# MULTIPLICITY RESULTS FOR SIGN-CHANGING SOLUTIONS OF AN OPERATOR EQUATION IN ORDERED BANACH SPACE 

Xian Xu, Bingjin Wang, Jiangsu

(Received October 8, 2008)


#### Abstract

In this paper, we prove some multiplicity results for sign-changing solutions of an operator equation in an ordered Banach space. The methods to show the main results of the paper are to associate a fixed point index with a strict upper or lower solution. The results can be applied to a wide variety of boundary value problems to obtain multiplicity results for sign-changing solutions.


Keywords: sign-changing solution, operator equation in ordered Banach space, fixed point index

MSC 2000: 47H07, 47H10

## 1. Introduction

In recent years, many authors studied the existence of sign-changing solutions for various nonlinear problems, see [4]-[10] and the references therein. For example, by using the fixed point index method, the authors of [12] obtained a result of at least one sign-changing solution for the three-point boundary value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+f(y)=0, \quad 0 \leqslant t \leqslant 1,  \tag{1.1}\\
y(0)=0, \alpha y(\eta)=y(1)
\end{array}\right.
$$

where $f \in C(\mathbb{R}, \mathbb{R}), \alpha \in[0,1), \eta \in(0,1)$.
Recently, the authors of [11] considered the four-point boundary value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+f\left(t, y(t), y^{\prime}(t)\right)=0, \quad 0<t<1,  \tag{1.2}\\
y(0)=\alpha_{1} y\left(\eta_{1}\right), y(1)=\alpha_{2} y\left(\eta_{2}\right),
\end{array}\right.
$$

The paper is supported by NSFC10671167, Natural Science Foundation of Jiangsu Education Committee (09KJB110008) and by Qing Lan Project.
where $0 \leqslant \alpha_{1} \leqslant 1,0 \leqslant \alpha_{2} \leqslant 1,0<\eta_{1}<\eta_{2}<1, f \in C\left([0,1] \times \mathbb{R}^{2}, \mathbb{R}\right)$. They obtained in [11] the existence of at least four sign-changing solutions for the fourpoint boundary value problem (1.2).

By using the Leray-Schauder degree and the fixed point index method, the authors of [10] obtained the existence of at least two sign-changing solutions for some $m$-point boundary value problems. In [14] the authors obtained by using bifurcation theory some results concerning infinite sign-changing solutions for some $m$-point boundary value problems.

Let $E$ be a real Banach space which is ordered by a cone $P$, that is, $x \leqslant y$ if and only if $y-x \in P$. If $x \leqslant y$ and $x \neq y$, we write $x<y$. Consider the operator equation in a real Banach space $E$

$$
\begin{equation*}
x=A x, \tag{1.3}
\end{equation*}
$$

where $A=K F, K: E \rightarrow E$ is a completely continuous linear operator, $F: E \rightarrow E$ is a nonlinear continuous and bounded operator.

Let $\bar{x}$ be a non-zero solution of the operator equation (1.3). If $\bar{x} \in(-P)$ or $\bar{x} \in P$ or $\bar{x} \in E \backslash((-P) \cup P)$, then we say $\bar{x}$ is a negative or positive or signchanging solution of the equation (1.3), respectively. The purpose of this paper is to prove some multiplicity results for sign-changing solutions of the equation (1.3). The methods to show the results are to associate a fixed point index with a strict upper or lower solution. The results can be applied to a wide variety of boundary value problems to obtain multiplicity results for sign-changing solutions.

## 2. Main Results

Let $\theta$ denote the zero element of $E$. In this section we will always assume that $P$ is a solid normal cone, $e \in P \backslash\{\theta\}$ and $\|e\| \leqslant 1$. Let $Q=\{x \in P ; x \geqslant\|x\| e\}$. Then $Q$ is also a cone of $E$.

Definition 2.1 [12]. An operator $T: \mathcal{D}(T)(\supset P) \rightarrow E$ is called $e$-positive if for every $u \in P \backslash\{\theta\}$, there are numbers $\alpha=\alpha(u), \beta=\beta(u)>0$ such that

$$
\alpha e \leqslant T u \leqslant \beta e
$$

Definition 2.2 [10]. An operator $T: \mathcal{D}(T) \subset E \rightarrow E$ is called $e$-continuous at $x_{0} \in \mathcal{D}(T)$ if for every $\varepsilon>0$, there is a number $\delta>0$ such that

$$
-\varepsilon e \leqslant T x-T x_{0} \leqslant \varepsilon e
$$

for every $x \in \mathcal{D}(T)$ with $\left\|x-x_{0}\right\|<\delta$. The operator $T$ is called $e$-continuous on $\mathcal{D}(T)$ if $T$ is $e$-continuous at every $x \in \mathcal{D}(T)$. From [4, Lemma 5.2] we have the following result.

Lemma 2.1. Let $E$ be an ordered Banach space with a solid cone $P$. Let $K: E \rightarrow$ $E$ be a compact, e-positive, linear operator and let $F: E \rightarrow E$ be a map such that, for some $u_{0} \in E, u_{0}=K F\left(u_{0}\right)$. Suppose $F$ is Gâteaux differentiable at $u_{0}$ with a strictly positive derivative $F^{\prime}\left(u_{0}\right)$. Denote by $r(T)$ the spectral radius of the operator $T=K F^{\prime}\left(u_{0}\right)$ and by $h_{0}$ a positive eigenfunction of $T$ corresponding to $r(T)$. Then there exists a $\tau_{0}>0$ such that, for all $0<\tau<\tau_{0}$,

$$
r(T)>1 \quad \text { implies }\left\{\begin{array}{l}
K F\left(u_{0}+\tau h_{0}\right)>u_{0}+\tau h_{0} \\
K F\left(u_{0}-\tau h_{0}\right)<u_{0}-\tau h_{0}
\end{array}\right.
$$

and

$$
r(T)<1 \quad \text { implies }\left\{\begin{array}{l}
K F\left(u_{0}+\tau h_{0}\right)<u_{0}+\tau h_{0} \\
K F\left(u_{0}-\tau h_{0}\right)>u_{0}-\tau h_{0} .
\end{array}\right.
$$

From [14, Theorem 19.2] we have the following Lemma 2.2.

Lemma 2.2 (Krein-Rutman). Let $E$ be a Banach space, $P \subset E$ a total cone and let $K \in L(E)$ be compact positive with $r(K)>0$. Then $r(K)$ is an eigenvalue with a positive eigenvector.

Let us list the following conditions which will be used in this section.
$\left(\mathrm{H}_{1}\right) K: E \rightarrow E$ is e-positive, e-continuous and linear completely continuous, $K(P) \subset Q, r(K)>0$.
$\left(\mathrm{H}_{2}\right) F: E \rightarrow E$ is strictly increasing, bounded and continuous, $F(\theta)=\theta$, $F^{\prime}(\theta)=\beta_{0} I$, where $0<\beta_{0}<(r(K))^{-1}$, $I$ is the identical operator of $E$, $F^{\prime}(\theta)$ denotes the Fréchet derivative of $F$ at $\theta$.

We have the following main results.
Theorem 2.1. Suppose that $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold. Moreover, let there exist $u_{1}, v_{1} \in E \backslash((-P) \cup P)$ and $m_{0}>0$ such that

$$
-m_{0} e \leqslant u_{1}<v_{1} \leqslant m_{0} e
$$

and $u_{1}<A u_{1}, A v_{1}<v_{1}$. Then (1.3) has at least three sign-changing solutions $x_{1}, x_{2}$ and $x_{3}$. Also, (1.3) has at least one positive solution $x_{4}$ and one negative solution $x_{5}$.

Proof. The proof is completed in four steps.

Step 1. Clearly, $A: E \rightarrow E$ is a strictly increasing operator. From the KreinRutman Theorem, the eigenvalue $r(K)$ of the operator $K$ has a corresponding positive eigenvector $h_{0}$. Since $K: E \rightarrow E$ is $e$-positive, then there are numbers $\alpha_{h_{0}}, \beta_{h_{0}}>0$ such that

$$
\begin{equation*}
\alpha_{h_{0}} e \leqslant h_{0} \leqslant \beta_{h_{0}} e \tag{2.1}
\end{equation*}
$$

By Lemma 2.1, there exists $\tau_{0}>0$ such that for every $\tau \in\left(0, \tau_{0}\right]$

$$
\begin{equation*}
-\tau h_{0}<A\left(-\tau h_{0}\right), \quad A\left(\tau h_{0}\right)<\tau h_{0} \tag{2.2}
\end{equation*}
$$

We claim that there exist $\tau_{1}, \tau_{2} \in\left(0, \tau_{0}\right]$ such that

$$
\begin{equation*}
-\tau_{1} h_{0} \nless v_{1}, \quad \tau_{2} h_{0} \not \equiv u_{1} . \tag{2.3}
\end{equation*}
$$

By contradiction, assume that $-\tau h_{0} \leqslant v_{1}$ for all $\tau \in\left(0, \tau_{0}\right]$. Letting $\tau \rightarrow 0$, we have $\theta \leqslant v_{1}$, which contradicts $v_{1} \in E \backslash((-P) \cup P)$. The second relation can be proved analogously. Hence, (2.3) holds. Let $u_{2}=-\tau_{1} h_{0}$ and $v_{2}=\tau_{2} h_{0}$. From (2.1)-(2.3), we have

$$
u_{2}<A u_{2}, \quad A v_{2}<v_{2}, \quad u_{2} \nless v_{1}, \quad v_{2} \nexists u_{1}
$$

and

$$
\begin{equation*}
-m_{1} e \leqslant u_{2}<v_{2} \leqslant m_{1} e \tag{2.4}
\end{equation*}
$$

where $m_{1}$ is a positive number.
Step 2. Let $D_{1}=A u_{1}+Q$. Then $D_{1}$ is a closed convex subset of $E$. For any $x \in D_{1}$ we have $x \geqslant A u_{1}>u_{1}$. Since $F$ is strictly increasing and $K: P \rightarrow Q$, we have

$$
A x-A u_{1}=K\left(F x-F u_{1}\right) \geqslant\left\|K\left(F x-F u_{1}\right)\right\| e=\left\|A x-A u_{1}\right\| e,
$$

that is

$$
A x \geqslant\left\|A x-A u_{1}\right\| e+A u_{1}
$$

This implies that $A x \in D_{1}$, and so $A\left(D_{1}\right) \subset D_{1}$.
Let sets $\Omega_{10}, \Omega_{11}$ and $\Omega_{12}$ be defined by

$$
\begin{aligned}
& \Omega_{10}=\left\{x \in D_{1} ; A x \ngtr u_{2}\right\}, \\
& \Omega_{11}=\left\{x \in D_{1} ; \text { there exists } \tau>0 \text { such that } A x \leqslant A v_{1}-\tau e\right\}, \\
& \Omega_{12}=\left\{x \in D_{1} ; A x \ngtr u_{2}, A x \nless v_{1}\right\} .
\end{aligned}
$$

From (2.4) we have

$$
\begin{equation*}
u_{2}-u_{1} \leqslant\left(m_{1}+m_{0}\right) e \tag{2.5}
\end{equation*}
$$

For any $x \in D_{1}$, if $\|x\| \geqslant m_{1}+m_{0}+\left\|A u_{1}\right\|$, then

$$
x \geqslant\left\|x-A u_{1}\right\| e+A u_{1} \geqslant\left(\|x\|-\left\|A u_{1}\right\|\right) e+u_{1} \geqslant u_{2}
$$

and so

$$
A x \geqslant A u_{2}>u_{2} .
$$

This implies $\Omega_{10}$ is a bounded set. Clearly, $\Omega_{11} \subset \Omega_{10}, \Omega_{12} \subset \Omega_{10}$ and $\Omega_{11} \cap \Omega_{12}=\emptyset$. Thus, $\Omega_{11}, \Omega_{12}$ and $\Omega_{10}$ are three bounded sets. Since $K$ is $e$-positive, we have $A u_{1} \in$ $\Omega_{11} \subset \Omega_{10}$, and thus $\Omega_{11}$ and $\Omega_{10}$ are two nonempty bounded sets. We claim that $\Omega_{12} \neq \emptyset$. Indeed, if $\Omega_{12}=\emptyset$, then $D_{1}=S_{11} \cup S_{12}$, where $S_{11}=\left\{x \in D_{1} ; A x \leqslant v_{1}\right\}$ and $S_{12}=\left\{x \in D_{1} ; A x \geqslant u_{2}\right\}$. Since $u_{2} \nless v_{1}$, we have $S_{11} \cap S_{12}=\emptyset . S_{11}$ is a nonempty closed set since $A u_{1} \in S_{11}$. Take $z_{0} \in D_{1}$ with $\left\|z_{0}\right\| \geqslant m_{0}+m_{1}+\left\|A u_{1}\right\|$. By (2.5) we have

$$
z_{0} \geqslant\left\|z_{0}-A u_{1}\right\| e+A u_{1} \geqslant\left(\left\|z_{0}\right\|-\left\|A u_{1}\right\|\right) e+A u_{1} \geqslant\left(m_{0}+m_{1}\right) e+u_{1} \geqslant u_{2}
$$

and so $A z_{0} \geqslant A u_{2}>u_{2}, z_{0} \in S_{12} . S_{12}$ is a nonempty closed set. Hence, the connected set $D_{1}$ can be represented as a union of two disjoint nonempty closed sets $S_{11}$ and $S_{12}$, which is a contradiction. Therefore, $\Omega_{12} \neq \emptyset$.

It is easy to see that $\Omega_{10}$ and $\Omega_{12}$ are two open subsets of $D_{1}$. For any $x_{0} \in \Omega_{11}$ there exists $\tau^{\prime}>0$ such that $A x_{0} \leqslant A v_{1}-\tau^{\prime} e$. By $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right), A: E \rightarrow E$ is $e$-continuous. Hence, there exists $\delta_{0}>0$ such that

$$
-\frac{\tau^{\prime}}{2} e \leqslant A x-A x_{0} \leqslant \frac{\tau^{\prime}}{2} e
$$

for all $x \in D_{1}$ with $\left\|x-x_{0}\right\|<\delta_{0}$. Thus, for all $x \in D_{1}$ with $\left\|x-x_{0}\right\|<\delta_{0}$

$$
A x \leqslant A x_{0}+\frac{\tau^{\prime}}{2} e \leqslant A v_{1}-\frac{\tau^{\prime}}{2} e
$$

This implies that $x \in \Omega_{11}$. Hence, $\Omega_{11}$ is a nonempty open subset of $D_{1}$.
Step 3. Now we will show that

$$
\begin{equation*}
x \neq \lambda A x+(1-\lambda) A u_{1}, \quad x \in \partial_{D_{1}} \Omega_{11}, \quad \lambda \in[0,1] \tag{2.6}
\end{equation*}
$$

where $\partial_{D_{1}} \Omega_{11}$ denotes the boundary of $\Omega_{11}$ in $D_{1}$. Suppose this is not the case. Then there exist $x_{0} \in \partial_{D_{1}} \Omega_{11}$ and $\lambda_{0} \in[0,1]$ such that $x_{0}=\lambda_{0} A x_{0}+\left(1-\lambda_{0}\right) A u_{1}$. Since $A u_{1} \in \Omega_{11}$, we have $\lambda_{0} \in(0,1]$. It is easy to see that $A x_{0} \leqslant A v_{1}<v_{1}$, and so

$$
x_{0}=\lambda_{0} A x_{0}+\left(1-\lambda_{0}\right) A u_{1}<\lambda_{0} v_{1}+\left(1-\lambda_{0}\right) A u_{1} \leqslant v_{1} .
$$

Consequently, we have

$$
A v_{1}-A x_{0} \geqslant\left\|A v_{1}-A x_{0}\right\| e
$$

that is

$$
A x_{0} \leqslant A v_{1}-\left\|A v_{1}-A x_{0}\right\| e
$$

This implies that $x_{0} \in \Omega_{11}$, which contradicts $x_{0} \in \partial_{D_{1}} \Omega_{11}$. Thus, (2.6) holds.
From the homotopy invariance and normalization properties of the fixed point index, we have

$$
\begin{equation*}
i\left(A, \Omega_{11}, D_{1}\right)=i\left(A u_{1}, \Omega_{11}, D_{1}\right)=1 \tag{2.7}
\end{equation*}
$$

Then $A$ has at least one fixed point $x_{1} \in \Omega_{11}$. Clearly,

$$
\begin{equation*}
u_{1}<A u_{1} \leqslant x_{1}=A x_{1} \leqslant A v_{1}<v_{1} . \tag{2.8}
\end{equation*}
$$

From (2.8) and the fact that $u_{1}, v_{1} \in E \backslash((-P) \cup P)$ we see that $x_{1} \in E \backslash((-P) \cup P)$.
Next we will show that $A$ has at least one other fixed point $x_{2} \in \mathrm{Cl}_{D_{1}} \Omega_{10} \backslash \Omega_{11}$, where $\mathrm{Cl}_{D_{1}} \Omega_{10}$ denotes the closure of $\Omega_{10}$ in $D_{1}$. Assume on the contrary that $A$ has no fixed point on $\mathrm{Cl}_{D_{1}} \Omega_{10} \backslash \Omega_{11}$. We claim that

$$
\begin{equation*}
x-A x \neq \lambda e, x \in \partial_{D_{1}} \Omega_{10}, \lambda \geqslant 0 \tag{2.9}
\end{equation*}
$$

In fact, assuming contrary, there exist $x_{0} \in \partial_{D_{1}} \Omega_{10}$ and $\lambda_{0} \geqslant 0$ such that $x_{0}-$ $A x_{0}=\lambda_{0} e$. The fact that $A$ has no fixed point on $\partial_{D_{1}} \Omega_{10} \subset \mathrm{Cl}_{D_{1}} \Omega_{10} \backslash\left(\Omega_{11} \cup \Omega_{12}\right)$ implies that $\lambda_{0}>0$. Since $x_{0} \in \partial_{D_{1}} \Omega_{10}\left(x_{0} \notin \Omega_{10}\right)$, we have $A x_{0} \geqslant u_{2}$, and so $x_{0}=A x_{0}+\lambda_{0} e \geqslant u_{2}+\lambda_{0} e$. By $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ we have

$$
A x_{0} \geqslant A\left(u_{2}+\lambda_{0} e\right) \geqslant A u_{2}+\left\|A\left(u_{2}+\lambda_{0} e\right)-A u_{2}\right\| e .
$$

Let $\gamma_{0}=\left\|A\left(u_{2}+\lambda_{0} e\right)-A u_{2}\right\|>0$. Then there exists $\delta_{0}>0$ small enough such that

$$
-\frac{\gamma_{0}}{2} e \leqslant A x-A x_{0} \leqslant \frac{\gamma_{0}}{2} e
$$

for any $x \in D_{1}$ with $\left\|x-x_{0}\right\|<\delta_{0}$. Thus, we have for any $x \in D_{1}$ with $\left\|x-x_{0}\right\|<\delta_{0}$

$$
A x \geqslant A x_{0}-\frac{\gamma_{0}}{2} e \geqslant A u_{2}+\frac{\gamma_{0}}{2} e>A u_{2}>u_{2}
$$

Take $z_{0} \in \Omega_{10}$ with $\left\|z_{0}-x_{0}\right\|<\delta_{0}$. Then we have $A z_{0}>u_{2}$, which is a contradiction. Thus, (2.9) holds. For any $x \in D_{1}$ and $\lambda \geqslant 0$ we have

$$
\begin{aligned}
A x+\lambda e & \geqslant\left\|A x-A u_{1}\right\| e+\lambda e+A u_{1} \\
& \geqslant\left\|A x+\lambda e-A u_{1}\right\| e+A u_{1}+\lambda(1-\|e\|) e \\
& \geqslant\left\|A x+\lambda e-A u_{1}\right\| e+A u_{1} .
\end{aligned}
$$

Thus, $A x+\lambda e \in D_{1}$ for all $x \in D_{1}$. Let $a=\sup _{x \in \mathrm{Cl}_{D_{1}} \Omega_{10}}\|A x\|$ and $b=\sup _{x \in \mathrm{Cl}_{D_{1}} \Omega_{10}}\|x\|$. Take $s_{0}>0$ such that $s_{0}\|e\|>a+b$. Let an operator $A_{1}$ be defined by $A_{1} x=A x+s_{0} e$ for all $x \in \mathrm{Cl}_{D_{1}} \Omega_{10}$. Then we have

$$
\left\|A_{1} x\right\| \geqslant s_{0}\|e\|-\|A x\|>b \geqslant\|x\|, \quad x \in \mathrm{Cl}_{D_{1}} \Omega_{10} .
$$

From the solution property of the fixed point index we have

$$
\begin{equation*}
i\left(A_{1}, \Omega_{10}, D_{1}\right)=0 \tag{2.10}
\end{equation*}
$$

Let $H(t, x)=(1-t) A x+t A_{1} x$ for all $(t, x) \in[0,1] \times \mathrm{Cl}_{D_{1}} \Omega_{10}$. From (2.9) we see that $H(t, x) \neq x$ for all $(t, x) \in[0,1] \times \partial_{D_{1}} \Omega_{10}$. Then, by the homotopy invariance property of the fixed point index and (2.10), we have

$$
\begin{equation*}
i\left(A, \Omega_{10}, D_{1}\right)=i\left(A_{1}, \Omega_{10}, D_{1}\right)=0 \tag{2.11}
\end{equation*}
$$

From (2.7) and (2.11) we have

$$
i\left(A, \Omega_{12}, D_{1}\right)=i\left(A, \Omega_{10}, D_{1}\right)-i\left(A, \Omega_{11}, D_{1}\right)=-1
$$

Therefore, $A$ has at least one fixed point in $\Omega_{12} \subset \mathrm{Cl}_{D_{1}} \Omega_{10} \backslash \Omega_{11}$, which is a contradiction. The contradiction obtained proves that $A$ has at least one fixed point $x_{2} \in \mathrm{Cl}_{D_{1}} \Omega_{10} \backslash \Omega_{11}$. Now we show that $u_{2} \nless x_{2}$. Indeed, if $u_{2}<x_{2}$, then we have

$$
A x_{2}-A u_{2} \geqslant\left\|A x_{2}-A u_{2}\right\| e .
$$

Let $\gamma_{1}=\left\|A x_{2}-A u_{2}\right\|>0$. Since $A$ is $e$-continuous, there exists $\delta_{1}>0$ such that for any $x \in E$ with $\left\|x-x_{2}\right\|<\delta_{1}$

$$
-\frac{\gamma_{1}}{2} e \leqslant A x-A x_{2} \leqslant \frac{\gamma_{1}}{2} e
$$

and so

$$
A x \geqslant A x_{2}-\frac{\gamma_{1}}{2} e \geqslant A u_{2}+\frac{\gamma_{1}}{2} e>A u_{2}>u_{2}
$$

This implies that $B\left(x_{2}, \delta_{1}\right) \cap \Omega_{10}=\emptyset$, which contradicts $x_{2} \in \mathrm{Cl}_{D_{1}} \Omega_{10}$. Thus, $u_{2} \nless x_{2}$, and so $x_{2} \ngtr \theta$. If $x_{2} \leqslant \theta$, since $u_{1}<A u_{1} \leqslant A x_{2}=x_{2}$, we have $u_{1}<\theta$, which contradicts $\left.u_{1} \in E \backslash((-P) \cup P)\right)$. Therefore, $x_{2} \in E \backslash((-P) \cup P)$, and $x_{2}$ is a sign-changing solution of (1.3).

Step 4. Let $D_{2}=A v_{1}-Q, \Omega_{20}=\left\{x \in D_{2} ; A x \nless v_{2}\right\}$ and $\Omega_{21}=\{x \in$ $D_{2}$; there exists $\tau>0$ such that $\left.A x \geqslant A u_{1}+\tau e\right\}$. Essentially the same argument as in Step 3 shows that $A$ has at least one fixed point $x_{3} \in \mathrm{Cl}_{D_{2}} \Omega_{20} \backslash \Omega_{21}$ and $x_{3}$ is a sign-changing solution of (1.3).

Finally, we shall show the existence of positive solutions and negative solutions. Let $D_{3}=Q(=A \theta+Q), \Omega_{30}=\left\{x \in D_{3} ; A x \nsupseteq u_{1}\right\}$ and $\Omega_{31}=\left\{x \in D_{3}\right.$; there exists $\tau>0$ such that $\left.A x \leqslant A v_{2}-\tau e\right\}$. Then $A$ has at least one fixed point $x_{4}$ such that $x_{4} \in \mathrm{Cl}_{D_{3}} \Omega_{30} \backslash \Omega_{31}$ and $x_{4}$ is a positive solution of (1.3).

Let $D_{4}=-Q(=A \theta-Q), \Omega_{40}=\left\{x \in D_{4} ; A x \nless v_{1}\right\}$ and $\Omega_{41}=\left\{x \in D_{4} ;\right.$ there exists $\tau>0$ such that $\left.A x \geqslant A u_{2}+\tau e\right\}$. Then $A$ has at least one fixed point $x_{5}$ such that $x_{5} \in \mathrm{Cl}_{D_{4}} \Omega_{40} \backslash \Omega_{41}$ and $x_{5}$ is a negative solution of (1.3). This completes the proof.

Remark 2.1. The position of $u_{1}, u_{2}, v_{1}$ can be illustrated roughly by the following figure.


Remark 2.2. The position of $u_{1}, u_{2}, v_{1}, v_{2}$ and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ in Theorem 2.1 can be illustrated roughly by the following figure.


Remark 2.3. The two pairs of strict lower and upper solutions $u_{1}, v_{1}$ and $u_{2}$, $v_{2}$ in Theorem 2.1 satisfy $u_{1} \nless v_{2}$ and $u_{2} \nless v_{1}$. We say these two pairs of strict lower and upper solutions are parallel to each other. We should point out that this condition was first put forward in [14]. The above $u_{1}, v_{2}$ and $u_{2}, v_{1}$ are also two pairs of non-well-ordered upper and lower solutions. For other discussions concerning the non-well-ordered upper and lower solutions, the reader is refered to [11, 5.4B].

## 3. Applications

Consider the two-point boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+f(t, u)=0, \quad 0<t<1  \tag{3.1}\\
u(0)=u(1)=0
\end{array}\right.
$$

where $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and strictly increasing in the second argument, $f(\cdot, 0) \equiv 0$.

Theorem 3.1. Suppose that there exist $u_{1}, v_{1} \in C^{2}[0,1]$ which are sign-changing on $[0,1], m_{0}>0$ such that $u_{1} \not \equiv v_{1}$ on $[0,1]$, and

$$
\begin{gather*}
\left\{\begin{array}{l}
u_{1}^{\prime \prime}(t)+f\left(t, u_{1}(t)\right)>0, \quad 0<t<1, \\
u_{1}(0) \leqslant 0, u_{1}(1) \leqslant 0,
\end{array}\right.  \tag{3.2}\\
\left\{\begin{array}{l}
v_{1}^{\prime \prime}(t)+f\left(t, v_{1}(t)\right)<0, \\
v_{1}(0) \geqslant 0, v_{1}(1) \geqslant 0,
\end{array}\right.  \tag{3.3}\\
-m_{0} t(1-t) \leqslant u_{1}(t) \leqslant v_{1}(t) \leqslant m_{0} t(1-t), \quad t \in[0,1]
\end{gather*}
$$

and

$$
0<\beta_{0}=\lim _{u \rightarrow 0} \frac{f(t, u)}{u}<\pi^{2} \quad \text { uniformly on }[0,1] .
$$

Then (3.1) has at least three sign-changing solutions. Moreover, (3.1) has at least one non-zero non-negative solution and one non-zero non-positive solution.

Proof. Let $E$ be the Banach space $C[0,1]$ with the maximum norm. Let $P=\{x \in E ; x(t) \geqslant 0, t \in[0,1]\}$. Then $E$ is a real Banach space and $P$ is a solid cone of $E$. Let $e(t)=t(1-t)$ for $t \in[0,1]$ and $Q=\{x \in P ; x(t) \geqslant\|x\| e(t), t \in[0,1]\}$. $Q$ is also a cone of $E$. Let operators $K, F$ and $A$ be defined by

$$
\begin{aligned}
& (K x)(t)=\int_{0}^{1} G(t, s) x(s) \mathrm{d} s, t \in[0,1], x \in E \\
& (F x)(t)=f(t, x(t)), t \in[0,1], x \in E
\end{aligned}
$$

and $A=K F$, where

$$
G(t, s)= \begin{cases}t(1-s), & t \leqslant s \\ s(1-t), & t>s\end{cases}
$$

It is easy to see that

$$
\begin{equation*}
e(t) G(\tau, s) \leqslant G(t, s) \leqslant e(t), \quad t, s, \tau \in[0,1] . \tag{3.4}
\end{equation*}
$$

For each $x \in P \backslash\{\theta\}$, we have from (3.4)

$$
\|x\| e(t) \geqslant(K x)(t) \geqslant(K x)(\tau) e(t), \quad t, \tau \in[0,1], x \in P,
$$

and thus

$$
\|x\| e(t) \geqslant(K x)(t) \geqslant\|K x\| e(t), \quad t \in[0,1], x \in P
$$

This implies that $K$ is $e$-positive. Thus, we have for each $x, y \in E$

$$
-\|x-y\| e(t) \leqslant(K(x-y))(t) \leqslant\|x-y\| e(t), \quad t \in[0,1] .
$$

This implies that $K$ is $e$-continuous. The sequence of eigenvalues of $K$ is $\left\{\left(n^{2} \pi^{2}\right)^{-1}\right\}$. Since $\lim _{x \rightarrow 0} f(t, x) / x=\beta_{0}, F$ is Fréchet differentiable at $\theta$ and $r\left(A^{\prime}(\theta)\right)=\beta_{0} \pi^{-2}<1$. From (3.2) and (3.3), it is easy to prove that $u_{1}<A u_{1}$ and $A v_{1}<v_{1}$. Consequently, all conditions of Theorem 2.1 are satisfied. By Theorem 2.1, the conclusion of Theorem 3.1 holds.

Remark 3.1. Obviously, Theorem 2.1 can be applied to other types of nonlinear boundary value problems to obtain multiplicity results for sign-changing solutions.

## References

[1] H. Amann: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Functional Anal. 11 (1972), 346-384.
[2] H. Amann: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Review 18 (1976), 620-709.
[3] T. Bartsch, K. C. Chang, Z. Q. Wang: On the Morse indices of sign changing solutions of nonlinear elliptic problems. Math. Z. 233 (2000), 655-677.
[4] E.N. Dancer, Y.Du: Existence of changing sign solutions for some semilinear problems with jumping nonlinearities at zero. Proc. Royal Soc. Edinburgh 124 A (1994), 1165-1176.
[5] E. N. Dancer, Y. Du: On sign-changing solutions of certain semilinear elliptic problems. Appl. Anal. 56 (1995), 193-206.
[6] K. Deimling: Nonlinear Functional Analysis. Springer, 1985.
[7] Pavel Drábek, Jaroslav Milota: Methods of Nonlinear Analysis. Applications to Differential Equations, Birkhäuser, Basel, 2007.
[8] Fuyi Li: Solutions of nonlinear operator equations and applications. Ph. D. Thesis, Shandong University, 1996.
[9] Zhaoli Liu: Localized Critical Points in Banach Spaces and Sign Changing Solutions of Nonlinear $p$-Laplacian Equations. Topological Methods, Variational Methods. World Scientific Press, New Jersey, 2002.
[10] Xian Xu: Multiple sign-changing solutions for some $m$-point boundary value problems. Electron. J. Differ. Equ. 89 (2004), 1-14.
[11] Xian Xu, Donal O'Regan: Multiplicity of sign-changing solutions for some four-point boundary value problem. Nonlinear Analysis 69 (2008), 434-447.
[12] Xian Xu, Jingxian Sun: On sign-changing solution for some three-point boundary value problems. Nonlinear Analysis 59 (2004), 491-505.
13] Xian Xu, Jingxian Sun, Donal O'Regan: Nodal solutions for $m$-point boundary value problems using bifurcation methods. Nonlinear Analysis, 68 (2008), 3034-3046.
14] Kemei Zhang, Jingxian Sun: Multiple solutions for superlinear operator equations in Banach spaces and applications. Acta Math. Sinica (Chin. Ser.) 48 (2005), 99-108.

Authors' address: Xian Xu, Bingjin Wang, Department of Mathematics, Xuzhou Normal University, Xuzhou, Jiangsu, 221116, P. R. China, e-mail: xuxian68@163.com.

