ON THE RANGE-KERNEL ORTHOGONALITY OF ELEMENTARY OPERATORS

Said Bouali, Kénitra, Youssef Bouhafsi, Rabat

(Received January 16, 2013)

Abstract

Let $L(H)$ denote the algebra of operators on a complex infinite dimensional Hilbert space H. For $A, B \in L(H)$, the generalized derivation $\delta_{A, B}$ and the elementary operator $\Delta_{A, B}$ are defined by $\delta_{A, B}(X)=A X-X B$ and $\Delta_{A, B}(X)=A X B-X$ for all $X \in L(H)$. In this paper, we exhibit pairs (A, B) of operators such that the range-kernel orthogonality of $\delta_{A, B}$ holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of $\Delta_{A, B}$ with respect to the wider class of unitarily invariant norms on $L(H)$.

Keywords: derivation; elementary operator; orthogonality; unitarily invariant norm; cyclic subnormal operator; Fuglede-Putnam property

MSC 2010: 47A30, 47A63, 47B15, 47B20, 47B47, 47B10

1. Introduction

Let H be a complex infinite dimensional Hilbert space, and let $L(H)$ denote the algebra of all bounded linear operators acting on H into itself. Given $A, B \in L(H)$, we define the generalized derivation $\delta_{A, B}: L(H) \rightarrow L(H)$ by $\delta_{A, B}(X)=A X-X B$, and the elementary operator $\Delta_{A, B}: L(H) \rightarrow L(H)$ by $\Delta_{A, B}(X)=A X B-X$. Let $\delta_{A, A}=\delta_{A}$ and $\Delta_{A, A}=\Delta_{A}$.

In [1], Anderson shows that if A is normal and commutes with T, then for all $X \in L(H)$

$$
\begin{equation*}
\left\|\delta_{A}(X)+T\right\| \geqslant\|T\|, \tag{1.1}
\end{equation*}
$$

where $\|\cdot\|$ is the usual operator norm. In view of [1], Definition 1.2, the inequality (1.1) says that the range $R\left(\delta_{A}\right)$ of δ_{A} is orthogonal to its kernel $\operatorname{ker}\left(\delta_{A}\right)$, which is just the commutant $\{A\}^{\prime}$ of A.

If A and B are normal operators such that $A T=T B$ for some $T \in L(H)$, notice that if we consider the operators $A \oplus B,\left(\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & T \\ 0 & 0\end{array}\right)$ on $H \oplus H$, then for all $X \in L(H)$ we have

$$
\left\|\delta_{A, B}(X)+T\right\| \geqslant\|T\| .
$$

Inequality (1.1) has a Δ_{A} analogue. Thus, Duggal [6] proved that if A is a normal operator such that $\Delta_{A}(T)=0$ for some $T \in L(H)$, then for all $X \in L(H)$ we have

$$
\left\|\Delta_{A}(X)+T\right\| \geqslant\|T\| .
$$

The orthogonality of the range and the kernel of elementary operators with respect to the wider class of unitarily invariant norms on $L(H)$ has been considered by many authors [3], [5], [6], [8], [10] and [11].

The purpose of this paper is to study the range-kernel orthogonality of the operators $\delta_{A, B}$ and $\Delta_{A, B}$. We give pairs (A, B) of operators such that the range and the kernel of $\delta_{A, B}$ are orthogonal. We exhibit pairs (A, B) of operators such that $R\left(\delta_{A, B}\right)$ is orthogonal to $\operatorname{ker}\left(\delta_{A, B}\right)$.

We investigate the orthogonality of the range and the kernel of $\Delta_{A, B}$ in norm ideals. Related results on orthogonality for certain elementary operators are also given.

Given $X \in L(H)$, we shall denote the kernel, the orthogonal complement of the kernel and the closure of the range of X by $\operatorname{ker}(X), \operatorname{ker}^{\perp}(X)$, and $\overline{R(X)}$, respectively. The spectrum of X will be denoted by $\sigma(X)$, and $X \mid M$ will denote the restriction of X to an invariant subspace M.

2. Main Results

Definition 2.1. Let E be a normed linear space and \mathbb{C} the complex numbers.

1) We say that $x \in E$ is orthogonal to $y \in E$ if $\|x-\lambda y\| \geqslant\|\lambda y\|$ for all $\lambda \in \mathbb{C}$.
2) Let F and G be two subspaces in E. If $\|x+y\| \geqslant\|y\|$ for all $x \in F$ and for all $y \in G$, then F is said to be orthogonal to G.

Remark 2.1.
\triangleright Note that if x is orthogonal to y, then y need not be orthogonal to x.
\triangleright This definition generalizes the idea of orthogonality in Hilbert space.
\triangleright It is shown in [1] that if F is orthogonal to G, and F, G are closed subspaces of E, then the algebraic direct sum $F \oplus G$ is a closed subspace in E.

Theorem 2.1. Let $A, B \in L(H)$. If B is invertible and $\|A\| \cdot\left\|B^{-1}\right\| \leqslant 1$, then

$$
\left\|\delta_{A, B}(X)+T\right\| \geqslant\|T\|
$$

for all $X \in L(H)$ and for all $T \in \operatorname{ker}\left(\delta_{A, B}\right)$.
Proof. Let $T \in L(H)$, such that $A T=T B$. This implies that $A T B^{-1}=T$. Since $\|A\| \cdot\left\|B^{-1}\right\| \leqslant 1$, it follows from [11], Corollary 1.4, that

$$
\left\|A Y B^{-1}-Y+T\right\| \geqslant\|T\|
$$

for all $Y \in L(H)$. If we set $X=Y B^{-1}$, then we get

$$
\|A X-X B+T\| \geqslant\|T\| .
$$

Hence $\left\|\delta_{A, B}(X)+T\right\| \geqslant\|T\|$ for all $T \in \operatorname{ker}\left(\delta_{A, B}\right)$ and for all $X \in L(H)$.
Theorem 2.2. Let $A, B \in L(H)$. If either

1) A is an isometry and the operator B is a contraction or
2) A is a contraction and B is co-isometric, then

$$
\left\|\delta_{A, B}(X)+T\right\| \geqslant\|T\|
$$

for all $X \in L(H)$ and for all $T \in \operatorname{ker}\left(\delta_{A, B}\right)$.
Proof. 1) Given $T \in \operatorname{ker}\left(\delta_{A, B}\right)$, we have

$$
\delta_{A, B}(T)=0 \Rightarrow T=A^{*} T B \Rightarrow A^{*} T=A^{*}\left(A^{*} T\right) B .
$$

Moreover, we see that

$$
\left\|\delta_{A, B}(X)+T\right\| \geqslant\left\|A^{*}\left(\delta_{A, B}(X)+T\right)\right\|=\left\|\Delta_{A^{*}, B}(X)-A^{*} T\right\| .
$$

Since A is an isometry and B is a contraction, it follows from [11], Corollary 1.4, that

$$
\left\|\delta_{A, B}(X)+T\right\| \geqslant\left\|\Delta_{A^{*}, B}(X)-A^{*} T\right\| \geqslant\left\|A^{*} T\right\| \geqslant\left\|A^{*} T B\right\|=\|T\| .
$$

Then, $\left\|\delta_{A, B}(X)+T\right\| \geqslant\|T\|$ for all $X \in L(H)$.
2) Let $T \in \operatorname{ker}\left(\delta_{A, B}\right)$ and $X \in L(H)$. By taking adjoints, observe that

$$
\left\|\delta_{A, B}(X)+T\right\|=\left\|\delta_{B^{*}, A^{*}}\left(X^{*}\right)-T^{*}\right\| .
$$

Since B^{*} is isometric and A^{*} is a contraction, the result follows from the first part of the proof.

As an application of Theorem 2.2 we have a well known result.

Corollary 2.1. Let U, V be isometries such that $\delta_{U, V}(T)=0$ for some $T \in L(H)$. Then

$$
\left\|\delta_{U, V}(X)+T\right\| \geqslant\|T\|
$$

for all $X \in L(H)$.
Remark 2.2. Let $A, B \in L(H)$. If A is an isometry and B is a contraction, then

$$
\overline{R\left(\delta_{A, B}\right)} \cap \operatorname{ker}\left(\delta_{A, B}\right)=\{0\}
$$

Definition $2.2([7])$. A proper two-sided ideal \mathcal{J} in $L(H)$ is said to be a norm ideal if there is a norm on \mathcal{J} possessing the following properties:
i) $\left(\mathcal{J},\| \|_{\mathcal{J}}\right)$ is a Banach space.
ii) $\|A X B\|_{\mathcal{J}} \leqslant\|A\|\|X\|_{\mathcal{J}}\|B\|$ for all $A, B \in L(H)$ and for all $X \in \mathcal{J}$.
iii) $\|X\|_{\mathcal{J}}=\|X\|$ for X a rank one operator.

Remark 2.3. If $\left(\mathcal{J},\| \|_{\mathcal{J}}\right)$ is a norm ideal, then the norm $\left\|\|_{\mathcal{J}}\right.$ is unitarily invariant, in the sense that $\|U A V\|_{\mathcal{J}}=\|A\|_{\mathcal{J}}$ for all $A \in \mathcal{J}$ and for all unitary operators $U, V \in L(H)$.

Corollary 2.2. Let $\left(\mathcal{J},\| \|_{\mathcal{J}}\right)$ be a norm ideal and $A, B \in L(H)$. If A is an isometry and the operator B is a contraction, then

$$
\left\|\delta_{A, B}(X)+T\right\|_{\mathcal{J}} \geqslant\|T\|_{\mathcal{J}}
$$

for all $X \in \mathcal{J}$ and for all $T \in \operatorname{ker}\left(\delta_{A, B}\right) \cap \mathcal{J}$.

Theorem 2.3. Let $\left(\mathcal{J},\| \|_{\mathcal{J}}\right)$ be a norm ideal and $A \in L(H)$. Suppose that $f(A)$ is a cyclic subnormal operator, where f is a nonconstant analytic function on an open set containing $\sigma(A)$. Then

$$
\left\|\delta_{A}(X)+T\right\|_{\mathcal{J}} \geqslant\|T\|_{\mathcal{J}}
$$

for all $X \in \mathcal{J}$ and for all $T \in\{A\}^{\prime} \cap \mathcal{J}$.
Proof. Let $T \in \mathcal{J}$ be such that $A T=T A$, then we have $f(A) T=T f(A)$ and $A f(A)=f(A) A$. Since $f(A)$ is a cyclic subnormal operator, it follows from Yoshino's result [12] that T and A are subnormal. Therefore, every compact hyponormal operator is normal [2], hence T is normal.

Consequently, $A T=T A$ implies that $A T^{*}=T^{*} A$. Hence we obtain that $\overline{R(T)}$ and $\operatorname{ker}^{\perp}(T)$ reduces A, and $A_{0}=A / \overline{R(T)}$ and $B_{0}=A / \operatorname{ker}^{\perp}(T)$ are normal operators.

Let $A=A_{0} \oplus A_{1}$ with respect to $H_{0}=H=\overline{R(T)} \oplus \overline{R(T)}^{\perp}$, and let $A=$ $B_{0} \oplus B_{1}$ with respect to $H_{1}=H=\operatorname{ker}^{\perp}(T) \oplus \operatorname{ker}(T)$. Define the quasi-affinity $T_{0}: \operatorname{ker}^{\perp}(T) \rightarrow \overline{R(T)}$ by setting $T_{0} x=T x$ for every $x \in \operatorname{ker}^{\perp}(T)$. Then it results that $\delta_{A_{0}, B_{0}}\left(T_{0}\right)=\delta_{A_{0}^{*}, B_{0}^{*}}\left(T_{0}\right)=0$.

Also, we can write T and X on H_{1} into H_{0} as

$$
T=\left(\begin{array}{cc}
T_{0} & 0 \\
0 & 0
\end{array}\right), \quad X=\left(\begin{array}{cc}
X_{0} & X_{1} \\
X_{2} & X_{3}
\end{array}\right)
$$

Consequently, we have

$$
\left\|\delta_{A}(X)+T\right\|_{\mathcal{J}}=\left\|\left(\begin{array}{cc}
\delta_{A_{0}, B_{0}}\left(X_{0}\right)+T_{0} & * \\
* & *
\end{array}\right)\right\|_{\mathcal{J}} \geqslant\left\|\delta_{A_{0}, B_{0}}(X)+T\right\|_{\mathcal{J}} .
$$

Since A_{0} and B_{0} are normal operators, we obtain from [4], Theorem 4, that

$$
\left\|\delta_{A}(X)+T\right\|_{\mathcal{J}} \geqslant\left\|\delta_{A_{0}, B_{0}}\left(X_{0}\right)+T_{0}\right\|_{\mathcal{J}} \geqslant\left\|T_{0}\right\|_{\mathcal{J}}=\|T\|_{\mathcal{J}} .
$$

Remark 2.4. Let $A \in L(H)$ and let f be an analytic function on an open set containing $\sigma(A)$. If $f(A)$ is cyclic subnormal and T is a compact operator such that $A T=T A$, then for all $X \in L(H)$,

$$
\left\|\delta_{A}(X)+T\right\| \geqslant\|T\| .
$$

Definition 2.3. Let $A, B \in L(H)$ and let \mathcal{J} be a two-sided ideal of $L(H)$. We say that the pair (A, B) possesses the Fuglede-Putnam property $\operatorname{PF}(\Delta, \mathcal{J})$, if $\operatorname{ker}\left(\Delta_{A, B} \mid \mathcal{J}\right) \subseteq \operatorname{ker}\left(\Delta_{A^{*}, B^{*}} \mid \mathcal{J}\right)$.

Theorem 2.4. Let $A, B \in L(H)$. If the pair (A, B) possesses the $\operatorname{PF}(\Delta, \mathcal{J})$ property, then

$$
\left\|\Delta_{A, B}(X)+T\right\|_{\mathcal{J}} \geqslant\|T\|_{\mathcal{J}}
$$

for all $X \in \mathcal{J}$, and for all $T \in \operatorname{ker}\left(\Delta_{A, B}\right) \cap \mathcal{J}$.
Proof. Given $T \in \mathcal{J}$ such that $A T B=T$. Since the pair (A, B) possesses the $\operatorname{PF}(\Delta, \mathcal{J})$ property, $\overline{R(T)}$ reduces A, and $\operatorname{ker}^{\perp}(T)$ reduces B, and $A_{0}=A \mid \overline{R(T)}$, $B_{0}=B \mid \operatorname{ker}^{\perp}(T)$ are normal operators.

Let $T_{0}: \operatorname{ker}^{\perp}(T) \rightarrow \overline{R(T)}$ be the quasi-affinity defined by setting $T_{0} x=T x$ for each $x \in \operatorname{ker}^{\perp}(T)$. Then we have $\Delta_{A_{0}, B_{0}}\left(T_{0}\right)=0=\Delta_{A_{0}^{*}, B_{0}^{*}}\left(T_{0}\right)$. Let $A=A_{0} \oplus A_{1}$
with respect to $H_{0}=H=\overline{R(T)} \oplus \overline{R(T)}^{\perp}$, and $B=B_{0} \oplus B_{1}$ with respect to $H_{1}=H=\operatorname{ker}^{\perp}(T) \oplus \operatorname{ker}(T)$. Let X on H_{1} into H_{0} have the matrix representation

$$
X=\left(\begin{array}{ll}
X_{0} & X_{1} \\
X_{2} & X_{3}
\end{array}\right)
$$

Hence

$$
\left\|\Delta_{A, B}(X)+T\right\|_{\mathcal{J}}=\left\|\left(\begin{array}{cc}
\Delta_{A_{0}, B_{0}}\left(X_{0}\right)+T_{0} & * \\
* & *
\end{array}\right)\right\|_{\mathcal{J}} .
$$

It follows from [7] that the diagonal part of a block matrix always has smaller norm than that of the whole matrix. Consequently, we have

$$
\left\|\Delta_{A, B}(X)+T\right\|_{\mathcal{J}}=\left\|\left(\begin{array}{cc}
\Delta_{A_{0}, B_{0}}\left(X_{0}\right)+T_{0} & * \\
* & *
\end{array}\right)\right\|_{\mathcal{J}} \geqslant\left\|\Delta_{A_{0}, B_{0}}\left(X_{0}\right)+T_{0}\right\|_{\mathcal{J}} .
$$

Since A_{0} and B_{0} are normal, it results from [6], Theorem 2, that

$$
\left\|\Delta_{A, B}(X)+T\right\|_{\mathcal{J}} \geqslant\left\|\Delta_{A_{0}, B_{0}}\left(X_{0}\right)+T_{0}\right\|_{\mathcal{J}} \geqslant\left\|T_{0}\right\|_{\mathcal{J}}=\|T\|_{\mathcal{J}}
$$

The following corollaries are consequences of the above theorem.

Corollary 2.3. Let $A, B \in L(H)$. Let some of the following conditions be fulfilled:

1) $A, B \in L(H)$ such that $\|A x\| \geqslant\|x\| \geqslant\|B x\|$ for all $x \in H$.
2) A is invertible and B such that $\left\|A^{-1}\right\|\|B\| \leqslant 1$.
3) A is dominant and B^{*} is M-hyponormal.

Then we have

$$
\left\|\Delta_{A, B}(X)+T\right\|_{\mathcal{J}} \geqslant\|T\|_{\mathcal{J}}
$$

for all $X \in \mathcal{J}$ and for all $T \in \operatorname{ker}\left(\Delta_{A, B}\right) \cap \mathcal{J}$.
Proof. It is sufficient to show that the pair (A, B) has the Fuglede-Putnam property $\operatorname{PF}(\Delta, \mathcal{J})$ in each of the preceding cases (in particular (3)).

1) It follows from [9], Lemma 1 , that for all $T \in \operatorname{ker}\left(\Delta_{A, B}\right) \cap \mathcal{J}$, we have $\overline{R(T)}$ reduces A and $\operatorname{ker}^{\perp}(T)$ reduces B, and $A|\overline{R(T)}, B| \operatorname{ker}^{\perp}(T)$ are unitary operators. Hence, it results that the the pair (A, B) has the property $\operatorname{PF}(\Delta, \mathcal{J})$.
2) In this case, let $A_{1}=\|B\|^{-1} A$ and $B_{1}=\|B\|^{-1} B$, then $\left\|A_{1} x\right\| \geqslant\|x\| \geqslant\left\|B_{1} x\right\|$ for all $x \in H$. Hence, the result holds due to (1.1).

Corollary 2.4. Let $A, B \in L(H)$ be such that the pairs (A, A) and (B, B) have the $\operatorname{PF}(\Delta, \mathcal{J})$ property. If $1 \notin \sigma(A) \sigma(B)$, then

$$
\left\|\Delta_{A, B}(X)+T\right\|_{\mathcal{J}} \geqslant\|T\|_{\mathcal{J}}
$$

for all $X \in \mathcal{J}$, and for all $T \in \operatorname{ker}\left(\Delta_{A, B}\right) \cap \mathcal{J}$.
Proof. It is well known that if $1 \notin \sigma(A) \sigma(B)$, then the operators $\Delta_{A, B}$ and $\Delta_{B, A}$ are invertible. Thus, a simple calculation shows that the pair $(A \oplus B, A \oplus B)$ possesses the $\operatorname{PF}(\Delta, \mathcal{J})$ property.

Remark 2.5. If $S e_{n}=\omega_{n} e_{n+1}$ is a unilateral (bilateral) weighted shift, then, it follows from [3] that the pair (S, S) has the property $\operatorname{PF}(\delta, \mathcal{J})$ if and only if

$$
\sum_{k} \omega_{k} \omega_{k+1} \ldots \omega_{k+n-1}=\infty .
$$

Remark 2.6. 1) Let $A, B \in L(H)$, then $\overline{R\left(\Delta_{A, B}\right)} \cap \operatorname{ker}\left(\Delta_{A, B}\right)=\{0\}$ in each of the following cases:
i) A and B are normal.
ii) A and B are contraction.
iii) $A=B$ is cyclic subnormal.
iv) A and B^{*} are hyponormal.
2) If A^{*} and B are hyponormal, then $\overline{R\left(\Delta_{A, B}\right)} \cap \operatorname{ker}\left(\Delta_{A^{*}, B^{*}}\right)=\{0\}$.

Corollary 2.5. Let $A, B \in L(H)$. Then every operator in $\overline{R\left(\Delta_{A \oplus B}\right)} \cap$ $\left\{\operatorname{ker}\left(\Delta_{A \oplus B}\right) \cup \operatorname{ker}\left(\Delta_{A^{*} \oplus B^{*}}\right)\right\}$ is nilpotent of order not greater than 2, in each of the following cases:

1) A normal and B isometric.
2) A normal and B cyclic subnormal.
3) A cyclic subnormal and B co-isometric.

Proof. On $H \oplus H$, let T be the operator defined as $T=\left(\begin{array}{cc}P & Q \\ R & S\end{array}\right)$. A routine calculation shows that $T \in \overline{R\left(\Delta_{A \oplus B}\right)} \cap \operatorname{ker}\left(\Delta_{A \oplus B}\right)$ implies

$$
\begin{aligned}
P \in \overline{R\left(\Delta_{A}\right)} \cap \operatorname{ker}\left(\Delta_{A}\right) ; & S \in \overline{R\left(\Delta_{B}\right)} \cap \operatorname{ker}\left(\Delta_{B}\right) \\
R \in \overline{R\left(\Delta_{B, A}\right)} \cap \operatorname{ker}\left(\Delta_{B, A}\right) ; & Q \in \overline{R\left(\Delta_{A, B}\right)} \cap \operatorname{ker}\left(\Delta_{A, B}\right)
\end{aligned}
$$

Hence, if A is normal and B is isometric, it follows from [6], Corollary 1, [11], Corollary 1.4, that $P=0, S=0$ and $R=0$. Consequently, we obtain $T=\left(\begin{array}{cc}0 & Q \\ 0 & 0\end{array}\right)$, which ensures that T is nilpotent of order not greater than 2 .

By using a similar argument we get the desired result.

Remark 2.7. 1) Note that Corollary 2.5 still holds if we consider the inner derivation δ_{A} instead of Δ_{A}.
2) Let $\pi: L(H) \rightarrow L(H) \mid K(H)$ denote the Calkin map. Set

$$
\mathcal{S}=\{T \in L(H):\|\pi(T)\|=\|T\|\} .
$$

If $A \in L(H)$ satisfies one of the following conditions:
i) $A^{*} A-A A^{*}$ is compact;
ii) $A^{*} A-I$ or $A A^{*}-I$ is compact;
then $R\left(d_{A}\right)$ is orthogonal to $\operatorname{ker}\left(d_{A}\right) \cap \mathcal{S}$, where $d_{A}=\delta_{A}$ or $d_{A}=\Delta_{A}$.

3. A comment and some open questions

1) It is shown in [3] that if A is a cyclic subnormal operator, then $R\left(\delta_{A}\right)$ is orthogonal to $\{A\}^{\prime}$, and this orthogonality fails in the absence of the hypothesis that the subnormal A is cyclic.

It is easy to see that if A and B are cyclic subnormal operators such that $A \oplus B$ is cyclic subnormal, then $R\left(\delta_{A, B}\right)$ is orthogonal to $\operatorname{ker}\left(\delta_{A, B}\right)$.

Hence, it would be interesting to establish the range-kernel orthogonality of $\delta_{A, B}$ in the general case.
2) Let π : $L(H) \rightarrow L(H) / K(H)=\mathcal{C}(H)$ denote the Calkin map, and let

$$
\mathcal{S}=\{A \in L(H):\|\pi(A)\|=\|A\|\} .
$$

Note that the result of Duggal [5] guarantees that if A and B are cyclic subnormal operators, then $R\left(\delta_{A, B}\right)$ is orthogonal to $\operatorname{ker}\left(\delta_{A, B}\right) \cap \mathcal{S}$, and $R\left(\Delta_{A, B}\right)$ is orthogonal to $\operatorname{ker}\left(\Delta_{A, B}\right) \cap \mathcal{S}$.

From this, the following question naturally arises:
If A and B are cyclic subnormal operators, is $R\left(\Delta_{A, B}\right)$ orthogonal to $\operatorname{ker}\left(\Delta_{A, B}\right)$ for the usual operator norm?
3) Let $A \in L(H)$, and suppose that f is an analytic function on an open set containing $\sigma(A)$ such that f^{\prime} does not vanish on some neighborhood of $\sigma(A)$.

If $f(A)$ is isometric or normal, what conditions on f ensure the range-kernel orthogonality of δ_{A} with respect to the wider class of unitarily invariant norms on $L(H)$?

Acknowledgement. It is our great pleasure to thank the referee for careful reading of the paper and useful suggestions.

References

[1] J. Anderson: On normal derivations. Proc. Am. Math. Soc. 38 (1973), 135-140.
zbl MR
[2] C. A. Berger, B. I. Shaw: Selfcommutators of multicyclic hyponormal operators are always trace class. Bull. Am. Math. Soc. 79 (1974), 1193-1199.
zbl MR
[3] S. Bouali, Y. Bouhafsi: On the range kernel orthogonality and P-symmetric operators. Math. Inequal. Appl. 9 (2006), 511-519.
zbl MR
[4] M. B. Delai, S. Bouali, S. Cherki: A remark on the orthogonality of the image to the kernel of a generalized derivation. Proc. Am. Math. Soc. 126 (1998), 167-171. (In French.) zbl MR
[5] B. P. Duggal: A perturbed elementary operator and range-kernel orthogonality. Proc. Am. Math. Soc. 134 (2006), 1727-1734.
zbl MR
[6] B. P. Duggal: A remark on normal derivations. Proc. Am. Math. Soc. 126 (1998), 2047-2052.
zbl MR
[7] I. C. Gohberg, M. G. Kreĭn: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs 18, American Mathematical Society, Providence; translated from the Russian, Nauka, Moskva, 1965.
zbl MR
[8] F. Kittaneh: Normal derivations in norm ideals. Proc. Am. Math. Soc. 123 (1995), 1779-1785.
[9] Y. Tong: Kernels of generalized derivations. Acta Sci. Math. 54 (1990), 159-169.
zbl MR
[10] A. Turnšek: Orthogonality in \mathscr{C}_{p} classes. Monatsh. Math. 132 (2001), 349-354.
zbl MR
[11] A. Turnšek: Elementary operators and orthogonality. Linear Algebra Appl. 317 (2000), 207-216.
zbl MR

12] T. Yoshino: Subnormal operator with a cyclic vector. Tôhoku Math. J. II. Ser. 21 (1969), 47-55.
zbl MR
zbl MR

Authors' addresses: Said Bouali, Department of Mathematics, Faculty of Science, Ibn Tofail University, B.P. 133, 24000 Kénitra, Morocco, e-mail: said.bouali@yahoo.fr; Youssef Bouhafsi, Department of Mathematics, Faculty of Science, Chouaib Doukkali University, Iben Maachou Street, P.O.Box 20, 24000 El Jadida, Morocco, e-mail: ybouhafsi@yahoo.fr.

