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Abstract. A new class of functions called “Rz-supercontinuous functions” is introduced.
Their basic properties are studied and their place in the hierarchy of strong variants of
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functions properly includes the class of Rcl-supercontinuous functions, Tyagi, Kohli, Singh
(2013), which in its turn contains the class of cl-supercontinuous (≡ clopen continuous)
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1. Introduction

Strong forms of continuity arise naturally in diverse situations in mathematics

and applications of mathematics. For example in many circumstances in geometry,

analysis, topology and topologico-analytic situations continuity is not sufficient and

a condition stronger than continuity is required to meet the demand of a paricular

situation. Hence it is of considerable significance both from intrinsic interest as well

as from the applications view point to formulate and study new strong variants of

continuity. Several of such strong variants of continuity occur in the lore of mathe-

matical literature. For example, see [15]–[19], [21]–[23], [25], [26], [28], [30], [31]. The

purpose of the present paper is to introduce one such strong form of continuity called

“Rz-supercontinuity” and study its basic properties. We discuss the interrelations

and interconnections of “Rz-supercontinuity” with other strong variants of continu-
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ity that already exist in mathematical literature. The class of Rz-supercontinuous

functions properly contains the class of Rcl-supercontinuous functions [35] which in

its turn strictly contains the class of cl-supercontinuous (≡ clopen continuous) func-

tions [28], [30] and is properly contained in the class of Rδ-supercontinuous functions

[21] which is strictly contained in the class of R-supercontinuous functions [18].

The organization of the paper is as follows: Section 2 is devoted to basic definitions

and preliminaries. In Section 3 we introduce the notion of an “Rz-supercontinuous

function” and discuss its place in the hierarchy of strong variants of continuity that

already exist in the literature. Examples are included to reflect upon the distinc-

tiveness of notions so introduced from the existing ones. Basic properties of Rz-

supercontinuous functions are studied in Section 4, wherein it is shown that (i) Rz-

supercontinuity is stable under the restrictions, shrinking and expansion of range and

composition of functions; (ii) a function into a product space is Rz-supercontinuous

if and only if its composition with each projection map is Rz-supercontinuous; and

(iii) if X is an Rz-space, then f is Rz-supercontinuous if and only if its graph

function g is Rz-supercontinuous. The interplay between topological properties and

Rz-supercontinuous functions is investigated in Section 5. In Section 6 properties

of graphs of Rz-supercontinuous functions are studied. The notion of rz-quotient

topology is introduced in Section 7. In Section 8 we retopologize the domain of

an Rz-supercontinuous function in such a way that it is simply a continuous func-

tion and conclude with alternative proofs of certain results of the preceding sec-

tions.

2. Basic definitions and preliminaries

A subset H of a space X is called a regular Gδ-set [24] if H is the intersection

of a sequence of closed sets whose interiors contain H , i.e. H =
∞
⋂

n=1

Fn =
∞
⋂

n=1

F o
n ,

where each Fn is a closed subset of X . The complement of a regular Gδ-set is called

a regular Fσ-set. An open set U of a space X is said to be F -open [19] (r-open [18])

if for each x ∈ U there exists a zero (closed) set Z in X such that x ∈ Z ⊂ U ,

equivalently if U is expressible as a union of zero (closed) sets in X . A subset A of

a space X is said to be regular open if it is the interior of its closure, i.e. A = A
o
. The

complement of a regular open set is referred to as regular closed. Any intersection

of regular closed (clopen) sets is called a δ-closed [37] (cl-closed [30]) set and any

intersection of zero sets is called a z-closed set [29]. An open set U in X is said to be

rδ-open [21] (rcl-open [35]) if for each x ∈ U there exists a δ-closed (cl-closed) set A

containing x such that A ⊂ U , equivalently U is expressible as a union of δ-closed

(cl-closed) sets.
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Next we include definitions of those strong variants of continuity which already

exist in the literature and are related to the theme of the present paper.

Definitions 2.1. A function f : X → Y from a topological space X into a topo-

logical space Y is said to be

(a) strongly continuous [22] if f(A) ⊂ f(A) for each subset A of X ;

(b) perfectly continuous [26] if f−1(V ) is clopen in X for every open set V ⊂ Y ;

(c) cl-supercontinuous [30] (≡ clopen continuous [28]) if for each x ∈ X and each

open set V containing f(x), there is a clopen set U containing x such that

f(U) ⊂ V ;

(d) z-supercontinuous [15] (Dδ-supercontinuous [16], D-supercontinuous [17]) if for

each x ∈ X and for each open set V containing f(x), there exists a cozero

(regular Fσ, open Fσ) set U containing x such that f(U) ⊂ V ;

(e) strongly θ-continuous [23], [27] if for each x ∈ X and for each open set V

containing f(x), there exists an open set U containing x such that f(U) ⊂ V ;

(f) F -supercontinuous [19], R-supercontinuous [18], or Rcl-supercontinuous [35] if

for each x ∈ X and each open set V containing f(x), there exists respectively

an F -open, r-open, or rcl-open set U containing x such that f(U) ⊂ V ;

(g) supercontinuous [25] if for each x ∈ X and for each open set V containing f(x),

there exists a regular open set U containing x such that f(U) ⊂ V ;

(h) Rδ-supercontinuous [21] if for each x ∈ X and for each open set V containing

f(x), there exists an rδ-open set U containing x such that f(U) ⊂ V .

3. Rz-supercontinuous functions

Let X be a topological space. An open subset U of a space X is said to be rz-open

if for each x ∈ U there exists a z-closed set Cx such that x ∈ Cx ⊂ U , equivalently

U is expressible as a union of z-closed sets. Every rcl-open set as well as every

F -open set are rz-open and every rz-open set is rδ-open which in its turn is r-open.

However, reverse implications are not true in general. For example, if X denotes the

real line endowed with the usual topology, then every open set in X is F -open and

so rz-open but not rcl-open. Similarly, if Y denotes the real line with the cofinite

topology, then every open set in Y is r-open but not necessarily rδ-open and so not

rz-open.

Definition 3.1. A function f : X → Y from a topological space X into a topo-

logical space Y is said to be Rz-supercontinuous at a point x ∈ X , if for each open

set V containing f(x) there exists an rz-open set U containing x such that f(U) ⊂ V .
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The function f is said to be Rz-supercontinuous, if it is Rz-supercontinuous at each

x ∈ X .

We reproduce the following diagram from [35] (with a slight extension) which

well illustrates the place of Rz-supercontinuity in the hierarchy of strong variants of

continuity that already exist in the literature and are related to the theme of the

present paper.

perfectly continuous

��

strongly continuousoo

cl-supercontinuous

��

// Rcl-supercontinuous

��

z-supercontinuous

��

// F -supercontinuous // Rz-supercontinuous

��

Dδ-supercontinuous

��

// strongly θ-continuous

��

// Rδ-supercontinuous

��
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However, none of the above implications is reversible as is shown by examples in

[16], [18], [19], [21], [35] and Remark 3.3 below.

Definitions 3.2. A topological space X is said to be

(i) functionally regular [2], [36] if for each closed set A and each x /∈ A there exists

a continuous real-valued function f defined on X such that f(x) /∈ f(A);

(ii) an Rz-space [32] if for each open set U in X and each x ∈ U there exists a z-

closed set A such that x ∈ A ⊂ U ; equivalently U is expressible as a union of

z-closed sets.

R em a r k 3.3. If X is an Rz-space, then every continuous function f : X → Y

is Rz-supercontinuous. In particular, if X is a functionally regular space, then every

continuous function f defined onX is F -supercontinuous and so Rz-supercontinuous.
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4. Basic properties of Rz-supercontinuous functions

Definition 4.1. Let X be a topological space and let A ⊂ X . A point x ∈ X is

said to be an rz-adherent point of A if every rz-open set containing x intersects A.

Let Arz denote the set of all rz-adherent points of the set A. The set A is rz-closed

if and only if A = Arz . Moreover, A ⊂ A ⊂ Arz .

Theorem 4.2. For a function f : X → Y from a topological space X into a topo-

logical space Y , the following statements are equivalent.

(i) f is Rz-supercontinuous.

(ii) f−1(V ) is rz-open for every open set V ⊂ Y .

(iii) f−1(B) is rz-closed for every closed set B ⊂ Y .

(iv) f−1(S) is rz-open for every subbasic open set S ⊂ Y .

(v) f(Arz) ⊂ f(A) for every set A ⊂ X .

(vi) (f−1(B))rz ⊂ f−1(B) for every set B ⊂ Y .

Definition 4.3. A filter base F is said to Rz-converge to a point x ∈ X (written

as F
Rz−→ x) if every rz-open set containing x contains a member of F .

Theorem 4.4. A function f : X → Y is Rz-supercontinuous if and only if

f(F) → f(x) for each x ∈ X and each filter base F in X which Rz-converges

to x.

P r o o f. Suppose that f is Rz-supercontinuous and that F is a filter base in X

that Rz-converges to x ∈ X . Let W be any open set in Y containing f(x). By

Theorem 4.2 (ii), f−1(W ) is an rz-open set containing x. Since the filter base F

Rz-converges to x, there exists an F ∈ F such that F ⊂ f−1(W ) and so f(F ) ⊂ W .

Thus f(F) → f(x).

Conversely, let W be an open subset of Y containing f(x). Let Fx denote the set

of all rz-open subsets of X containing x. Clearly, Fx is a filter base in X which Rz

converges to x. By hypothesis f(Fx) → f(x) and so there exists a member F ∈ Fx

such that f(F ) ⊂ W . Since F is an rz-open set containing x, f isRz-supercontinuous.

�

Theorem 4.5. Let f : X → Y be an Rz-supercontinuous function and g : Y → Z

a continuous function. Then their composition g ◦ f is Rz-supercontinuous. In par-

ticular, the composition of two Rz-supercontinuous functions is Rz-supercontinuous.

Definition 4.6. A function f : X → Y is said to be Rz-open (Rz-closed) if the

image of every rz-open (rz-closed) set in X is open (closed) in Y .
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Clearly every open (closed) function isRz-open (Rz-closed). However, the converse

is not true in general.

Theorem 4.7. Let f : X → Y be an Rz-open (Rz-closed), Rz-supercontinuous

surjection and let g : Y → Z be any function. Then g ◦ f is Rz-supercontinuous if

and only if g is continuous. Further, if in addition f maps rz-open (rz-closed) sets

to rz-open (rz-closed) sets, then g is Rz-supercontinuous.

Definition 4.8 ([1], [6]). A subset S of a space X is said to be z-embedded in X

if every zero (cozero) set in S is the intersection of a zero (cozero) set in X with S.

Theorem 4.9. Let f : X → Y be a function. The following statements are true.

(a) If f is Rz-supercontinuous and if A is a subspace of X , then the restriction

function f |A : A → Y is Rz-supercontinuous.

(b) Let {Uα : α ∈ Λ} be a cover of X by rz-open sets such that each Uα is z-

embedded in X . If fα = f |Uα : Uα → Y is Rz-supercontinuous for each α,

then f is Rz-supercontinuous.

(c) Let X =
n
⋃

i=1

Fi, where each Fi is an rz-closed z-embedded set in X . If for each i,

fi|Fi is Rz-supercontinuous, then f is Rz-supercontinuous.

P r o o f. (a) Let W be any open set in Y . Since f is an Rz-supercontinuous

function, f−1(W ) is an rz-open set in X . Suppose f−1(W ) =
⋃

Wα, where each

Wα is a z-closed in X and let Wα =
⋂

Wαβ , where each Wαβ
is a zero set in X . So

each Wαβ ∩ A is a zero set in A. Now (f |A)−1(W ) = f−1(W ) ∩ A =
⋃

(Wα ∩ A) =
⋃

((
⋂

Wαβ)∩A) =
⋃⋂

(Wαβ∩A). Thus (f |A)−1(W ) is an rz-open set being an open

set which is the union of z-closed sets and so f |A is Rz-supercontinuous.

(b) Let W be an open subset of Y . Then f−1(W ) =
⋃

{f−1
α (W ) : α ∈ Λ}. Since

each fα is Rz-supercontinuous, f
−1
α (W ) is an rz-open set in Uα. Let f

−1
α (W ) =

⋃

Wαβ , where each Wαβ is a z-closed set in Uα. Let Wαβ =
⋂

Wαβγ , where each

Wαβγ is a zero set in Uα. Since Uα is z-embedded in X , there exists a zero set W
∗
αβγ

in X such that Wαβγ = W ∗
αβγ ∩ Uα. Now Wαβ =

⋂

(W ∗
αβγ ∩ Uα) = (

⋂

W ∗
αβγ) ∩ Uα.

Let
⋂

W ∗
αβγ = W ∗

αβ , which is an rz-open set in X . Again, f
−1
α (W ) = (

⋃

W ∗
αβ)∩Uα.

Since arbitrary unions and finite intersections of rz-open sets are rz-open, f
−1
α (W )

is an rz-open set in X and so f is Rz-supercontinuous.

(c) Let F be any closed subset of Y . Then f−1(F ) =
n
⋃

i=1

f−1

i (F ). Since each fi

is Rz-supercontinuous, each f−1

i (F ) is an rz-closed set in Fi. Again, since each Fi

is z-embedded in X , it is routine to verify that f−1

i (F ) is an rz-closed set in X .

Since a finite union of rz-closed sets is rz-closed, f
−1(F ) is rz-closed and hence f is

Rz-supercontinuous. �
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It is easily verified that Rz-supercontinuity is stable under the shrinking and ex-

pansion of range.

Theorem 4.10. A function into a product space is Rz-supercontinuous if and

only if its composition with each projection map is Rz-supercontinuous.

P r o o f. Suppose that the function f : X →
∏

α∈Λ

Xα is Rz-supercontinuous. Let

fα = πα ◦ f , where πα :
∏

α∈Λ

Xα → Xα denotes the projection onto the α-coordinate

space Xα. Since projection maps are continuous, in view of Theorem 4.5, each fα is

a Rz-supercontinuous.

Conversely, suppose that each πα ◦f = fα : X → Xα is Rz-supercontinuous. Since

arbitrary unions and finite intersections of rz-open sets are rz-open, to show that

f is Rz-supercontinuous, it suffices to show that the inverse image under f of every

subbasic open set in
∏

α∈Λ

Xα is rz-open in X . Let Vβ×
∏

α6=β

Xα be a subbasic open set

in
∏

α∈Λ

Xα. Then f−1

(

Vβ ×
∏

α6=β

Xα

)

= f−1(π−1

β (Vβ)) = f−1

β (Vβ) is rz-open in X .

So f is Rz-supercontinuous. �

Theorem 4.11. Let f : X → Y be any function and let g : X → X × Y be the

graph function defined by g(x) = (x, f(x)) for each x ∈ X . Then g is Rz-super-

continuous if and only if f is Rz-supercontinuous and X is an Rz-space.

P r o o f. Observe that g = 1X×f , where 1X denotes the identity function defined

on X . Now by Theorem 4.10, g is Rz-supercontinuous if and only if both 1X and f

are Rz-supercontinuous. Again, 1X is Rz-supercontinuous implies that every open

set in X is rz-open. Hence X is an Rz-space. �

R em a r k 4.12. The hypothesis of “Rz-space” in Theorem 4.11 cannot be omit-

ted. For let X = R be the real line with the right ray topology [34] and Y the

real line with the indiscrete topology. Let f : X → Y be the identity function.

Clearly f is Rz-supercontinuous but the graph function g : X → X × Y is not

Rz-supercontinuous.

Theorem 4.13. Let f :
∏

α∈Λ

Xα →
∏

α∈Λ

Yα be a mapping defined by f((xα)) =

(fα(xα)), where fα : Xα → Yα for each α ∈ Λ. Then f is Rz-supercontinuous if and

only if each fα is Rz-supercontinuous.

P r o o f. To prove necessity, let Vβ be any open set in Yβ . Then π−1

β (Vβ) =

Vβ ×
∏

α6=β

Yα is a subbasic open set in
∏

α∈Λ

Yα. Now since f is Rz-supercontinuous,
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f−1(π−1

β (Vβ)) = f−1

β (Vβ)×
(

∏

α6=β

Xα

)

is an rz-open set in
∏

α∈Λ

Xα. Thus f
−1

β (Vβ) is

an rz-open set in Xβ and hence fβ is Rz-supercontinuous.

Conversely, let V = Vβ ×
∏

α6=β

Yα be a subbasic open set in the product space

∏

Yα. Then f−1(V ) = f−1

(

Vβ ×
∏

α6=β

Yα

)

= f−1

β (Vβ) ×
∏

α6=β

Xα. Since each fβ is

Rz-supercontinuous, f
−1

β (Vβ) is an rz-open subset ofXβ and so f
−1(V ) is an rz-open

subset of
∏

α∈Λ

Xα and hence f is Rz-supercontinuous. �

Theorem 4.14. Let f, g : X → Y be Rz-supercontinuous functions from a topo-

logical space X into a Hausdorff space Y . Then the equalizer E = {x ∈ X : f(x) =

g(x)} of the functions f and g is an rz-closed subset of X .

P r o o f. To prove that E is rz-closed, we shall prove that its complement X \ E

is rz-open. To this end, let x ∈ X \ E. Then f(x) 6= g(x). Since Y is Hausdorff,

there exist disjoint open sets U and V containing f(x) and g(x), respectively. Since

f and g are Rz-supercontinuous, f
−1(U) and g−1(V ) are rz-open sets containing x.

Then W = f−1(U) ∩ g−1(V ) is an rz-open set containing x and W ∩ E = ∅. Thus

E is rz-closed. �

5. Topological properties and Rz-supercontinuity

Theorem 5.1. Let f : X → Y be an Rz-supercontinuous open bijection. Then

X and Y are homeomorphic Rz-spaces.

P r o o f. Let U be an open set in X and let x ∈ U . Then f(U) is an open subset

of Y containing f(x). Now, since f is Rz-supercontinuous, there exists an rz-open

set G containing x such that f(G) ⊂ f(U). Now, x ∈ f−1(f(G)) ⊂ f−1(f(U)).

Again, since f is a bijection, f−1(f(G)) = G and f−1(f(U)) = U . Thus U being

expressible as a union of rz-open sets is rz-open and so X is an Rz-space. Since the

property of being an Rz-space is a topological property and f is a homeomorphism,

Y is also an Rz-space. �

Theorem 5.2. Let f : X → Y be an Rz-supercontinuous injection into a T0-

space Y . Then X is a functionally Hausdorff space.

P r o o f. Let x, y ∈ X , x 6= y. Then f(x) 6= f(y). Since Y is a T0-space, there

exist an open set W in Y containing one of the points f(x) and f(y) but not both.

For definiteness, assume that f(x) ∈ W . Then f−1(W ) is an rz-open set containing

x but not y. So there exists a z-closed set C containing x but not y such that
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C ⊂ f−1(W ). Let C =
⋂

α∈Λ

Zα, where each Zα is a zero set. There exists α◦ ∈ Λ

such that y /∈ Zα◦
. Hence there exists a continuous function h : X → [0, 1] such that

h(x) = 0 and h(y) 6= 0 and so X is functionally Hausdorff. �

Corollary 5.3 ([15]). Let f : X → Y be a z-supercontinuous injection into

a T0-space Y . Then X is a functionally Hausdorff space.

Definitions 5.4. A space X is said to be

(i) rz-regular if for every rz-closed set A and a point x /∈ A, there exist disjoint

open sets U and V in X containing x and A, respectively;

(ii) rz-completely regular if for every rz-closed set A and a point x /∈ A there exists

a continuous function f : X → [0, 1] such that f(x) = 0 and f(A) = 1.

R em a r k 5.5. For the interested reader we point out that the properties of

rz-regular spaces and rz-completely regular can be inferred directly by substituting

for P = the property of being an rz-closed set in the relevant results pertaining to

P -regular spaces and completely P -regular spaces in [13].

Theorem 5.6. Let f : X → Y be an Rz-supercontinuous open bijection from

an rz-regular space X onto Y . Then X and Y are homeomorphic regular spaces.

P r o o f. Let B be a closed subset of Y and y 6∈ B. Then f−1(y) is a singleton and

f−1(y) 6∈ f−1(B). Since f is Rz-supercontinuous, by Theorem 4.2 (iii) f
−1(B) is

an rz-closed subset of X . In view of rz-regularity of X , there exist disjoint open sets

U and V containing f−1(y) and f−1(B), respectively. Since f is an open bijection,

f(U) and f(V ) are disjoint open sets containing y and B, respectively, and so Y

is a regular space. Again, since regularity is a topological property and since f is

a homeomorphism, X is also a regular space. �

Definition 5.7. A function f : X → Y is said to be an Rz-homeomorphism if f

is a bijection such that both f and f−1 are Rz-supercontinuous.

Theorem 5.8. Let f : X → Y be an Rz-homeomorphism from an rz-completely

regular space X onto Y . Then X and Y are homeomorphic completely regular

spaces.

P r o o f. In view of f being a homeomorphism, it is sufficient to prove that Y

is a completely regular space. To this end, let B be a closed set in Y and let y

be a point outside B. Then x = f−1(y) is a singleton and x does not belong to

the rz-closed set f
−1(B). Since X is an rz-completely regular space, there exists

a continuous function h : X → [0, 1] such that h(x) = 0 and h(f−1(B)) = 1. Let
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g = h ◦ f−1. Since f is an Rz-homeomorphism, g is well defined and is a continuous

function from Y into [0, 1], since h is continuous. Clearly, g(y) = 0 and g(F ) = 1.

Thus Y is a completely regular space. �

6. Properties of graph of an Rz-supercontinuous function

Definition 6.1. The graph G(f) of a function f : X → Y is said to be rz-closed

with respect to X if for each (x, y) 6∈ G(f) there exist open sets U and V containing

x and y, respectively, such that U is rz-open and (U × V ) ∩G(f) = ∅.

Theorem 6.2. If f : X → Y is an Rz-supercontinuous function and Y is Haus-

dorff, then the graph of f is rz-closed with respect to X .

P r o o f. Let x ∈ X and let y 6= f(x). Since Y is Hausdorff, there exist disjoint

open sets V and W containing y and f(x), respectively. Again, since f is Rz-

supercontinuous, there exists an rz-open set U containing x such that f(U) ⊂ W ⊂

Y \ V and so (U × V ) ∩ G(f) = ∅. Consequently, G(f) is rz-closed with respect

to X . �

Theorem 6.3. Let f : X → Y be an injection such that its graph is rz-closed

with respect to X . Then X is a functionally Hausdorff space.

P r o o f. Let x1, x2 ∈ X , x1 6= x2. Since f is an injection, (x1, f(x2)) /∈ G(f).

Since the graph G(f) is rz-closed with respect to X , there exist open sets U and V

containing x1 and f(x2), respectively, where U is rz-open and (U × V ) ∩G(f) = ∅.

Since U is rz-open, let U =
⋃

{Cα : α ∈ Λ}, where each Cα is a z-closed set in X .

Then x1 /∈ X \ U =
⋂

{X \ Cα : α ∈ Λ}. Hence there exists a β ∈ Λ such that

x1 /∈ X \Cβ . Let Cβ =
⋂

γ∈Γ

Cβγ , where each Cβγ is a zero set in X . Then X \Cβ =

X \
⋂

Cβγ =
⋃

γ∈Γ

(X \Cβγ). So there exists some γ such that x1 ∈ Cβγ and x2 /∈ Cβγ .

Thus there is a continuous function h : X → [0, 1] such that h(x1) = 0 and h(x2) 6= 0.

So X is a functionally Hausdorff space. �

Theorem 6.4. Let f : X → Y be a function such that its graph G(f) is rz-closed

with respect to X . Then f−1(K) is rz-closed in X for every compact subset K of Y .

P r o o f. Let K be a compact subset of Y . To prove that f−1(K) is rz-closed, we

shall prove that its complement X \ f−1(K) is an rz-open subset of X . To this end,

let x ∈ X \ f−1(K). Then (x, z) 6∈ G(f) for every z ∈ K. Since the graph G(f) is

rz-closed with respect to X , there exist an rz-open set Uz containing x and an open
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set Vz containing z such that (Uz × Vz) ∩ G(f) = ∅. The collection {Vz : z ∈ K}

is an open cover of the compact set K. So there exist finitely many z1, . . . , zn ∈ K

such that K ⊂
⋃

{Vzi : i = 1, . . . , n}. Let U =
n
⋂

i=1

Uzi . Then U is rz-open and

f(U) ∩K = ∅. Thus U ⊂ X \ f−1(K). So X \ f−1(K) being the union of rz-open

sets is rz-open and so f
−1(K) is rz-closed. �

7. rz-quotient topology and rz-quotient spaces

Several variants of quotient topology occur in the lore of mathematical literature,

see [18], [20]. In this section we introduce a new variant of quotient topology which

lies strictly between the rcl-quotient topology [35] and the r-quotient topology [18]

as well as between the z-quotient topology [15] and the r-quotient topology.

Definitions 7.1. Let p : X → Y be a surjection from a topological space X onto

a set Y . The collection of all subsets A ⊂ Y such that p−1(A) is

(i) rz-open in X is a topology on Y and is called the rz-quotient topology. The

map p is called the rz-quotient map and the set Y with the rz-quotient topology

is called the rz-quotient space.

(ii) rcl-open in X is a topology on Y and is called the rcl-quotient topology and the

map p is called the rcl-quotient map.

(iii) z-open in X is a topology on Y and is called the z-quotient topology and the

map p is called the z-quotient map.

(iv) r-open in X is a topology on Y and is called the r-quotient topology and the

map p is called the r-quotient map.

The following diagram gives a quick comparison among the variants of quotient

topologies defined in Definitions 7.1. For a detailed survey of the variants of quotient

topologies in the literature and the interrelations among them we refer the interested

reader to [18], [20].

cl-quotient topology ⊂ rcl-quotient topology

∩ ∩

z-quotient topology ⊂ rz-quotient topology

∩

quotient topology ⊃ r-quotient topology

However, none of the above inclusions is reversible in general as is shown by

examples in [18], [20], [35] and the following example.
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E x am p l e 7.2. Let X = Y be the set of natural numbers and let X be endowed

with the cofinite topology τc. Let f denote the identity function defined on X .

Then the r-quotient topology on Y is identical with τc, while cl-quotient topology =

rcl-quotient topology = rz-quotient topology = z-quotient topology = indiscrete

topology.

Theorem 7.3. Let p : (X, τ1) → (X, τ2) be a surjection, where τ2 is the

rz-quotient topology on Y . Then p is Rz-supercontinuous. Moreover, τ2 is the

largest topology on Y which makes p : (X, τ1) → Y Rz-supercontinuous.

The following result shows that a function out of an rz-quotient space is continuous

if and only if its composition with any rz-quotient map is Rz-supercontinuous.

Theorem 7.4. Let p : X → Y be an rz-quotient map. Then a function g : Y → Z

is continuous if and only if g ◦ p is Rz-supercontinuous.

8. Change of topology and Rz-supercontinuous functions

The technique of change of topology of a space is of considerable significance and

widely used in topology, functional analysis and several other branches of mathemat-

ics. For example, weak and weak∗ topologies of a Banach space, weak and strong

operator topologies on B(H), the space of operators on a Hilbert space, the hull ker-

nel topology and the multitude of other topologies on Id(A), the space of all closed

two sided ideals of a Banach algebra A, see [3]–[5], [33]. Furthermore, to taste the

flavour of applications of the technique of change in topology see [7]–[9], [14], [18],

[30], [38].

Theorem 8.1. A topological space (X, τ) is an Rz-space if and only if τ = τrz.

In this section we retopologize the domain of an Rz-supercontinuous function such

that it transforms into a continuous function with the new topology of the domain.

Let (X, τ) be a topological space and let Brz denote the collection of all rz-open

subsets of (X, τ). Since arbitrary unions and finite intersections of rz-open sets are

rz-open, the collection Brz is indeed a topology for X , which we denote by τrz.

Clearly τrz ⊂ τ and the inclusion is proper if (X, τ) is not an Rz-space.

Theorem 8.2. A function f : (X, τ) → (Y, ν) is Rz-supercontinuous if and only

if f : (X, τrz) → (Y, ν) is continuous.

Many of the results of the preceding sections now follow from Theorem 8.2 and

the corresponding standard properties of continuous functions.
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Theorem 8.3. For a topological space (X, τ) the following statements are equiv-

alent.

(i) (X, τ) is an Rz-space.

(ii) Every continuous function f : (X, τ) → (Y, ν) from a space (X, τ) into (Y, ν) is

Rz-supercontinuous.

P r o o f. (i) ⇒ (ii) is trivial.

(ii) ⇒ (i). Take (Y, ν) = (X, τ). Then the identity function 1X on X is con-

tinuous and so Rz-supercontinuous. Thus by Theorem 8.1, the identity function

1X : (X, τrz) → (X, τ) is continuous. Since U ∈ τ implies 1−1

X (U) = U ∈ τrz, we

have τ ⊂ τrz. Hence it follows that τ = τrz and so (X, τ) is an Rz-space. �

Definition 8.4. A function f : X → Y from a topological space X into a topo-

logical space Y is said to be Rz-continuous at x ∈ X if for each rz-open set V

containing f(x) there exists an open set U containing x such that f(U) ⊂ V . The

function f is said to be Rz-continuous if it is Rz-continuous at each x ∈ X .

Theorem 8.5. For a function f : (X, τ) → (Y, ν), the following statements are

true.

(i) f is Rz-continuous if and only if f : (X, τ) → (Y, νrz) is continuous.

(ii) f is Rz-open if and only if f : (X, τrz) → (Y, ν) is open.

In view of Theorems 8.2 and 8.5, Theorem 4.7 can be restated as follows:

If f : (X, τrz) → (Y, ν) is a continuous open surjection and g : (Y, ν) → (Z, ω) is

a function, then g is continuous if and only if g ◦ f is continuous. Further, if f maps

open (closed) sets to rz-open (rz-closed) sets, then g is Rz-supercontinuous.

Moreover, the rz-quotient topology on Y determined by the function f : (X, τ)→Y

in Section 7 is identical with the standard quotient topology on Y determined by

f : (X, τrz) → Y .

R em a r k 8.6. For the interested reader we point out that the properties of

Rz-continuous functions can be inferred directly by simply substituting P ≡ the

property of being an rz-closed set, in the relevant results pertaining to P -continuous

functions and P ∗-continuous functions in [10]–[12].
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