R_{z}-SUPERCONTINUOUS FUNCTIONS
Davinder Singh, Brij Kishore Tyagi, Jeetendra Aggarwal, Jogendra K. Kohli, New Delhi

(Received July 20, 2013)

Abstract

A new class of functions called " R_{z}-supercontinuous functions" is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of R_{z}-supercontinuous functions properly includes the class of R_{cl}-supercontinuous functions, Tyagi, Kohli, Singh (2013), which in its turn contains the class of cl-supercontinuous (\equiv clopen continuous) functions, Singh (2007), Reilly, Vamanamurthy (1983), and is strictly contained in the class of R_{δ}-supercontinuous, Kohli, Tyagi, Singh, Aggarwal (2014), which in its turn is properly contained in the class of R-supercontinuous functions, Kohli, Singh, Aggarwal (2010).

Keywords: z-supercontinuous function; F-supercontinuous function; cl-supercontinuous function; R_{z}-supercontinuous function; R-supercontinuous function; r_{z}-open set; r_{z}-closed set; z-embedded set; R_{z}-space; functionally Hausdorff space

MSC 2010: 54C08, 54C10

1. Introduction

Strong forms of continuity arise naturally in diverse situations in mathematics and applications of mathematics. For example in many circumstances in geometry, analysis, topology and topologico-analytic situations continuity is not sufficient and a condition stronger than continuity is required to meet the demand of a paricular situation. Hence it is of considerable significance both from intrinsic interest as well as from the applications view point to formulate and study new strong variants of continuity. Several of such strong variants of continuity occur in the lore of mathematical literature. For example, see [15]-[19], [21]-[23], [25], [26], [28], [30], [31]. The purpose of the present paper is to introduce one such strong form of continuity called " R_{z}-supercontinuity" and study its basic properties. We discuss the interrelations and interconnections of " R_{z}-supercontinuity" with other strong variants of continu-
ity that already exist in mathematical literature. The class of R_{z}-supercontinuous functions properly contains the class of R_{cl}-supercontinuous functions [35] which in its turn strictly contains the class of cl-supercontinuous (\equiv clopen continuous) functions [28], [30] and is properly contained in the class of $R_{\boldsymbol{\delta}}$-supercontinuous functions [21] which is strictly contained in the class of R-supercontinuous functions [18].

The organization of the paper is as follows: Section 2 is devoted to basic definitions and preliminaries. In Section 3 we introduce the notion of an " R_{z}-supercontinuous function" and discuss its place in the hierarchy of strong variants of continuity that already exist in the literature. Examples are included to reflect upon the distinctiveness of notions so introduced from the existing ones. Basic properties of $R_{z^{-}}$ supercontinuous functions are studied in Section 4, wherein it is shown that (i) $R_{z^{-}}$ supercontinuity is stable under the restrictions, shrinking and expansion of range and composition of functions; (ii) a function into a product space is R_{z}-supercontinuous if and only if its composition with each projection map is R_{z}-supercontinuous; and (iii) if X is an R_{z}-space, then f is R_{z}-supercontinuous if and only if its graph function g is R_{z}-supercontinuous. The interplay between topological properties and R_{z}-supercontinuous functions is investigated in Section 5. In Section 6 properties of graphs of R_{z}-supercontinuous functions are studied. The notion of r_{z}-quotient topology is introduced in Section 7. In Section 8 we retopologize the domain of an R_{z}-supercontinuous function in such a way that it is simply a continuous function and conclude with alternative proofs of certain results of the preceding sections.

2. Basic definitions and preliminaries

A subset H of a space X is called a regular G_{δ}-set [24] if H is the intersection of a sequence of closed sets whose interiors contain H, i.e. $H=\bigcap_{n=1}^{\infty} F_{n}=\bigcap_{n=1}^{\infty} F_{n}^{o}$, where each F_{n} is a closed subset of X. The complement of a regular G_{δ}-set is called a regular F_{σ}-set. An open set U of a space X is said to be F-open [19] (r-open [18]) if for each $x \in U$ there exists a zero (closed) set Z in X such that $x \in Z \subset U$, equivalently if U is expressible as a union of zero (closed) sets in X. A subset A of a space X is said to be regular open if it is the interior of its closure, i.e. $A=\bar{A}^{o}$. The complement of a regular open set is referred to as regular closed. Any intersection of regular closed (clopen) sets is called a δ-closed [37] (cl-closed [30]) set and any intersection of zero sets is called a z-closed set [29]. An open set U in X is said to be r_{δ}-open [21] (r_{cl}-open [35]) if for each $x \in U$ there exists a δ-closed (cl-closed) set A containing x such that $A \subset U$, equivalently U is expressible as a union of δ-closed (cl-closed) sets.

Next we include definitions of those strong variants of continuity which already exist in the literature and are related to the theme of the present paper.

Definitions 2.1. A function $f: X \rightarrow Y$ from a topological space X into a topological space Y is said to be
(a) strongly continuous $[22]$ if $f(\bar{A}) \subset f(A)$ for each subset A of X;
(b) perfectly continuous [26] if $f^{-1}(V)$ is clopen in X for every open set $V \subset Y$;
(c) cl-supercontinuous $[30]$ (\equiv clopen continuous $[28]$) if for each $x \in X$ and each open set V containing $f(x)$, there is a clopen set U containing x such that $f(U) \subset V$;
(d) z-supercontinuous $[15]\left(D_{\delta}\right.$-supercontinuous $[16], D$-supercontinuous $\left.[17]\right)$ if for each $x \in X$ and for each open set V containing $f(x)$, there exists a cozero (regular F_{σ}, open F_{σ}) set U containing x such that $f(U) \subset V$;
(e) strongly θ-continuous [23], [27] if for each $x \in X$ and for each open set V containing $f(x)$, there exists an open set U containing x such that $f(\bar{U}) \subset V$;
(f) F-supercontinuous [19], R-supercontinuous [18], or R_{cl}-supercontinuous [35] if for each $x \in X$ and each open set V containing $f(x)$, there exists respectively an F-open, r-open, or r_{cl}-open set U containing x such that $f(U) \subset V$;
(g) supercontinuous [25] if for each $x \in X$ and for each open set V containing $f(x)$, there exists a regular open set U containing x such that $f(U) \subset V$;
(h) R_{δ}-supercontinuous [21] if for each $x \in X$ and for each open set V containing $f(x)$, there exists an r_{δ}-open set U containing x such that $f(U) \subset V$.

3. R_{z}-SUPERCONTINUOUS FUNCTIONS

Let X be a topological space. An open subset U of a space X is said to be r_{z}-open if for each $x \in U$ there exists a z-closed set C_{x} such that $x \in C_{x} \subset U$, equivalently U is expressible as a union of z-closed sets. Every r_{cl}-open set as well as every F-open set are r_{z}-open and every r_{z}-open set is r_{δ}-open which in its turn is r-open. However, reverse implications are not true in general. For example, if X denotes the real line endowed with the usual topology, then every open set in X is F-open and so r_{z}-open but not r_{cl}-open. Similarly, if Y denotes the real line with the cofinite topology, then every open set in Y is r-open but not necessarily r_{δ}-open and so not r_{z}-open.

Definition 3.1. A function $f: X \rightarrow Y$ from a topological space X into a topological space Y is said to be R_{z}-supercontinuous at a point $x \in X$, if for each open set V containing $f(x)$ there exists an r_{z}-open set U containing x such that $f(U) \subset V$.

The function f is said to be R_{z}-supercontinuous, if it is R_{z}-supercontinuous at each $x \in X$.

We reproduce the following diagram from [35] (with a slight extension) which well illustrates the place of R_{z}-supercontinuity in the hierarchy of strong variants of continuity that already exist in the literature and are related to the theme of the present paper.

However, none of the above implications is reversible as is shown by examples in [16], [18], [19], [21], [35] and Remark 3.3 below.

Definitions 3.2. A topological space X is said to be
(i) functionally regular [2], [36] if for each closed set A and each $x \notin A$ there exists a continuous real-valued function f defined on X such that $f(x) \notin \overline{f(A)}$;
(ii) an R_{z}-space [32] if for each open set U in X and each $x \in U$ there exists a z closed set A such that $x \in A \subset U$; equivalently U is expressible as a union of z-closed sets.

Remark 3.3. If X is an R_{z}-space, then every continuous function $f: X \rightarrow Y$ is R_{z}-supercontinuous. In particular, if X is a functionally regular space, then every continuous function f defined on X is F-supercontinuous and so R_{z}-supercontinuous.

4. Basic properties of R_{z}-Supercontinuous functions

Definition 4.1. Let X be a topological space and let $A \subset X$. A point $x \in X$ is said to be an r_{z}-adherent point of A if every r_{z}-open set containing x intersects A. Let $A_{r_{z}}$ denote the set of all r_{z}-adherent points of the set A. The set A is r_{z}-closed if and only if $A=A_{r_{z}}$. Moreover, $A \subset \bar{A} \subset A_{r_{z}}$.

Theorem 4.2. For a function $f: X \rightarrow Y$ from a topological space X into a topological space Y, the following statements are equivalent.
(i) f is R_{z}-supercontinuous.
(ii) $f^{-1}(V)$ is r_{z}-open for every open set $V \subset Y$.
(iii) $f^{-1}(B)$ is r_{z}-closed for every closed set $B \subset Y$.
(iv) $f^{-1}(S)$ is r_{z}-open for every subbasic open set $S \subset Y$.
(v) $f\left(A_{r_{z}}\right) \subset \overline{f(A)}$ for every set $A \subset X$.
(vi) $\left(f^{-1}(B)\right)_{r_{z}} \subset f^{-1}(\bar{B})$ for every set $B \subset Y$.

Definition 4.3. A filter base \mathcal{F} is said to R_{z}-converge to a point $x \in X$ (written as $\mathcal{F} \xrightarrow{R_{z}} x$) if every r_{z}-open set containing x contains a member of \mathcal{F}.

Theorem 4.4. A function $f: X \rightarrow Y$ is R_{z}-supercontinuous if and only if $f(\mathcal{F}) \rightarrow f(x)$ for each $x \in X$ and each filter base \mathcal{F} in X which R_{z}-converges to x.

Proof. Suppose that f is R_{z}-supercontinuous and that \mathcal{F} is a filter base in X that R_{z}-converges to $x \in X$. Let W be any open set in Y containing $f(x)$. By Theorem 4.2 (ii), $f^{-1}(W)$ is an r_{z}-open set containing x. Since the filter base \mathcal{F} R_{z}-converges to x, there exists an $F \in \mathcal{F}$ such that $F \subset f^{-1}(W)$ and so $f(F) \subset W$. Thus $f(\mathcal{F}) \rightarrow f(x)$.

Conversely, let W be an open subset of Y containing $f(x)$. Let \mathcal{F}_{x} denote the set of all r_{z}-open subsets of X containing x. Clearly, \mathcal{F}_{x} is a filter base in X which R_{z} converges to x. By hypothesis $f\left(\mathcal{F}_{x}\right) \rightarrow f(x)$ and so there exists a member $F \in \mathcal{F}_{x}$ such that $f(F) \subset W$. Since F is an r_{z}-open set containing x, f is R_{z}-supercontinuous.

Theorem 4.5. Let $f: X \rightarrow Y$ be an R_{z}-supercontinuous function and $g: Y \rightarrow Z$ a continuous function. Then their composition $g \circ f$ is R_{z}-supercontinuous. In particular, the composition of two R_{z}-supercontinuous functions is R_{z}-supercontinuous.

Definition 4.6. A function $f: X \rightarrow Y$ is said to be R_{z}-open (R_{z}-closed) if the image of every r_{z}-open (r_{z}-closed) set in X is open (closed) in Y.

Clearly every open (closed) function is R_{z}-open (R_{z}-closed). However, the converse is not true in general.

Theorem 4.7. Let $f: X \rightarrow Y$ be an R_{z}-open (R_{z}-closed), R_{z}-supercontinuous surjection and let $g: Y \rightarrow Z$ be any function. Then $g \circ f$ is R_{z}-supercontinuous if and only if g is continuous. Further, if in addition f maps r_{z}-open (r_{z}-closed) sets to r_{z}-open (r_{z}-closed) sets, then g is R_{z}-supercontinuous.

Definition 4.8 ([1], [6]). A subset S of a space X is said to be z-embedded in X if every zero (cozero) set in S is the intersection of a zero (cozero) set in X with S.

Theorem 4.9. Let $f: X \rightarrow Y$ be a function. The following statements are true.
(a) If f is R_{z}-supercontinuous and if A is a subspace of X, then the restriction function $f \mid A: A \rightarrow Y$ is R_{z}-supercontinuous.
(b) Let $\left\{U_{\alpha}: \alpha \in \Lambda\right\}$ be a cover of X by r_{z}-open sets such that each U_{α} is z embedded in X. If $f_{\alpha}=f \mid U_{\alpha}: U_{\alpha} \rightarrow Y$ is R_{z}-supercontinuous for each α, then f is R_{z}-supercontinuous.
(c) Let $X=\bigcup_{i=1}^{n} F_{i}$, where each F_{i} is an r_{z}-closed z-embedded set in X. If for each i, $f_{i} \mid F_{i}$ is R_{z}-supercontinuous, then f is R_{z}-supercontinuous.

Proof. (a) Let W be any open set in Y. Since f is an R_{z}-supercontinuous function, $f^{-1}(W)$ is an r_{z}-open set in X. Suppose $f^{-1}(W)=\bigcup W_{\alpha}$, where each W_{α} is a z-closed in X and let $W_{\alpha}=\bigcap W_{\alpha \beta}$, where each $W_{\alpha_{\beta}}$ is a zero set in X. So each $W_{\alpha \beta} \cap A$ is a zero set in A. Now $(f \mid A)^{-1}(W)=f^{-1}(W) \cap A=\bigcup\left(W_{\alpha} \cap A\right)=$ $\bigcup\left(\left(\cap W_{\alpha \beta}\right) \cap A\right)=\bigcup \bigcap\left(W_{\alpha \beta} \cap A\right)$. Thus $(f \mid A)^{-1}(W)$ is an r_{z}-open set being an open set which is the union of z-closed sets and so $f \mid A$ is R_{z}-supercontinuous.
(b) Let W be an open subset of Y. Then $f^{-1}(W)=\bigcup\left\{f_{\alpha}^{-1}(W): \alpha \in \Lambda\right\}$. Since each f_{α} is R_{z}-supercontinuous, $f_{\alpha}^{-1}(W)$ is an r_{z}-open set in U_{α}. Let $f_{\alpha}^{-1}(W)=$ $\bigcup W_{\alpha \beta}$, where each $W_{\alpha \beta}$ is a z-closed set in U_{α}. Let $W_{\alpha \beta}=\bigcap W_{\alpha \beta \gamma}$, where each $W_{\alpha \beta \gamma}$ is a zero set in U_{α}. Since U_{α} is z-embedded in X, there exists a zero set $W_{\alpha \beta \gamma}^{*}$ in X such that $W_{\alpha \beta \gamma}=W_{\alpha \beta \gamma}^{*} \cap U_{\alpha}$. Now $W_{\alpha \beta}=\bigcap\left(W_{\alpha \beta \gamma}^{*} \cap U_{\alpha}\right)=\left(\bigcap W_{\alpha \beta \gamma}^{*}\right) \cap U_{\alpha}$. Let $\bigcap W_{\alpha \beta \gamma}^{*}=W_{\alpha \beta}^{*}$, which is an r_{z}-open set in X. Again, $f_{\alpha}^{-1}(W)=\left(\bigcup W_{\alpha \beta}^{*}\right) \cap U_{\alpha}$. Since arbitrary unions and finite intersections of r_{z}-open sets are r_{z}-open, $f_{\alpha}^{-1}(W)$ is an r_{z}-open set in X and so f is R_{z}-supercontinuous.
(c) Let F be any closed subset of Y. Then $f^{-1}(F)=\bigcup_{i=1}^{n} f_{i}^{-1}(F)$. Since each f_{i} is R_{z}-supercontinuous, each $f_{i}^{-1}(F)$ is an r_{z}-closed set in F_{i}. Again, since each F_{i} is z-embedded in X, it is routine to verify that $f_{i}^{-1}(F)$ is an r_{z}-closed set in X. Since a finite union of r_{z}-closed sets is r_{z}-closed, $f^{-1}(F)$ is r_{z}-closed and hence f is R_{z}-supercontinuous.

It is easily verified that R_{z}-supercontinuity is stable under the shrinking and expansion of range.

Theorem 4.10. A function into a product space is R_{z}-supercontinuous if and only if its composition with each projection map is R_{z}-supercontinuous.

Proof. Suppose that the function $f: X \rightarrow \prod_{\alpha \in \Lambda} X_{\alpha}$ is R_{z}-supercontinuous. Let $f_{\alpha}=\pi_{\alpha} \circ f$, where $\pi_{\alpha}: \prod_{\alpha \in \Lambda} X_{\alpha} \rightarrow X_{\alpha}$ denotes the projection onto the α-coordinate space X_{α}. Since projection maps are continuous, in view of Theorem 4.5, each f_{α} is a R_{z}-supercontinuous.

Conversely, suppose that each $\pi_{\alpha} \circ f=f_{\alpha}: X \rightarrow X_{\alpha}$ is R_{z}-supercontinuous. Since arbitrary unions and finite intersections of r_{z}-open sets are r_{z}-open, to show that f is R_{z}-supercontinuous, it suffices to show that the inverse image under f of every subbasic open set in $\prod_{\alpha \in \Lambda} X_{\alpha}$ is r_{z}-open in X. Let $V_{\beta} \times \prod_{\alpha \neq \beta} X_{\alpha}$ be a subbasic open set in $\prod_{\alpha \in \Lambda} X_{\alpha}$. Then $f^{-1}\left(V_{\beta} \times \prod_{\alpha \neq \beta} X_{\alpha}\right)=f^{-1}\left(\pi_{\beta}^{-1}\left(V_{\beta}\right)\right)=f_{\beta}^{-1}\left(V_{\beta}\right)$ is r_{z}-open in X. So f is R_{z}-supercontinuous.

Theorem 4.11. Let $f: X \rightarrow Y$ be any function and let $g: X \rightarrow X \times Y$ be the graph function defined by $g(x)=(x, f(x))$ for each $x \in X$. Then g is R_{z}-supercontinuous if and only if f is R_{z}-supercontinuous and X is an R_{z}-space.

Proof. Observe that $g=1_{X} \times f$, where 1_{X} denotes the identity function defined on X. Now by Theorem 4.10, g is R_{z}-supercontinuous if and only if both 1_{X} and f are R_{z}-supercontinuous. Again, 1_{X} is R_{z}-supercontinuous implies that every open set in X is r_{z}-open. Hence X is an R_{z}-space.

Remark 4.12. The hypothesis of " R_{z}-space" in Theorem 4.11 cannot be omitted. For let $X=\mathbb{R}$ be the real line with the right ray topology [34] and Y the real line with the indiscrete topology. Let $f: X \rightarrow Y$ be the identity function. Clearly f is R_{z}-supercontinuous but the graph function $g: X \rightarrow X \times Y$ is not R_{z}-supercontinuous.

Theorem 4.13. Let $f: \prod_{\alpha \in \Lambda} X_{\alpha} \rightarrow \prod_{\alpha \in \Lambda} Y_{\alpha}$ be a mapping defined by $f\left(\left(x_{\alpha}\right)\right)=$ $\left(f_{\alpha}\left(x_{\alpha}\right)\right)$, where $f_{\alpha}: X_{\alpha} \rightarrow Y_{\alpha}$ for each $\alpha \in \Lambda$. Then f is R_{z}-supercontinuous if and only if each f_{α} is R_{z}-supercontinuous.

Proof. To prove necessity, let V_{β} be any open set in Y_{β}. Then $\pi_{\beta}^{-1}\left(V_{\beta}\right)=$ $V_{\beta} \times \prod_{\alpha \neq \beta} Y_{\alpha}$ is a subbasic open set in $\prod_{\alpha \in \Lambda} Y_{\alpha}$. Now since f is R_{z}-supercontinuous,
$f^{-1}\left(\pi_{\beta}^{-1}\left(V_{\beta}\right)\right)=f_{\beta}^{-1}\left(V_{\beta}\right) \times\left(\prod_{\alpha \neq \beta} X_{\alpha}\right)$ is an r_{z}-open set in $\prod_{\alpha \in \Lambda} X_{\alpha}$. Thus $f_{\beta}^{-1}\left(V_{\beta}\right)$ is an r_{z}-open set in X_{β} and hence f_{β} is R_{z}-supercontinuous.

Conversely, let $V=V_{\beta} \times \prod_{\alpha \neq \beta} Y_{\alpha}$ be a subbasic open set in the product space $\prod Y_{\alpha}$. Then $f^{-1}(V)=f^{-1}\left(V_{\beta} \times \prod_{\alpha \neq \beta} Y_{\alpha}\right)=f_{\beta}^{-1}\left(V_{\beta}\right) \times \prod_{\alpha \neq \beta} X_{\alpha}$. Since each f_{β} is R_{z}-supercontinuous, $f_{\beta}^{-1}\left(V_{\beta}\right)$ is an r_{z}-open subset of X_{β} and so $f^{-1}(V)$ is an r_{z}-open subset of $\prod_{\alpha \in \Lambda} X_{\alpha}$ and hence f is R_{z}-supercontinuous.

Theorem 4.14. Let $f, g: X \rightarrow Y$ be R_{z}-supercontinuous functions from a topological space X into a Hausdorff space Y. Then the equalizer $E=\{x \in X: f(x)=$ $g(x)\}$ of the functions f and g is an r_{z}-closed subset of X.

Proof. To prove that E is r_{z}-closed, we shall prove that its complement $X \backslash E$ is r_{z}-open. To this end, let $x \in X \backslash E$. Then $f(x) \neq g(x)$. Since Y is Hausdorff, there exist disjoint open sets U and V containing $f(x)$ and $g(x)$, respectively. Since f and g are R_{z}-supercontinuous, $f^{-1}(U)$ and $g^{-1}(V)$ are r_{z}-open sets containing x. Then $W=f^{-1}(U) \cap g^{-1}(V)$ is an r_{z}-open set containing x and $W \cap E=\emptyset$. Thus E is r_{z}-closed.

5. Topological properties and R_{z}-SUPERCONTINUITY

Theorem 5.1. Let $f: X \rightarrow Y$ be an R_{z}-supercontinuous open bijection. Then X and Y are homeomorphic R_{z}-spaces.

Proof. Let U be an open set in X and let $x \in U$. Then $f(U)$ is an open subset of Y containing $f(x)$. Now, since f is R_{z}-supercontinuous, there exists an r_{z}-open set G containing x such that $f(G) \subset f(U)$. Now, $x \in f^{-1}(f(G)) \subset f^{-1}(f(U))$. Again, since f is a bijection, $f^{-1}(f(G))=G$ and $f^{-1}(f(U))=U$. Thus U being expressible as a union of r_{z}-open sets is r_{z}-open and so X is an R_{z}-space. Since the property of being an R_{z}-space is a topological property and f is a homeomorphism, Y is also an R_{z}-space.

Theorem 5.2. Let $f: X \rightarrow Y$ be an R_{z}-supercontinuous injection into a $T_{0}{ }^{-}$ space Y. Then X is a functionally Hausdorff space.

Proof. Let $x, y \in X, x \neq y$. Then $f(x) \neq f(y)$. Since Y is a T_{0}-space, there exist an open set W in Y containing one of the points $f(x)$ and $f(y)$ but not both. For definiteness, assume that $f(x) \in W$. Then $f^{-1}(W)$ is an r_{z}-open set containing x but not y. So there exists a z-closed set C containing x but not y such that
$C \subset f^{-1}(W)$. Let $C=\bigcap_{\alpha \in \Lambda} Z_{\alpha}$, where each Z_{α} is a zero set. There exists $\alpha_{\circ} \in \Lambda$ such that $y \notin Z_{\alpha_{0}}$. Hence there exists a continuous function $h: X \rightarrow[0,1]$ such that $h(x)=0$ and $h(y) \neq 0$ and so X is functionally Hausdorff.

Corollary 5.3 ([15]). Let $f: X \rightarrow Y$ be a z-supercontinuous injection into a T_{0}-space Y. Then X is a functionally Hausdorff space.

Definitions 5.4. A space X is said to be
(i) r_{z}-regular if for every r_{z}-closed set A and a point $x \notin A$, there exist disjoint open sets U and V in X containing x and A, respectively;
(ii) r_{z}-completely regular if for every r_{z}-closed set A and a point $x \notin A$ there exists a continuous function $f: X \rightarrow[0,1]$ such that $f(x)=0$ and $f(A)=1$.

Remark 5.5. For the interested reader we point out that the properties of r_{z}-regular spaces and r_{z}-completely regular can be inferred directly by substituting for $P=$ the property of being an r_{z}-closed set in the relevant results pertaining to P-regular spaces and completely P-regular spaces in [13].

Theorem 5.6. Let $f: X \rightarrow Y$ be an R_{z}-supercontinuous open bijection from an r_{z}-regular space X onto Y. Then X and Y are homeomorphic regular spaces.

Proof. Let B be a closed subset of Y and $y \notin B$. Then $f^{-1}(y)$ is a singleton and $f^{-1}(y) \notin f^{-1}(B)$. Since f is R_{z}-supercontinuous, by Theorem 4.2 (iii) $f^{-1}(B)$ is an r_{z}-closed subset of X. In view of r_{z}-regularity of X, there exist disjoint open sets U and V containing $f^{-1}(y)$ and $f^{-1}(B)$, respectively. Since f is an open bijection, $f(U)$ and $f(V)$ are disjoint open sets containing y and B, respectively, and so Y is a regular space. Again, since regularity is a topological property and since f is a homeomorphism, X is also a regular space.

Definition 5.7. A function $f: X \rightarrow Y$ is said to be an R_{z}-homeomorphism if f is a bijection such that both f and f^{-1} are R_{z}-supercontinuous.

Theorem 5.8. Let $f: X \rightarrow Y$ be an R_{z}-homeomorphism from an r_{z}-completely regular space X onto Y. Then X and Y are homeomorphic completely regular spaces.

Proof. In view of f being a homeomorphism, it is sufficient to prove that Y is a completely regular space. To this end, let B be a closed set in Y and let y be a point outside B. Then $x=f^{-1}(y)$ is a singleton and x does not belong to the r_{z}-closed set $f^{-1}(B)$. Since X is an r_{z}-completely regular space, there exists a continuous function $h: X \rightarrow[0,1]$ such that $h(x)=0$ and $h\left(f^{-1}(B)\right)=1$. Let
$g=h \circ f^{-1}$. Since f is an R_{z}-homeomorphism, g is well defined and is a continuous function from Y into $[0,1]$, since h is continuous. Clearly, $g(y)=0$ and $g(F)=1$. Thus Y is a completely regular space.

6. Properties of graph of an R_{z}-Supercontinuous function

Definition 6.1. The graph $G(f)$ of a function $f: X \rightarrow Y$ is said to be r_{z}-closed with respect to X if for each $(x, y) \notin G(f)$ there exist open sets U and V containing x and y, respectively, such that U is r_{z}-open and $(U \times V) \cap G(f)=\emptyset$.

Theorem 6.2. If $f: X \rightarrow Y$ is an R_{z}-supercontinuous function and Y is Hausdorff, then the graph of f is r_{z}-closed with respect to X.

Proof. Let $x \in X$ and let $y \neq f(x)$. Since Y is Hausdorff, there exist disjoint open sets V and W containing y and $f(x)$, respectively. Again, since f is $R_{z^{-}}$ supercontinuous, there exists an r_{z}-open set U containing x such that $f(U) \subset W \subset$ $Y \backslash V$ and so $(U \times V) \cap G(f)=\emptyset$. Consequently, $G(f)$ is r_{z}-closed with respect to X.

Theorem 6.3. Let $f: X \rightarrow Y$ be an injection such that its graph is r_{z}-closed with respect to X. Then X is a functionally Hausdorff space.

Proof. Let $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$. Since f is an injection, $\left(x_{1}, f\left(x_{2}\right)\right) \notin G(f)$. Since the graph $G(f)$ is r_{z}-closed with respect to X, there exist open sets U and V containing x_{1} and $f\left(x_{2}\right)$, respectively, where U is r_{z}-open and $(U \times V) \cap G(f)=\emptyset$. Since U is r_{z}-open, let $U=\bigcup\left\{C_{\alpha}: \alpha \in \Lambda\right\}$, where each C_{α} is a z-closed set in X. Then $x_{1} \notin X \backslash U=\bigcap\left\{X \backslash C_{\alpha}: \alpha \in \Lambda\right\}$. Hence there exists a $\beta \in \Lambda$ such that $x_{1} \notin X \backslash C_{\beta}$. Let $C_{\beta}=\bigcap_{\gamma \in \Gamma} C_{\beta \gamma}$, where each $C_{\beta \gamma}$ is a zero set in X. Then $X \backslash C_{\beta}=$ $X \backslash \bigcap C_{\beta \gamma}=\bigcup_{\gamma \in \Gamma}\left(X \backslash C_{\beta \gamma}\right)$. So there exists some γ such that $x_{1} \in C_{\beta \gamma}$ and $x_{2} \notin C_{\beta \gamma}$. Thus there is a continuous function $h: X \rightarrow[0,1]$ such that $h\left(x_{1}\right)=0$ and $h\left(x_{2}\right) \neq 0$. So X is a functionally Hausdorff space.

Theorem 6.4. Let $f: X \rightarrow Y$ be a function such that its graph $G(f)$ is r_{z}-closed with respect to X. Then $f^{-1}(K)$ is r_{z}-closed in X for every compact subset K of Y.

Proof. Let K be a compact subset of Y. To prove that $f^{-1}(K)$ is r_{z}-closed, we shall prove that its complement $X \backslash f^{-1}(K)$ is an r_{z}-open subset of X. To this end, let $x \in X \backslash f^{-1}(K)$. Then $(x, z) \notin G(f)$ for every $z \in K$. Since the graph $G(f)$ is r_{z}-closed with respect to X, there exist an r_{z}-open set U_{z} containing x and an open
set V_{z} containing z such that $\left(U_{z} \times V_{z}\right) \cap G(f)=\emptyset$. The collection $\left\{V_{z}: z \in K\right\}$ is an open cover of the compact set K. So there exist finitely many $z_{1}, \ldots, z_{n} \in K$ such that $K \subset \bigcup\left\{V_{z_{i}}: i=1, \ldots, n\right\}$. Let $U=\bigcap_{i=1}^{n} U_{z_{i}}$. Then U is r_{z}-open and $f(U) \cap K=\emptyset$. Thus $U \subset X \backslash f^{-1}(K)$. So $X \backslash f^{-1}(K)$ being the union of r_{z}-open sets is r_{z}-open and so $f^{-1}(K)$ is r_{z}-closed.

7. r_{z}-QUOTIENT TOPOLOGY AND r_{z}-QUOTIENT SPACES

Several variants of quotient topology occur in the lore of mathematical literature, see [18], [20]. In this section we introduce a new variant of quotient topology which lies strictly between the r_{cl}-quotient topology [35] and the r-quotient topology [18] as well as between the z-quotient topology [15] and the r-quotient topology.

Definitions 7.1. Let $p: X \rightarrow Y$ be a surjection from a topological space X onto a set Y. The collection of all subsets $A \subset Y$ such that $p^{-1}(A)$ is
(i) r_{z}-open in X is a topology on Y and is called the r_{z}-quotient topology. The $\operatorname{map} p$ is called the r_{z}-quotient map and the set Y with the r_{z}-quotient topology is called the r_{z}-quotient space.
(ii) r_{cl}-open in X is a topology on Y and is called the r_{cl}-quotient topology and the map p is called the r_{cl}-quotient map.
(iii) z-open in X is a topology on Y and is called the z-quotient topology and the map p is called the z-quotient map.
(iv) r-open in X is a topology on Y and is called the r-quotient topology and the map p is called the r-quotient map.

The following diagram gives a quick comparison among the variants of quotient topologies defined in Definitions 7.1. For a detailed survey of the variants of quotient topologies in the literature and the interrelations among them we refer the interested reader to [18], [20].

However, none of the above inclusions is reversible in general as is shown by examples in [18], [20], [35] and the following example.

Example 7.2. Let $X=Y$ be the set of natural numbers and let X be endowed with the cofinite topology τ_{c}. Let f denote the identity function defined on X. Then the r-quotient topology on Y is identical with τ_{c}, while cl-quotient topology $=$ $r_{\mathrm{cl} \text {-quotient }}$ topology $=r_{z}$-quotient topology $=z$-quotient topology $=$ indiscrete topology.

Theorem 7.3. Let $p:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$ be a surjection, where τ_{2} is the r_{z}-quotient topology on Y. Then p is R_{z}-supercontinuous. Moreover, τ_{2} is the largest topology on Y which makes $p:\left(X, \tau_{1}\right) \rightarrow Y R_{z}$-supercontinuous.

The following result shows that a function out of an r_{z}-quotient space is continuous if and only if its composition with any r_{z}-quotient map is R_{z}-supercontinuous.

Theorem 7.4. Let $p: X \rightarrow Y$ be an r_{z}-quotient map. Then a function $g: Y \rightarrow Z$ is continuous if and only if $g \circ p$ is R_{z}-supercontinuous.

8. Change of topology and R_{z}-Supercontinuous functions

The technique of change of topology of a space is of considerable significance and widely used in topology, functional analysis and several other branches of mathematics. For example, weak and weak* topologies of a Banach space, weak and strong operator topologies on $\mathfrak{B}(H)$, the space of operators on a Hilbert space, the hull kernel topology and the multitude of other topologies on $\operatorname{Id}(A)$, the space of all closed two sided ideals of a Banach algebra A, see [3]-[5], [33]. Furthermore, to taste the flavour of applications of the technique of change in topology see [7]-[9], [14], [18], [30], [38].

Theorem 8.1. A topological space (X, τ) is an R_{z}-space if and only if $\tau=\tau_{r z}$.
In this section we retopologize the domain of an R_{z}-supercontinuous function such that it transforms into a continuous function with the new topology of the domain. Let (X, τ) be a topological space and let $\mathcal{B}_{r_{z}}$ denote the collection of all r_{z}-open subsets of (X, τ). Since arbitrary unions and finite intersections of r_{z}-open sets are r_{z}-open, the collection $\mathcal{B}_{r_{z}}$ is indeed a topology for X, which we denote by $\tau_{r z}$. Clearly $\tau_{r z} \subset \tau$ and the inclusion is proper if (X, τ) is not an R_{z}-space.

Theorem 8.2. A function $f:(X, \tau) \rightarrow(Y, \nu)$ is R_{z}-supercontinuous if and only if $f:\left(X, \tau_{r z}\right) \rightarrow(Y, \nu)$ is continuous.

Many of the results of the preceding sections now follow from Theorem 8.2 and the corresponding standard properties of continuous functions.

Theorem 8.3. For a topological space (X, τ) the following statements are equivalent.
(i) (X, τ) is an R_{z}-space.
(ii) Every continuous function $f:(X, \tau) \rightarrow(Y, \nu)$ from a space (X, τ) into (Y, ν) is R_{z}-supercontinuous.

Proof. (i) \Rightarrow (ii) is trivial.
(ii) \Rightarrow (i). Take $(Y, \nu)=(X, \tau)$. Then the identity function 1_{X} on X is continuous and so R_{z}-supercontinuous. Thus by Theorem 8.1, the identity function $1_{X}:\left(X, \tau_{r z}\right) \rightarrow(X, \tau)$ is continuous. Since $U \in \tau$ implies $1_{X}^{-1}(U)=U \in \tau_{r z}$, we have $\tau \subset \tau_{r z}$. Hence it follows that $\tau=\tau_{r z}$ and so (X, τ) is an R_{z}-space.

Definition 8.4. A function $f: X \rightarrow Y$ from a topological space X into a topological space Y is said to be R_{z}-continuous at $x \in X$ if for each r_{z}-open set V containing $f(x)$ there exists an open set U containing x such that $f(U) \subset V$. The function f is said to be R_{z}-continuous if it is R_{z}-continuous at each $x \in X$.

Theorem 8.5. For a function $f:(X, \tau) \rightarrow(Y, \nu)$, the following statements are true.
(i) f is R_{z}-continuous if and only if $f:(X, \tau) \rightarrow\left(Y, \nu_{r z}\right)$ is continuous.
(ii) f is R_{z}-open if and only if $f:\left(X, \tau_{r z}\right) \rightarrow(Y, \nu)$ is open.

In view of Theorems 8.2 and 8.5, Theorem 4.7 can be restated as follows:
If $f:\left(X, \tau_{r z}\right) \rightarrow(Y, \nu)$ is a continuous open surjection and $g:(Y, \nu) \rightarrow(Z, \omega)$ is a function, then g is continuous if and only if $g \circ f$ is continuous. Further, if f maps open (closed) sets to r_{z}-open (r_{z}-closed) sets, then g is R_{z}-supercontinuous.

Moreover, the r_{z}-quotient topology on Y determined by the function $f:(X, \tau) \rightarrow Y$ in Section 7 is identical with the standard quotient topology on Y determined by $f:\left(X, \tau_{r z}\right) \rightarrow Y$.

Remark 8.6. For the interested reader we point out that the properties of R_{z}-continuous functions can be inferred directly by simply substituting $P \equiv$ the property of being an r_{z}-closed set, in the relevant results pertaining to P-continuous functions and P^{*}-continuous functions in [10]-[12].

References

[1] R. A. Alò, H. L. Shapiro: Normal Topological Spaces. Cambridge Tracts in Mathematics 65, Cambridge University Press, Cambridge, 1974.
zbl MR
[2] C.E. Aull: Functionally regular spaces. Nederl. Akad. Wet., Proc., Indag. Math. 38, Ser. A 79 (1976), 281-288.
zbl MR
[3] F. Beckhoff: Topologies on the ideal space of a Banach algebra and spectral synthesis. Proc. Am. Math. Soc. 125 (1997), 2859-2866.
zbl MR
[4] F. Beckhoff: Topologies of compact families on the ideal space of a Banach algebra. Stud. Math. 118 (1996), 63-75.
zbl MR
[5] F. Beckhoff: Topologies on the space of ideals of a Banach algebra. Stud. Math. 115 (1995), 189-205.
zbl MR
[6] R. L. Blair, A. W. Hager: Extensions of zero-sets and of real-valued functions. Math. Z. 136 (1974), 41-52.
zbl MR
[7] D. B. Gauld, M. Mršević, I. L. Reilly, M. K. Vamanamurthy: Continuity properties of functions. Topology, Theory and Applications (Á. Császár, ed.). 5th Colloq., Eger, Hungary, 1983, Colloq. Math. Soc. János Bolyai 41, North-Holland, Amsterdam; János Bolyai Mathematical Society, Budapest, 1985, pp. 311-322.
zbl MR
[8] A. M. Gleason: Universal locally connected refinements. Ill. J. Math. 7 (1963), 521-531. zbl MR
[9] J. K. Kohli: Change of topology, characterizations and product theorems for semilocally P-spaces. Houston J. Math. 17 (1991), 335-350.
zbl MR
[10] J. K. Kohli: A framework including the theories of continuous functions and certain noncontinuous functions. Note Mat. 10 (1990), 37-45.
zbl MR
[11] J. K. Kohli: A unified approach to continuous and certain noncontinuous functions. I. J. Aust. Math. Soc., Ser. A 48 (1990), 347-358.
zbl MR
[12] J. K. Kohli: A unified approach to continuous and certain noncontinuous functions. II. Bull. Aust. Math. Soc. 41 (1990), 57-74.
zbl MR
[13] J. K. Kohli: A unified view of (complete) regularity and certain variants of (complete) regularity. Can. J. Math. 36 (1984), 783-794.
zbl MR
[14] J. K. Kohli: A class of mappings containing all continuous and all semiconnected mappings. Proc. Am. Math. Soc. 72 (1978), 175-181.
zbl MR
[15] J. K. Kohli, R. Kumar: z-supercontinuous functions. Indian J. Pure Appl. Math. 33 (2002), 1097-1108.
zbl MR
[16] J. K. Kohli, D. Singh: D_{δ}-supercontinuous functions. Indian J. Pure Appl. Math. 34 (2003), 1089-1100.
zbl MR
[17] J. K. Kohli, D. Singh: D-supercontinuous functions. Indian J. Pure Appl. Math. 32 (2001), 227-235.
zbl MR
[18] J. K. Kohli, D. Singh, J. Aggarwal: R-supercontinuous functions. Demonstr. Math. (electronic only) 43 (2010), 703-723.
[19] J. K. Kohli, D. Singh, J. Aggarwal: F-supercontinuous functions. Appl. Gen. Topol. (electronic only) 10 (2009), 69-83.
zbl MR
zbl MR
[20] J. K. Kohli, D. Singh, R. Kumar: Some properties of strongly θ-continuous functions. Bull. Calcutta Math. Soc. 100 (2008), 185-196.
[21] J. K. Kohli, B. K. Tyagi, D. Singh, J. Aggarwal: R_{δ}-supercontinuous functions. Demonstr. Math. (electronic only) 47 (2014), 433-448.
[22] N. Levine: Strong, continuity in topological spaces. Am. Math. Mon. 67 (1960), 269.
[23] P. E. Long, L. L. Herrington: Strongly θ-continuous functions. J. Korean Math. Soc. 18 (1981), 21-28.
[24] J. Mack: Countable paracompactness and weak normality properties. Trans. Am. Math. Soc. 148 (1970), 265-272.
[25] B. M. Munshi, D. S. Bassan: Super-continuous mappings. Indian J. Pure Appl. Math. 13 (1982), 229-236.
zbl MR
[26] T. Noiri: Supercontinuity and some strong forms of continuity. Indian J. Pure Appl. Math. 15 (1984), 241-250.
zbl MR
[27] T. Noiri: On δ-continuous functions. J. Korean Math. Soc. 16 (1980), 161-166.
zbl MR
[28] I. L. Reilly, M. K. Vamanamurthy: On super-continuous mappings. Indian J. Pure Appl. Math. 14 (1983), 767-772.
[29] M. K. Singal, S. B. Nimse: z-continuous mappings. Math. Stud. 66 (1997), 193-210.
[30] D. Singh: cl-supercontinuous functions. Appl. Gen. Topol. 8 (2007), 293-300.
zbl MR
[31] D. Singh: D^{*}-supercontinuous functions. Bull. Calcutta Math. Soc. 94 (2002), 67-76.
zbl MR
[32] D. Singh, J. K. Kohli: Separation axioms between functionally regular spaces and R_{0}-spaces. Submitted to Sci. Stud. Res., Ser. Math. Inform.
[33] D. W. B. Somerset: Ideal spaces of Banach algebras. Proc. Lond. Math. Soc. (3) 78 (1999), 369-400.
[34] L. A. Steen, J. A. Seebach, Jr.: Counterexamples in Topology. Springer, New York, 1978.
[35] B. K. Tyagi, J. K. Kohli, D. Singh: $R_{\text {cl-supercontinuous functions. Demonstr. Math. }}$ (electronic only) 46 (2013), 229-244.
zbl MR
[36] W. T. van Est, H. Freudenthal: Trennung durch stetige Funktionen in topologischen Räumen. Nederl. Akad. Wet., Proc., Indagationes Math. 13, Ser. A 54 (1951), 359-368. (In German.)
[37] N. V. Veličko: H-closed topological spaces. Transl., Ser. 2, Am. Math. Soc. 78 (1968), 103-118; translation from Russian original, Mat. Sb. (N.S.), 70 (1966), 98-112.
[38] G.S. Young, Jr.: The introduction of local connectivity by change of topology. Am. J. Math. 68 (1946), 479-494.

Authors' addresses: Davinder Singh, Department of Mathematics, Sri Aurobindo College, University of Delhi, Shivalik, Malviya Nagar, New Delhi-110017, India, e-mail: dstopology@rediffmail.com; Brij Kishore Tyagi, Department of Mathematics, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi-110021, India, e-mail: brijkishore.tyagi@gmail.com; Jeetendra Aggarwal, Department of Mathematics, Shivaji College, University of Delhi, Ring Road, Raja Garden, New Delhi-110027, India, e-mail: jitenaggarwal@gmail.com; Jogendra K. Kohli, Department of Mathematics, Hindu College, University of Delhi, University Enclave, Delhi-110007, India, e-mail: jk_kohli@ yahoo.co.in.

