Theory of electron scattering for chemical lithography

Year from
2009
Year to
2011
Abstract:
Development of computational methods and their applications to vibrational excitation, dissociative attachment and associative detachment of molecules by an electron impact in processes that of interest to chemical lithography, i.e., in printing chemical and physical properties on surfaces, fabrication of molecular circuits and molecular machines. The ability to understand, manipulate and control chemical reactions at the molecular level is one of the great challenges of modern research. In electron beam experiments it has been established that such "single molecule engineering" can be achieved by a low-energy electron impact. The aim of this project is to contribute to this development by a deeper understanding of electron-molecule collisions by theoretical methods.

key words: Electron controlled chemistry, electron-molecule interactions,
theory of electron scattering, resonances, vibrational excitation and dissociation of molecules by electron impact

COST domain: CMST - Chemistry and Molecular Sciences and Technologies
COST action: Electron Controlled Chemical Lithography (ECCL)

prof. RNDr. ČÁRSKY Petr DrSc.

Room
105
Extension
3665
E-mail
petr.carskyatjh-inst.cas.cz