case the index of T is defined to be the index of the semi-Fredholm operator T[n].

Moreover, if T[n] is a Fredholm operator, then T is called a B-Fredholm operator. A

semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator ([6], [8],

[13]). The upper semi-B-Fredholm spectrum σUBF(T ), the lower semi-B-Fredholm

spectrum σLBF(T ) and the B-Fredholm spectrum σBF(T ) of T are defined by

σUBF(T ) = {λ ∈ C : T − λI is not an upper semi-B-Fredholm operator},

σLBF(T ) = {λ ∈ C : T − λI is not a lower semi-B-Fredholm operator},

σBF(T ) = {λ ∈ C : T − λI is not a B-Fredholm operator}.

We have

σBF(T ) = σUBF(T ) ∪ σLBF(T ).

An operator T ∈ B(X) is said to be a B-Weyl operator if it is a B-Fredholm

operator of index zero. The B-Weyl spectrum σBW(T ) of T is defined by

σBW(T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

From [8, Lemma 4.1], T is a B-Weyl operator if and only if T = F ⊕ N , where F is

a Fredholm operator of index zero and N is a nilpotent operator.

We shall denote by SBF−

+(X) (or SBF+
−

(X)) the class of all T upper semi-B-

Fredholm operators (T lower semi-B-Fredholm operators) such that ind(T ) 6 0

(ind(T ) > 0). The spectrum associated with SBF−

+(X) is called the semi-essential

approximate point spectrum and is denoted by σSBF−

+

(T ) = {λ ∈ C : T − λI /∈

SBF−

+(X)}, while the spectrum associated with SBF+
−

(X) is denoted by σSBF+

−

(T ) =

{λ ∈ C : T − λI /∈ SBF+
−

(X)}.

The ascent a(T ) and the descent d(T ) of T are given by a(T ) = inf{n : N(T n) =

N(T n+1)} and d(T ) = inf{n : R(T n) = R(T n+1)}, with inf ∅ = ∞. It is well-known

that if a(T ) and d(T ) are both finite then they are equal, see [16, Proposition 38.3].

Recall that an operator T is Drazin invertible if it has a finite ascent and descent.

It is well known that T is Drazin invertible if and only if T = R ⊕ N where R

is invertible and N is nilpotent (see [20, Corollary 2.2]). The Drazin spectrum is

defined by σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}. From [8, Lemma 4.1]

and [20, Corollary 2.2] we have

σBW(T ) ⊆ σD(T ).
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Define the set LD(X) as

LD(X) = {T ∈ B(X) : a(T ) < ∞ and R(T a(T )+1) is closed}.

From [21], LD(X) is a regularity and it is the dual version of the regularity RD(X) =

{T ∈ B(X) : d(T ) < ∞ and R(T d(T )) is closed}. An operator T ∈ B(X) is said to

be left (or right) Drazin invertible if T ∈ LD(X) (T ∈ RD(X)). The left Drazin

spectrum σlD(T ) and the right Drazin spectrum σrD(T ) are defined by σlD(T ) =

{λ ∈ C : T − λI /∈ LD(X)} and σrD(T ) = {λ ∈ C : T − λI /∈ RD(X)}. It is not

difficult to see that

σD(T ) = σlD(T ) ∪ σrD(T ).

2. Preliminary results

An operator T ∈ B(X) has the single-valued extension property at λ0 ∈ C (the

SVEP for short) if for every open disc Dλ0
centered at λ0, the only analytic function

f : Dλ0
−→ X which satisfies (T −λI)f(λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0.

Trivially, every operator T has the SVEP at all points of the resolvent; also T has

the SVEP at λ ∈ isoσ(T ) (isoσ(T ) is the set of all isolated points of σ(T )). We say

that T has SVEP if it has SVEP at every λ ∈ C, [15]. We denote by S(T ) the set

of all λ ∈ C such that T does not have the single-valued extension property at λ.

Note that (see [15], [19]) S(T ) ⊆ σp(T ) and σ(T ) = S(T )∪σs(T ). In particular, if T

(or T ∗) has the SVEP then σ(T ) = σs(T ) (σ(T ) = σa(T )).

Recall that if T −λI has a finite ascent then it has the SVEP ([18]). Thus we have

S(T ) ⊆ σlD(T ) and S(T ∗) ⊆ σrD(T ).

In the following theorem, we prove equality up to S(T ) between the left Drazin

spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate

point spectrum.

Theorem 2.1. Let T ∈ B(X). Then

σlD(T ) = σUBF(T ) ∪ S(T ) = σSBF−

+

(T ) ∪ S(T ).

P r o o f. Let λ /∈ σlD(T ), without loss of generality we assume that λ = 0.

Then R(T a(T )+1) is closed. Hence R(T a(T )) is closed by [21, Lemma 12]. We shall

prove that T[a(T )] is upper semi-Fredholm. Let x ∈ N(T[a(T )]) then x ∈ N(T ) ∩

R(T a(T )). Hence x = T a(T )y for some y ∈ X . Then 0 = Tx = T a(T )+1y. Thus
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y ∈ N(T a(T )+1) = N(T a(T )). Therefore x = 0 and hence T[a(T−λI)] is injective.

On the other hand, R(T[a(T )]) = R(T a(T )+1) is closed. Thus T[a(T )] is upper semi-

Fredholm and hence 0 /∈ σUBF(T ). Since S(T ) ⊆ σlD(T ) we have

σUBF(T ) ∪ S(T ) ⊆ σlD(T ).

Now let 0 /∈ [σUBF(T )∪(S(T )], then T is an upper semi-B-Fredholm operator. Hence

it follows from [7, Proposition 3.2] that there exist n such that R(T n) is closed and

T[n] is semi-regular. Since T has the SVEP at 0 then T[n] has also the SVEP at 0.

Then from [1, Theorem 3.14], we conclude that T[n] is injective with closed range.

Let x ∈ N(T n+1), then TT nx = 0. Hence T nx ∈ N(T ) ∩ R(T n) = N(T[n]) = {0}.

Thus x ∈ N(T n) , and hence N(T n) = N(T n+1). So T is of finite ascent and

a(T ) 6 n. We have R(T n+1) = R(T[n]) is closed with a(T ) + 1 6 n + 1. Hence

R(T a(T )+1) is closed by [21, Lemma 12]. Thus T is left Drazin invertible. Therefore

σlD(T ) ⊆ σUBF(T ) ∪ S(T ).

From [13, Lemma 2.12] we have σSBF−

+

(T ) ⊆ σlD(T ) and since σUBF(T ) ⊆

σSBF−

+

(T ) we infer σlD(T ) = σUBF(T ) ∪ S(T ) = σSBF−

+

(T ) ∪ S(T ). �

A useful consequence of the preceding result is that under the assumption of the

SVEP for T , the spectra σlD(T ), σUBF(T ) and σSBF−

+

(T ) are equal.

Corollary 2.1. If T ∈ B(X) has the SVEP then

σlD(T ) = σUBF(T ) = σSBF−

+

(T ).

By duality we get a similar result for the right Drazin spectrum.

Theorem 2.2. Let T ∈ B(X). Then

σrD(T ) = σLBF(T ) ∪ S(T ∗) = σSBF+

−

(T ) ∪ S(T ∗).

P r o o f. Since σLBF(T ) = σUBF(T ∗), σSBF+

−

(T ) = σSBF−

+

(T ∗) and σrD(T ) =

σlD(T ∗) the assertion follows by Theorem 2.1. �

Corollary 2.2. If T ∗ ∈ B(X) has the SVEP then

σrD(T ) = σLBF(T ) = σSBF+

−

(T ).

From Theorem 2.1 and Theorem 2.2 we get the following corollary.

Corollary 2.3. Let T ∈ B(X). Then

(2.1) σD(T ) = σBF(T ) ∪ [S(T ) ∪ S(T ∗)] = σBW(T ) ∪ [S(T ) ∪ S(T ∗)].
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In particular if T and T ∗ have the SVEP then

σD(T ) = σBF(T ) = σBW(T ).

The equality in (2.1) may be refined for σD(T ) and σBW(T ). More precisely, we

have

Theorem 2.3. Let T ∈ B(X) then

σD(T ) = σBW(T ) ∪ [S(T ) ∩ S(T ∗)].

P r o o f. Since σBW(T )∪(S(T )∩S(T ∗)) ⊆ σD(T ) always holds, let λ /∈ σBW(T )∪

(S(T ) ∩ S(T ∗)). Without loss of generality we assume that λ = 0. Then T is a B-

Fredholm operator of index zero.

C a s e 1. If 0 /∈ S(T ): Since T is a B-Fredholm operator of index zero, it follows

from [8, Lemma 4.1] that there exists a Fredholm operator F of index zero and

a nilpotent operator N such that T = F ⊕ N . If 0 /∈ σ(F ), then F is invertible and

hence T is Drazin invertible. Now assume that 0 ∈ σ(F ). Since T has the SVEP

at 0, F has also the SVEP at 0. Hence it follows from [1, Theorem 3.16] that a(F )

is finite. F is a Fredholm operator of index zero, hence it follows from [1, Theorem

3.4] that d(F ) is also finite. Then a(F ) = d(F ) < ∞ which implies that 0 is a pole

of F and hence an isolated point of σ(F ). Operator N is nilpotent, hence 0 is an

isolated point of σ(T ). From [8, Theorem 4.2] we get 0 /∈ σD(T ).

C a s e 2. If 0 /∈ S(T ∗), the proof goes similarly. �

Corollary 2.4 ([12]). If T or T ∗ has the SVEP then

σD(T ) = σBW(T ).

Recall that T is a Browder operator if T is a Fredholm operator of finite ascent

and descent. Let σB(T ) be the Browder spectrum defined as the set of all λ ∈ C

such that T − λI is not Browder. Analogously, T is a B-Browder operator if for

some integer n, R(T n) is closed and T[n] is Browder. Let σBB(T ) be the B-Browder

spectrum. In [1, Corollary 3.53] it is proved that if T or T ∗ has the SVEP, then

σW(T ) = σB(T ).

From [7, Theorem 3.6] we have σD(T ) = σBB(T ), hence by Corollary 2.4, if T or T ∗

has the SVEP then

σBW(T ) = σBB(T ).
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Theorem 2.4. Let T ∈ B(X) and let f be an analytic function on some open

neighborhood of σ(T ) which is nonconstant on any connected component of σ(T ).

Then

f(σBW(T ) ∪ [S(T ) ∩ S(T ∗)]) = σBW(f(T )) ∪ [S(f(T )) ∩ S(f(T ∗))].

P r o o f. According to [21] the Drazin spectrum satisfies the spectral mapping

theorem for such a function f , hence the result follows at once from Theorem 2.3. �

It is well known that if T has the SVEP then f(T ) has also the SVEP [19]. Now

we retrieve the result proved in [2], [23]: f(σBW(T )) = σBW(f(T )) whenever T or

T ∗ has the SVEP. Note that in [2], [23] the condition “f is nonconstant on any

connected component of σ(T )” is dropped.

3. Applications

3.1. Perturbations.

Lemma 3.1. Let T ∈ B(X). Let N ∈ B(X) be a nilpotent operator such that

TN = NT . Then

S(T + N) = S(T ).

P r o o f. See for instance [5, Lemma 2.1]. �

Lemma 3.2. Let T ∈ B(X). IfN ∈ B(X) is a nilpotent operator which commutes

with T then

σlD(T + N) = σlD(T ).

P r o o f. Assume that λ = 0 /∈ σlD(T ). Then a(T ) is finite and R(T a(T )+1)

is closed. Let m be the nonnegative integer such that Nm = 0 6= Nm−1. Let

s = max(a(T ), m). Then

(T + N)2s =

2s
∑

k=0

(

k

2s

)

T kN2s−k

=

(

0

2s

)

N2s + . . . +

(

s

2s

)

T sNs +

(

s + 1

2s

)

T s+1Ns−1 + . . . +

(

2s

2s

)

T 2s

=

(

s + 1

2s

)

T s+1Ns−1 + . . . +

(

2s

2s

)

T 2s

= T s

[(

s + 1

2s

)

T 1Ns−1 + . . . +

(

2s

2s

)

T s

]

.
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Now let x ∈ N(T )2s = N(T )s that is (T )2sx = 0. Then it follows from the above

equality that (T+N)2sx = 0. HenceN(T )2s ⊆ N(T+N)2s. With the same argument

for T + N and −N we have N(T + N)2s ⊆ N(T )2s. Thus N(T )2s = N(T + N)2s.

Since N(T s) = N(T 2s) = N(T 2s+1), we get N(T +N)2s = N(T +N)2s+1. Therefore

T +N is of finite ascent. On the other hand, R(T +N)2s ⊆ R(T s) is closed. Hence by

[21, Lemma 12] R(T + N)2s+1 is closed. Thus 0 /∈ σlD(T + N). Hence σlD(T + N) ⊆

σlD(T ). With the same argument for T + N and −N we get σlD(T ) ⊆ σlD(T + N).

�

The next result follows from Theorem 2.1, Lemma 3.1 and Lemma 3.2.

Theorem 3.1. Let T ∈ B(X). Let N ∈ B(X) be a nilpotent operator which

commutes with T . Then

σSBF−

+

(T + N) ∪ S(T ) = σSBF−

+

(T ) ∪ S(T ).

The following corollary which is proved in [3] gives an affirmative answer to the

question posed by Berkani-Amouch [9] in the case when T has the SVEP.

Corollary 3.1. Let T ∈ B(X) have the SVEP. Let N ∈ B(X) be a nilpotent

operator which commutes with T . Then

σSBF−

+

(T + N) = σSBF−

+

(T ).

3.2. Generalized Weyl’s theorem for operator matrices. Berkani [8, The-

orem 4.5] has shown that every normal operator T acting on a Hilbert space H

satisfies

(3.1) σ(T ) \ E(T ) = σBW(T ),

where E(T ) is the set of all isolated eigenvalues of T . We say that the generalized

Weyl’s theorem holds for T if equality (3.1) holds. This gives a generalization of the

classical Weyl’s theorem. Recall that T ∈ B(X) obeys Weyl’s theorem if

(3.2) σ(T ) \ E0(T ) = σW(T )

where E0(T ) denotes the set of the isolated points of σ(T ) which are eigenvalues

of finite multiplicity. By [13, Theorem 3.9] the generalized Weyl’s theorem implies

Weyl’s theorem and generally the reverse is not true.

For A ∈ B(X), B ∈ B(Y ) and C ∈ B(Y, X) we denote byMC the operator defined

on X ⊕ Y by

MC =

[

A C

0 B

]

.
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In general the fact that the generalized Weyl’s theorem holds for A and B does

not imply that the generalized Weyl’s theorem holds for M0 =
[

A 0

0 B

]

. Indeed, let I1

and I2 be the identities on C and l2, respectively. Let S1 and S2 be defined on l2 by

S1(x1, x2, . . .) = (0, 1
3x1,

1
3x2, . . .), S2(x1, x2, . . .) = (0, 1

2x1,
1
3x2, . . .).

Let T1 = I1 ⊕ S1, T2 = S2 − I2, A = T 2
1 and B = T 2

2 , then from [23, Example 1]

we have A and B obey the generalized Weyl’s theorem but M0 does not obey it.

It also may happen that MC obeys the generalized Weyl’s theorem while M0 does

not obey it. Let A be the unilateral unweighted shift operator. For B = A∗ and

C = I − AA∗, we have that MC is unitary without eigenvalues. Hence MC satisfies

the generalized Weyl’s theorem (see [10, Remark 3.5]). But σW(M0) = {λ : |λ| = 1}

and σ(M0) \E0(M0) = {λ : |λ| 6 1}. Hence M0 does not satisfy the Weyl’s theorem

and so by [13, Theorem 3.9] it does not satisfy the generalized Weyls theorem either.

A bounded linear operator T is said to be isoloid if every isolated point of σ(T )

is an eigenvalue of T .

Proposition 3.1. Let A and B be isoloids. Assume that σBW(M0) = σBW(A) ∪

σBW(B). If A and B obey the generalized Weyl’s theorem, then M0 obeys the

generalized Weyl’s theorem.

P r o o f. Since A and B are isoloids, we have

E(M0) = [E(A) ∩ ̺(B)] ∪ [̺(A) ∩ E(B)] ∪ [E(A) ∩ E(B)].

Now if A and B obey the generalized Weyl’s theorem, then

E(M0) = [σ(A) ∪ σ(B)] \ [σBW(A) ∪ σBW(B)]

= σ(M0) \ σBW(M0).

Then M0 obeys the generalized Weyl’s theorem. �

Lemma 3.3. Let A ∈ B(X) and B ∈ B(Y ) have the SVEP. Then

σBW(MC) = σBW(A) ∪ σBW(B)

for all C ∈ B(Y, X).

P r o o f. Since A and B have the SVEP, then it follows from [17, Proposition 3.1]

that MC also has the SVEP. Hence σBW(MC) = σD(MC) by Corollary 2.4. Also

since A and B have the SVEP, it follows from [24, Corollary 2.1] that σD(MC) =

σD(A) ∪ σD(B). Therefore σBW(MC) = σBW(A) ∪ σBW(B) by Corollary 2.4. �
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Theorem 3.2. Let A and B be isoloids with the SVEP. If A and B obey the

generalized Weyl’s theorem, thenMC obeys the generalized Weyl’s theorem for every

C ∈ B(Y, X).

P r o o f. It follows from Proposition 3.1 and Lemma 3.3 that

E(M0) = σ(M0) \ σBW(M0) = σ(MC) \ σBW(MC).

Hence it is enough to show that E(M0) = E(MC). Let λ ∈ E(MC). Then λ ∈

σp(MC) ⊆ σp(A) ∪ σp(B). Hence λ ∈ σp(M0). Since λ ∈ isoσ(MC) = isoσ(M0) we

have λ ∈ E(M0). Now let λ ∈ E(M0). If λ ∈ σ(A) then λ ∈ iso σ(A). Since A is an

isoloid, we have λ ∈ σp(A) ⊆ σp(MC). Hence λ ∈ E(MC). If λ ∈ σ(B) \ σ(A), then

λ ∈ σp(B). Since A is invertible, we conclude that λ ∈ σp(MC). Thus λ ∈ E(MC).

Therefore E(M0) = E(MC). �

Let π(T ) be the set of all poles of the resolvent of T . Recall from [14] that T is a

polaroid if isoσ(T ) ⊆ π(T ). Since π(T ) ⊆ E(T ) holds without restriction on T , then

if T is a polaroid then E(T ) = π(T ).

Corollary 3.2. Let A and B be polaroids with the SVEP. Then MC obeys the

generalized Weyl’s theorem for every C ∈ B(Y, X).

P r o o f. A and B are polaroids hence E(A) = π(A) and E(B) = π(B). Since A

and B have the SVEP, we have by [4] that A and B satisfy the generalized Weyl’s

theorem. Hence we complete the proof by Theorem 3.2. �

3.3. Multipliers on a commutative Banach algebra. Let A be a semi-simple

commutative Banach algebra. A mapping T : A −→ A is called a multiplier if

T (x)y = xT (y) for all x, y ∈ A.

By semi-simplicity of A, every multiplier is a bounded linear operator on A. Also

the semi-simplicity of A implies that every multiplier has the SVEP (see [1], [19]).

By [1, Theorem 4.36], for every multiplier T on a semi-simple commutative Banach

algebra A, E(T ) = π(T ) and since T has the SVEP we get from [4]

Proposition 3.2. Every multiplier on a semi-simple commutative Banach algebra

A obeys the generalized Weyl’s theorem.
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From Corollary 2.4 we have

Proposition 3.3 ([11]). Let T be a multiplier on a semi-simple commutative

Banach algebra A. Then the following assertions are equivalent:

i) T is B-Fredholm of index zero.

ii) T is Drazin invertible.

Now if we assume in addition that A is regular and Tauberian (see [19] for defi-

nition) then every multiplier T has the weak decomposition property (δw) and then

T ∗ has also the SVEP (see [22] for definition and details). Hence we get from Corol-

lary 2.3

Proposition 3.4. Let T be a multiplier on a semi-simple regular Tauberian com-

mutative Banach algebra A. Then the following assertions are equivalent:

i) T is B-Fredholm.

ii) T is Drazin invertible.

For G a locally compact abelian group, let L1(G) be the space of C-valued func-

tions on G integrable with respect to Haar measure andM(G) the Banach algebra of

regular complex Borel measures on G. We recall that L1(G) is a regular semi-simple

Tauberian commutative Banach algebra. Then we have

Corollary 3.3. Let G be a locally compact abelian group, µ ∈ M(G) and X =

L1(G). Then every convolution operator Tµ : X −→ X , Tµ(k) = µ⋆k is B-Fredholm

if and only if it is Drazin invertible.

A c k n ow l e d g em e n t. The authors are indebted to the referee for several help-

ful remarks and suggestions.
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[12] M. Berkani, N. Castro, S. V. Djordjević: Single valued extension property and general-
ized Weyl’s theorem. Math. Bohem. 131 (2006), 29–38. zbl

[13] M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators. Acta Sci.
Math. (Szeged) 69 (2003), 359–376. zbl

[14] B.P. Duggal, R. Harte, I.H. Jeon: Polaroid operators and Weyl’s theorem. Proc. Am.
Math. Soc. 132 (2004), 1345–1349. zbl

[15] J.K. Finch: The single valued extension property on a Banach space. Pacific J. Math.
58 (1975), 61–69. zbl

[16] H.G. Heuser: Functional Analysis. John Wiley, Chichester, 1982. zbl
[17] M. Houimdi, H. Zguitti: Propriétés spectrales locales d’une matrice carrée des opéra-

teurs. Acta Math. Vietnam. 25 (2000), 137–144. zbl
[18] K.B. Laursen: Operators with finite ascent. Pacific J. Math. 152 (1992), 323–336. zbl
[19] K.B. Laursen, M.M. Neumann: An Introduction to Local Spectral Theory. Clarendon,

Oxford, 2000. zbl
[20] D.C. Lay: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184

(1970), 197–214. zbl
[21] M. Mbekhta, V. Müller: Axiomatic theory of spectrum II. Stud. Math. 119 (1996),

129–147. zbl
[22] E.H. Zerouali, H. Zguitti: On the weak decomposition property (δw). Stud. Math. 167

(2005), 17–28. zbl
[23] H. Zguitti: A note on generalized Weyl’s theorem. J. Math. Anal. Appl. 316 (2006),

373–381. zbl
[24] H. Zguitti: On the Drazin inverse for upper triangular operator matrices. Bull. Math.

Anal. Appl. 2 (2010), 27–33.

Authors’ addresses: M. Amouch, Departement de Mathematiques, Faculte des Sciences
Semlalia, B. P: 2390 Marrakech, Morocco, e-mail: m.amouch@ucam.ac.ma; H. Zguitti, De-
partement de Mathematiques et Informatique, Faculte Pluridisciplinaire de Nador, B. P:
300 Selouane, 62700 Nador, Morocco, e-mail: zguitti@hotmail.com.

49

http://www.emis.de/MATH-item?0978.47011
http://www.emis.de/MATH-item?0996.47015
http://www.emis.de/MATH-item?pre05651808
http://www.emis.de/MATH-item?1061.47021
http://www.emis.de/MATH-item?1123.47031
http://www.emis.de/MATH-item?1114.47015
http://www.emis.de/MATH-item?1050.47014
http://www.emis.de/MATH-item?1062.47004
http://www.emis.de/MATH-item?0315.47002
http://www.emis.de/MATH-item?0465.47001
http://www.emis.de/MATH-item?0970.47003
http://www.emis.de/MATH-item?0783.47028
http://www.emis.de/MATH-item?0957.47004
http://www.emis.de/MATH-item?0177.17102
http://www.emis.de/MATH-item?0857.47002
http://www.emis.de/MATH-item?pre02159537
http://www.emis.de/MATH-item?1101.47002

