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Euler system of gas dynamics

Equation of continuity — Mass conservation

Ot + divx(ou) =0

Momentum equation — Newton’s second law

9 (ou) + divi(ou ® u) + Vip(e) = 0, p(e) = ao”

Boundary and/or far field conditions

u-njpg =0, U= Us, 0 — 0oo aS |X| = 0

Initial state

0(0,-) = 0o, ou(0,-) =mqg




Classical solutions

m Local existence. Classical solutions exist locally in time as

long as the initial data are regular and the initial density
strictly positive

m Finite time blow—up. Classical solutions develop
singularity (become discontinuous) in a finite time for a
fairly generic class of initial data

o>



jisets)
Jacques
Hadamard
1865-1963

Laurent
Schwartz
1915-2002

Weak (distributional) solutions

Mass conservation

/[(t27)_9(t17 / / ou - n dS,dt
B o8B
t=T T
{/ op dx} = / / [g@tga +m- chp] dxdt, m = pu
Q t=0 0 Q

Momentum balance

/B [m(tg, ) — m(ty, )] dx

—/ - [m®u-n+p(g)n] dS, dt

t=T1
[ / m- @ dx]
Q t=0

:/ /[m-@tcp—l— m(?m :ngo—kp(g)divxgo} dxdt
o Ja

[m] = = =



Time irreversibility — energy dissipation
Energy

E= %% + P(0), P'(0)o— P(0) = p(0)

1m? 4 p(g)if o> 0
p >0=[o,m]— P(o) if Im| =0, o >0 is convex l.s.c
oo otherwise

Energy balance (conservation)

0:E + divy (5%) + divy (p%) -0

Energy dissipation Rudolf

Clausius
1822-1888

m m
O:& + divy (5—)—|—divx< —) <10
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Wild solutions?

In a letter to Stieltjes

| turn with terror and horror from this lamentable
scourge of continuous functions with no derivatives

Charles Hermite [1822-1901]

m Past: What is not allowed is forbidden

m Present: What is not forbidden is allowed



Il posedness

Theorem [A.Abbatiello, EF 2019]

Let d = 2,3. Let go, mg be given such that
0€ER,0<0<0<0

mo € R, divimg € R, mg - n|aq = 0.

Let {7i}2; C (0, T) be an arbitrary (countable dense) set of

times.
Then the Euler problem admits infinitely many weak solutions
o, m with a strictly decreasing total energy profile such that

Anna 2y ;
Abbatiello 0 € Cueak([0, T]; L7(Q)), m € Cueax([0, T]; L¥71(; RY))
(TU Berlin)

but

t— [o(t,-), m(t,")] strongly continuous at any T




Consistent approximation

Equation of continuity

.
/ / [0n0:p + My - V] dxdt = ey n[y]
0 Q

Momentum equation

-
/ / {m,, - Orp + @ :Vep + p(gn)divxcp} dxdt = e n[¢p]
0o Ja n

Stability - bounded energy

1 |m,?
lenmn = [ [HmL 4 o] ax <1
Q On

Consistency

e1n[e] = 0, en[e] = 0as n— oo




Weak vs strong convergence

Weak convergence
(o0 — ©) = 0 weakly-(*) L™(0, T; L"(R?))

(M, — m) — 0 weakly-(*) L(0, T; L331 (R; RY))

Strong convergence (Theorem EF, M.Hofmanova)

A
i\)lartina

0, m weak solution to the Euler system Ho'fmanova
(Bielefeld)

Q=R 0 0o, m — Mg as |x| — oo

=

on — 0, M, — m strongly (pointwise) in R




Dissipative solutions — limits of numerical schemes

Equation of continuity
8,_»@ + diVXm =0

Momentum balance

. mg@m .
(9 + d X + VX — _d « mv + 9% H
Dominic Breit {{m]+div ( 0 > p(0) v ( oL)

(Edinburgh) Energy inequality

2

SE0 <0 B < B B = [ [0 4 pan] ax

/ dt ql2
2

o A E </ [lﬂ—i—P(g)} dx—i—/d}trace[%./]—i—/diﬁp)
Martina al2 ¢ a 2 a 7-1
Hofmanova Turbulent defect measures
(Bielefeld)

R, € L=(0, T; MH (4 REL)), |y € L7(0, T; MT(Q))



Basic properties of dissipative solutions

Well posedness, weak strong uniqueness
m Existence. Dissipative solutions exist globally in time for any finite
energy initial data
m Limits of consistent approximations Limits of consistent
approximations are dissipative solutions, in particular limits of
consistent numerical schemes.

m Compatibility. Any C! dissipative solution [g,m], ¢ > 0 is a classical
solution of the Euler system

m Weak—strong uniqueness. If [g,m] is a classical solution and [, m]
a dissipative solution starting from the same initial data, then
R, =R,=0and p=9, m=m.




Semiflow selection

{g,mE‘ / +P(g)dx<E}

Set of trajectories

7= {elt. ) m(t. ), E(t—.-)|t € (0.00)}

Solution set

Set of data

Andrej Markov
Ul o, mo, Eo] = {[g, m, E] ‘[g, m, E] dissipative solution (1856-1933)

0(0.2) = oo, m(0,) = mo, E(0+) < o}

Semiflow selection — semigroup

U[QO7 mp, EO] € u[907 mo, E0]7 [901 mo, EO] €D N. V. Krylov

U(t1+t2)[00, Mo, Eo] = U(t1)o [U(tZ)[Qo,mo, Eo]], ti,to >0
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Strong instead of weak (numerics)

Komlos theorem (a variant of Strong Law of Large Numbers)

{Un}:2 bounded in L'(Q)
=

N
NZ —>Uaa|nQasN—>oo

Conclusion for the approximate solutions

N
NZQ"" —0in L'((0, T) x Q) as N — oo
k=1

N
%Zmnk —min L'((0,T) x Q) as N = oo
k=1

%Z [1 M| + P(on k)] — € e Y0, T)xQ)a.a. in(0, T)xQ

[m] = = = = o>



Computing defect — Young measure

Young measure s
Maria
{Un}221 bounded in LY(Q) ~ v} = Sy, e, Lukacova

N (Mainz)

L
m E V{"; — Vg x narrowly a.a. in Q as N — oo
k=1

Monge—Kantorowich (Wasserstein) distance

Hana
Mizerova

—0
L9(Q)

1
dist <N ;l/t"kx z/t,x>

for some g > 1

Bangwei She
(CAS. Praha)



