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Euler system of gas dynamics

Leonhard Paul
Euler
1707–1783

Equation of continuity – Mass conservation

∂t%+ divx(%u) = 0

Momentum equation – Newton’s second law

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0, p(%) = a%γ

Boundary and/or far field conditions

u · n|∂Ω = 0, u→ u∞, %→ %∞ as |x | → ∞

Initial state

%(0, ·) = %0, %u(0, ·) = m0



Classical solutions

Local existence. Classical solutions exist locally in time as
long as the initial data are regular and the initial density
strictly positive

Finite time blow–up. Classical solutions develop
singularity (become discontinuous) in a finite time for a
fairly generic class of initial data



Weak (distributional) solutions

Jacques
Hadamard
1865–1963

Laurent
Schwartz
1915–2002

Mass conservation

∫
B

[
%(t2, ·)− %(t1, ·)

]
dx = −

∫ t2

t1

∫
∂B

%u · n dSxdt[∫
Ω

%ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
%∂tϕ+ m · ∇xϕ

]
dxdt, m ≡ %u

Momentum balance

∫
B

[
m(t2, ·)−m(t1, ·)

]
dx

= −
∫ t2

t1

∫
∂B

[
m⊗ u · n + p(%)n

]
dSx dt

[∫
Ω

m ·ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
m · ∂tϕ +

m⊗m

%
: ∇xϕ + p(%)divxϕ

]
dxdt



Time irreversibility – energy dissipation
Energy

E =
1

2

|m|2

%
+ P(%), P ′(%)%− P(%) = p(%)

p′ ≥ 0⇒ [%,m] 7→


1
2
|m|2
%

+ P(%) if % > 0

P(%) if |m| = 0, % ≥ 0
∞ otherwise

is convex l.s.c

Energy balance (conservation)

∂tE + divx

(
Em

%

)
+ divx

(
p

m

%

)
= 0

Energy dissipation

∂tE + divx

(
Em

%

)
+ divx

(
p

m

%

)
≤ 0

E =

∫
Ω

E dx , ∂tE ≤ 0, E(0+) =

∫
Ω

[
1

2

|m0|2

%0
+ P(%0)

]
dx

Rudolf
Clausius
1822–1888



Wild solutions?

Charles Hermite [1822-1901]

In a letter to Stieltjes

I turn with terror and horror from this lamentable
scourge of continuous functions with no derivatives

Past: What is not allowed is forbidden

Present: What is not forbidden is allowed



Ill posedness

Anna
Abbatiello
(TU Berlin)

Theorem [A.Abbatiello, EF 2019]

Let d = 2, 3. Let %0, m0 be given such that

%0 ∈ R, 0 ≤ % ≤ %0 ≤ %,

m0 ∈ R, divxm0 ∈ R, m0 · n|∂Ω = 0.

Let {τi}∞i=1 ⊂ (0,T ) be an arbitrary (countable dense) set of
times.
Then the Euler problem admits infinitely many weak solutions
%, m with a strictly decreasing total energy profile such that

% ∈ Cweak([0,T ]; Lγ(Ω)), m ∈ Cweak([0,T ]; L
2γ
γ+1 (Ω;Rd))

but

t 7→ [%(t, ·),m(t, ·)] is not strongly continuous at any τi



Consistent approximation

Equation of continuity∫ T

0

∫
Ω

[%n∂tϕ+ mn · ∇xϕ] dxdt = e1,n[ϕ]

Momentum equation

∫ T

0

∫
Ω

[
mn · ∂tϕ +

mn ⊗mn

%n
: ∇xϕ+ p(%n)divxϕ

]
dxdt = e2,n[ϕ]

Stability - bounded energy

E(%n,mn) ≡
∫

Ω

[
1

2

|mn|2

%n
+ P(%n)

]
dx

<∼ 1

Consistency

e1,n[ϕ]→ 0, e2,n[ϕ]→ 0 as n→∞



Weak vs strong convergence

Weak convergence

(%n − %)→ 0 weakly-(*) L∞(0,T ; Lγ(Rd))

(mn −m)→ 0 weakly-(*) L∞(0,T ; L
2γ
γ+1 (Rd ;Rd))

Strong convergence (Theorem EF, M.Hofmanová)

Ω = Rd , %→ %∞, m→ m∞ as |x | → ∞

%,m weak solution to the Euler system

⇔

%n → %, mn → m strongly (pointwise) in Rd

Martina
Hofmanová
(Bielefeld)



Dissipative solutions – limits of numerical schemes

Dominic Breit
(Edinburgh)

Martina
Hofmanová
(Bielefeld)

Equation of continuity

∂t % + divxm = 0

Momentum balance

∂t m + divx

(
m⊗m

%

)
+∇xp(%) = −divx (Rv + RpI)

Energy inequality

d

dt
E(t) ≤ 0, E(t) ≤ E0, E0 =

∫
Ω

[
1

2

|m0|2

%0
+ P(%0)

]
dx

E ≡
(∫

Ω

[
1

2

|m|2

%
+ P(%)

]
dx +

∫
Ω

d
1

2
trace[Rv ] +

∫
Ω

d
1

γ − 1
Rp

)
Turbulent defect measures

Rv ∈ L∞(0,T ;M+(Ω;Rd×d
sym )), Rp ∈ L∞(0,T ;M+(Ω))



Basic properties of dissipative solutions

Well posedness, weak strong uniqueness

Existence. Dissipative solutions exist globally in time for any finite
energy initial data

Limits of consistent approximations Limits of consistent
approximations are dissipative solutions, in particular limits of
consistent numerical schemes.

Compatibility. Any C 1 dissipative solution [%,m], % > 0 is a classical
solution of the Euler system

Weak–strong uniqueness. If [%̃, m̃] is a classical solution and [%,m]
a dissipative solution starting from the same initial data, then
Rv = Rp = 0 and % = %̃, m = m̃.



Semiflow selection

Set of data

D =

{
%,m,E

∣∣∣ ∫
Ω

1

2

|m|2

%
+ P(%) dx ≤ E

}
Set of trajectories

T =
{
%(t, ·),m(t, ·),E(t−, ·)

∣∣∣t ∈ (0,∞)
}

Solution set

U [%0,m0,E0] =
{

[%,m,E ]
∣∣∣[%,m,E ] dissipative solution

%(0, ·) = %0, m(0, ·) = m0, E(0+) ≤ E0

}
Semiflow selection – semigroup

U[%0,m0,E0] ∈ U [%0,m0,E0], [%0,m0,E0] ∈ D

U(t1 + t2)[%0,m0,E0] = U(t1)◦
[
U(t2)[%0,m0,E0]

]
, t1, t2 > 0

Andrej Markov
(1856–1933)

N. V. Krylov



Strong instead of weak (numerics)

Janos Komlos
(Ruthers
Univ.)

Erich J. Balder
(Utrecht)

Komlos theorem (a variant of Strong Law of Large Numbers)

{Un}∞n=1 bounded in L1(Q)

⇒

1

N

N∑
k=1

Unk → U a.a. in Q as N →∞

Conclusion for the approximate solutions

1

N

N∑
k=1

%nk → % in L1((0,T )× Ω) as N →∞

1

N

N∑
k=1

mnk → m in L1((0,T )× Ω) as N →∞

1

N

N∑
k=1

[
1

2

|mn,k |2

%n,k
+ P(%n,k)

]
→ E ∈ L1((0,T )×Ω) a.a. in (0,T )×Ω



Computing defect – Young measure

Young measure

{Un}∞n=1 bounded in L1(Q) ≈ νnt,x = δUn(t,x)

⇒

1

N

N∑
k=1

ν
nk
t,x → νt,x narrowly a.a. in Q as N →∞

Monge–Kantorowich (Wasserstein) distance

∥∥∥∥∥dist
(

1

N

N∑
k=1

ν
nk
t,x ; νt,x

)∥∥∥∥∥
Lq(Q)

→ 0

for some q > 1

Mária
Lukáčová
(Mainz)

Hana
Mizerová
(Bratislava)

Bangwei She
(CAS Praha)


