ON THE RANGE-KERNEL ORTHOGONALITY OF ELEMENTARY OPERATORS

SAID BOUALI, Kénitra, YOUSSEF BOUHAFSI, Rabat

(Received January 16, 2013)

Abstract. Let L(H) denote the algebra of operators on a complex infinite dimensional Hilbert space H. For $A, B \in L(H)$, the generalized derivation $\delta_{A,B}$ and the elementary operator $\Delta_{A,B}$ are defined by $\delta_{A,B}(X) = AX - XB$ and $\Delta_{A,B}(X) = AXB - X$ for all $X \in L(H)$. In this paper, we exhibit pairs (A, B) of operators such that the range-kernel orthogonality of $\delta_{A,B}$ holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of $\Delta_{A,B}$ with respect to the wider class of unitarily invariant norms on L(H).

Keywords: derivation; elementary operator; orthogonality; unitarily invariant norm; cyclic subnormal operator; Fuglede-Putnam property

MSC 2010: 47A30, 47A63, 47B15, 47B20, 47B47, 47B10

1. INTRODUCTION

Let H be a complex infinite dimensional Hilbert space, and let L(H) denote the algebra of all bounded linear operators acting on H into itself. Given $A, B \in L(H)$, we define the generalized derivation $\delta_{A,B} \colon L(H) \to L(H)$ by $\delta_{A,B}(X) = AX - XB$, and the elementary operator $\Delta_{A,B} \colon L(H) \to L(H)$ by $\Delta_{A,B}(X) = AXB - X$. Let $\delta_{A,A} = \delta_A$ and $\Delta_{A,A} = \Delta_A$.

In [1], Anderson shows that if A is normal and commutes with T, then for all $X \in L(H)$

(1.1)
$$\|\delta_A(X) + T\| \ge \|T\|,$$

where $\|\cdot\|$ is the usual operator norm. In view of [1], Definition 1.2, the inequality (1.1) says that the range $R(\delta_A)$ of δ_A is orthogonal to its kernel ker (δ_A) , which is just the commutant $\{A\}'$ of A.

261

If A and B are normal operators such that AT = TB for some $T \in L(H)$, notice that if we consider the operators $A \oplus B$, $\begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix}$ on $H \oplus H$, then for all $X \in L(H)$ we have

$$\|\delta_{A,B}(X) + T\| \ge \|T\|.$$

Inequality (1.1) has a Δ_A analogue. Thus, Duggal [6] proved that if A is a normal operator such that $\Delta_A(T) = 0$ for some $T \in L(H)$, then for all $X \in L(H)$ we have

$$\|\Delta_A(X) + T\| \ge \|T\|.$$

The orthogonality of the range and the kernel of elementary operators with respect to the wider class of unitarily invariant norms on L(H) has been considered by many authors [3], [5], [6], [8], [10] and [11].

The purpose of this paper is to study the range-kernel orthogonality of the operators $\delta_{A,B}$ and $\Delta_{A,B}$. We give pairs (A, B) of operators such that the range and the kernel of $\delta_{A,B}$ are orthogonal. We exhibit pairs (A, B) of operators such that $R(\delta_{A,B})$ is orthogonal to ker $(\delta_{A,B})$.

We investigate the orthogonality of the range and the kernel of $\Delta_{A,B}$ in norm ideals. Related results on orthogonality for certain elementary operators are also given.

Given $X \in L(H)$, we shall denote the kernel, the orthogonal complement of the kernel and the closure of the range of X by ker(X), ker^{\perp}(X), and $\overline{R(X)}$, respectively. The spectrum of X will be denoted by $\sigma(X)$, and X|M will denote the restriction of X to an invariant subspace M.

2. Main results

Definition 2.1. Let *E* be a normed linear space and \mathbb{C} the complex numbers.

1) We say that $x \in E$ is orthogonal to $y \in E$ if $||x - \lambda y|| \ge ||\lambda y||$ for all $\lambda \in \mathbb{C}$.

2) Let F and G be two subspaces in E. If $||x + y|| \ge ||y||$ for all $x \in F$ and for all $y \in G$, then F is said to be orthogonal to G.

Remark 2.1.

- \triangleright Note that if x is orthogonal to y, then y need not be orthogonal to x.
- \triangleright This definition generalizes the idea of orthogonality in Hilbert space.
- ▷ It is shown in [1] that if F is orthogonal to G, and F, G are closed subspaces of E, then the algebraic direct sum $F \oplus G$ is a closed subspace in E.

Theorem 2.1. Let $A, B \in L(H)$. If B is invertible and $||A|| \cdot ||B^{-1}|| \leq 1$, then

$$\|\delta_{A,B}(X) + T\| \ge \|T\|$$

for all $X \in L(H)$ and for all $T \in \ker(\delta_{A,B})$.

Proof. Let $T \in L(H)$, such that AT = TB. This implies that $ATB^{-1} = T$. Since $||A|| \cdot ||B^{-1}|| \leq 1$, it follows from [11], Corollary 1.4, that

$$\|AYB^{-1} - Y + T\| \ge \|T\|$$

for all $Y \in L(H)$. If we set $X = YB^{-1}$, then we get

$$||AX - XB + T|| \ge ||T||.$$

Hence $\|\delta_{A,B}(X) + T\| \ge \|T\|$ for all $T \in \ker(\delta_{A,B})$ and for all $X \in L(H)$.

Theorem 2.2. Let $A, B \in L(H)$. If either

- 1) A is an isometry and the operator B is a contraction or
- 2) A is a contraction and B is co-isometric, then

$$\|\delta_{A,B}(X) + T\| \ge \|T\|$$

for all $X \in L(H)$ and for all $T \in \ker(\delta_{A,B})$.

Proof. 1) Given $T \in \ker(\delta_{A,B})$, we have

 $\delta_{A,B}(T) = 0 \implies T = A^*TB \implies A^*T = A^*(A^*T)B.$

Moreover, we see that

$$\|\delta_{A,B}(X) + T\| \ge \|A^*(\delta_{A,B}(X) + T)\| = \|\Delta_{A^*,B}(X) - A^*T\|.$$

Since A is an isometry and B is a contraction, it follows from [11], Corollary 1.4, that

$$\|\delta_{A,B}(X) + T\| \ge \|\Delta_{A^*,B}(X) - A^*T\| \ge \|A^*T\| \ge \|A^*TB\| = \|T\|.$$

Then, $\|\delta_{A,B}(X) + T\| \ge \|T\|$ for all $X \in L(H)$.

2) Let $T \in \ker(\delta_{A,B})$ and $X \in L(H)$. By taking adjoints, observe that

$$\|\delta_{A,B}(X) + T\| = \|\delta_{B^*,A^*}(X^*) - T^*\|.$$

Since B^* is isometric and A^* is a contraction, the result follows from the first part of the proof.

As an application of Theorem 2.2 we have a well known result.

Corollary 2.1. Let U, V be isometries such that $\delta_{U,V}(T) = 0$ for some $T \in L(H)$. Then

$$\|\delta_{U,V}(X) + T\| \ge \|T\|$$

for all $X \in L(H)$.

R e m a r k 2.2. Let $A, B \in L(H)$. If A is an isometry and B is a contraction, then

$$\overline{R(\delta_{A,B})} \cap \ker(\delta_{A,B}) = \{0\}.$$

Definition 2.2 ([7]). A proper two-sided ideal \mathcal{J} in L(H) is said to be a norm ideal if there is a norm on \mathcal{J} possessing the following properties:

- i) $(\mathcal{J}, ||||_{\mathcal{J}})$ is a Banach space.
- ii) $||AXB||_{\mathcal{J}} \leq ||A|| ||X||_{\mathcal{J}} ||B||$ for all $A, B \in L(H)$ and for all $X \in \mathcal{J}$.
- iii) $||X||_{\mathcal{J}} = ||X||$ for X a rank one operator.

R e m a r k 2.3. If $(\mathcal{J}, |||_{\mathcal{J}})$ is a norm ideal, then the norm $|||_{\mathcal{J}}$ is unitarily invariant, in the sense that $||UAV||_{\mathcal{J}} = ||A||_{\mathcal{J}}$ for all $A \in \mathcal{J}$ and for all unitary operators $U, V \in L(H)$.

Corollary 2.2. Let $(\mathcal{J}, ||||_{\mathcal{J}})$ be a norm ideal and $A, B \in L(H)$. If A is an isometry and the operator B is a contraction, then

$$\|\delta_{A,B}(X) + T\|_{\mathcal{J}} \ge \|T\|_{\mathcal{J}}$$

for all $X \in \mathcal{J}$ and for all $T \in \ker(\delta_{A,B}) \cap \mathcal{J}$.

Theorem 2.3. Let $(\mathcal{J}, |||_{\mathcal{J}})$ be a norm ideal and $A \in L(H)$. Suppose that f(A) is a cyclic subnormal operator, where f is a nonconstant analytic function on an open set containing $\sigma(A)$. Then

$$\|\delta_A(X) + T\|_{\mathcal{J}} \ge \|T\|_{\mathcal{J}}$$

for all $X \in \mathcal{J}$ and for all $T \in \{A\}' \cap \mathcal{J}$.

Proof. Let $T \in \mathcal{J}$ be such that AT = TA, then we have f(A)T = Tf(A) and Af(A) = f(A)A. Since f(A) is a cyclic subnormal operator, it follows from Yoshino's result [12] that T and A are subnormal. Therefore, every compact hyponormal operator is normal [2], hence T is normal.

Consequently, AT = TA implies that $AT^* = T^*A$. Hence we obtain that $\overline{R(T)}$ and $\ker^{\perp}(T)$ reduces A, and $A_0 = A/\overline{R(T)}$ and $B_0 = A/\ker^{\perp}(T)$ are normal operators.

Let $A = A_0 \oplus A_1$ with respect to $H_0 = H = \overline{R(T)} \oplus \overline{R(T)}^{\perp}$, and let $A = B_0 \oplus B_1$ with respect to $H_1 = H = \ker^{\perp}(T) \oplus \ker(T)$. Define the quasi-affinity $T_0: \ker^{\perp}(T) \to \overline{R(T)}$ by setting $T_0 x = Tx$ for every $x \in \ker^{\perp}(T)$. Then it results that $\delta_{A_0,B_0}(T_0) = \delta_{A_0^*,B_0^*}(T_0) = 0$.

Also, we can write T and X on H_1 into H_0 as

$$T = \begin{pmatrix} T_0 & 0 \\ 0 & 0 \end{pmatrix}, \quad X = \begin{pmatrix} X_0 & X_1 \\ X_2 & X_3 \end{pmatrix}.$$

Consequently, we have

$$\|\delta_A(X) + T\|_{\mathcal{J}} = \left\| \begin{pmatrix} \delta_{A_0, B_0}(X_0) + T_0 & * \\ * & * \end{pmatrix} \right\|_{\mathcal{J}} \ge \|\delta_{A_0, B_0}(X) + T\|_{\mathcal{J}}.$$

Since A_0 and B_0 are normal operators, we obtain from [4], Theorem 4, that

$$\|\delta_A(X) + T\|_{\mathcal{J}} \ge \|\delta_{A_0, B_0}(X_0) + T_0\|_{\mathcal{J}} \ge \|T_0\|_{\mathcal{J}} = \|T\|_{\mathcal{J}}.$$

Remark 2.4. Let $A \in L(H)$ and let f be an analytic function on an open set containing $\sigma(A)$. If f(A) is cyclic subnormal and T is a compact operator such that AT = TA, then for all $X \in L(H)$,

$$\|\delta_A(X) + T\| \ge \|T\|.$$

Definition 2.3. Let $A, B \in L(H)$ and let \mathcal{J} be a two-sided ideal of L(H). We say that the pair (A, B) possesses the Fuglede-Putnam property $PF(\Delta, \mathcal{J})$, if $\ker(\Delta_{A,B}|\mathcal{J}) \subseteq \ker(\Delta_{A^*,B^*}|\mathcal{J})$.

Theorem 2.4. Let $A, B \in L(H)$. If the pair (A, B) possesses the $PF(\Delta, \mathcal{J})$ property, then

$$\|\Delta_{A,B}(X) + T\|_{\mathcal{J}} \ge \|T\|_{\mathcal{J}}$$

for all $X \in \mathcal{J}$, and for all $T \in \ker(\Delta_{A,B}) \cap \mathcal{J}$.

Proof. Given $T \in \mathcal{J}$ such that ATB = T. Since the pair (A, B) possesses the $PF(\Delta, \mathcal{J})$ property, $\overline{R(T)}$ reduces A, and $\ker^{\perp}(T)$ reduces B, and $A_0 = A|\overline{R(T)}$, $B_0 = B|\ker^{\perp}(T)$ are normal operators.

Let $T_0: \ker^{\perp}(T) \to \overline{R(T)}$ be the quasi-affinity defined by setting $T_0 x = T x$ for each $x \in \ker^{\perp}(T)$. Then we have $\Delta_{A_0,B_0}(T_0) = 0 = \Delta_{A_0^*,B_0^*}(T_0)$. Let $A = A_0 \oplus A_1$

with respect to $H_0 = H = \overline{R(T)} \oplus \overline{R(T)}^{\perp}$, and $B = B_0 \oplus B_1$ with respect to $H_1 = H = \ker^{\perp}(T) \oplus \ker(T)$. Let X on H_1 into H_0 have the matrix representation

$$X = \begin{pmatrix} X_0 & X_1 \\ X_2 & X_3 \end{pmatrix}.$$

Hence

$$\|\Delta_{A,B}(X) + T\|_{\mathcal{J}} = \left\| \begin{pmatrix} \Delta_{A_0,B_0}(X_0) + T_0 & * \\ * & * \end{pmatrix} \right\|_{\mathcal{J}}$$

It follows from [7] that the diagonal part of a block matrix always has smaller norm than that of the whole matrix. Consequently, we have

$$\|\Delta_{A,B}(X) + T\|_{\mathcal{J}} = \left\| \begin{pmatrix} \Delta_{A_0,B_0}(X_0) + T_0 & * \\ * & * \end{pmatrix} \right\|_{\mathcal{J}} \ge \|\Delta_{A_0,B_0}(X_0) + T_0\|_{\mathcal{J}}.$$

Since A_0 and B_0 are normal, it results from [6], Theorem 2, that

$$\|\Delta_{A,B}(X) + T\|_{\mathcal{J}} \ge \|\Delta_{A_0,B_0}(X_0) + T_0\|_{\mathcal{J}} \ge \|T_0\|_{\mathcal{J}} = \|T\|_{\mathcal{J}}.$$

The following corollaries are consequences of the above theorem.

Corollary 2.3. Let $A, B \in L(H)$. Let some of the following conditions be fulfilled:

- 1) $A, B \in L(H)$ such that $||Ax|| \ge ||x|| \ge ||Bx||$ for all $x \in H$.
- 2) A is invertible and B such that $||A^{-1}|| ||B|| \leq 1$.
- 3) A is dominant and B^* is M-hyponormal.

Then we have

$$\|\Delta_{A,B}(X) + T\|_{\mathcal{J}} \ge \|T\|_{\mathcal{J}}$$

for all $X \in \mathcal{J}$ and for all $T \in \ker(\Delta_{A,B}) \cap \mathcal{J}$.

Proof. It is sufficient to show that the pair (A, B) has the Fuglede-Putnam property $PF(\Delta, \mathcal{J})$ in each of the preceding cases (in particular (3)).

1) It follows from [9], Lemma 1, that for all $T \in \ker(\Delta_{A,B}) \cap \mathcal{J}$, we have $\overline{R(T)}$ reduces A and $\ker^{\perp}(T)$ reduces B, and $A|\overline{R(T)}, B| \ker^{\perp}(T)$ are unitary operators. Hence, it results that the pair (A, B) has the property $\operatorname{PF}(\Delta, \mathcal{J})$.

2) In this case, let $A_1 = ||B||^{-1}A$ and $B_1 = ||B||^{-1}B$, then $||A_1x|| \ge ||x|| \ge ||B_1x||$ for all $x \in H$. Hence, the result holds due to (1.1).

Corollary 2.4. Let $A, B \in L(H)$ be such that the pairs (A, A) and (B, B) have the $PF(\Delta, \mathcal{J})$ property. If $1 \notin \sigma(A)\sigma(B)$, then

$$\|\Delta_{A,B}(X) + T\|_{\mathcal{J}} \ge \|T\|_{\mathcal{J}}$$

for all $X \in \mathcal{J}$, and for all $T \in \ker(\Delta_{A,B}) \cap \mathcal{J}$.

Proof. It is well known that if $1 \notin \sigma(A)\sigma(B)$, then the operators $\Delta_{A,B}$ and $\Delta_{B,A}$ are invertible. Thus, a simple calculation shows that the pair $(A \oplus B, A \oplus B)$ possesses the $PF(\Delta, \mathcal{J})$ property.

Remark 2.5. If $Se_n = \omega_n e_{n+1}$ is a unilateral (bilateral) weighted shift, then, it follows from [3] that the pair (S, S) has the property $PF(\delta, \mathcal{J})$ if and only if

$$\sum_{k} \omega_k \omega_{k+1} \dots \omega_{k+n-1} = \infty.$$

R e m a r k 2.6. 1) Let $A, B \in L(H)$, then $\overline{R(\Delta_{A,B})} \cap \ker(\Delta_{A,B}) = \{0\}$ in each of the following cases:

- i) A and B are normal.
- ii) A and B are contraction.
- iii) A = B is cyclic subnormal.
- iv) A and B^* are hyponormal.
- 2) If A^* and B are hyponormal, then $\overline{R(\Delta_{A,B})} \cap \ker(\Delta_{A^*,B^*}) = \{0\}.$

Corollary 2.5. Let $A, B \in L(H)$. Then every operator in $\overline{R(\Delta_{A \oplus B})} \cap \{\ker(\Delta_{A \oplus B}) \cup \ker(\Delta_{A^* \oplus B^*})\}$ is nilpotent of order not greater than 2, in each of the following cases:

- 1) A normal and B isometric.
- 2) A normal and B cyclic subnormal.
- 3) A cyclic subnormal and B co-isometric.

Proof. On $H \oplus H$, let T be the operator defined as $T = \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$. A routine calculation shows that $T \in \overline{R(\Delta_{A \oplus B})} \cap \ker(\Delta_{A \oplus B})$ implies

$$P \in \overline{R(\Delta_A)} \cap \ker(\Delta_A); \quad S \in \overline{R(\Delta_B)} \cap \ker(\Delta_B);$$
$$R \in \overline{R(\Delta_{B,A})} \cap \ker(\Delta_{B,A}); \quad Q \in \overline{R(\Delta_{A,B})} \cap \ker(\Delta_{A,B}).$$

Hence, if A is normal and B is isometric, it follows from [6], Corollary 1, [11], Corollary 1.4, that P = 0, S = 0 and R = 0. Consequently, we obtain $T = \begin{pmatrix} 0 & Q \\ 0 & 0 \end{pmatrix}$, which ensures that T is nilpotent of order not greater than 2.

By using a similar argument we get the desired result.

□ 267 Remark 2.7. 1) Note that Corollary 2.5 still holds if we consider the inner derivation δ_A instead of Δ_A .

2) Let $\pi: L(H) \to L(H) | K(H)$ denote the Calkin map. Set

$$\mathcal{S} = \{ T \in L(H) \colon \| \pi(T) \| = \| T \| \}.$$

If $A \in L(H)$ satisfies one of the following conditions:

- i) $A^*A AA^*$ is compact;
- ii) $A^*A I$ or $AA^* I$ is compact;

then $R(d_A)$ is orthogonal to $\ker(d_A) \cap S$, where $d_A = \delta_A$ or $d_A = \Delta_A$.

3. A comment and some open questions

1) It is shown in [3] that if A is a cyclic subnormal operator, then $R(\delta_A)$ is orthogonal to $\{A\}'$, and this orthogonality fails in the absence of the hypothesis that the subnormal A is cyclic.

It is easy to see that if A and B are cyclic subnormal operators such that $A \oplus B$ is cyclic subnormal, then $R(\delta_{A,B})$ is orthogonal to ker $(\delta_{A,B})$.

Hence, it would be interesting to establish the range-kernel orthogonality of $\delta_{A,B}$ in the general case.

2) Let $\pi: L(H) \to L(H)/K(H) = \mathcal{C}(H)$ denote the Calkin map, and let

$$\mathcal{S} = \{ A \in L(H) \colon \|\pi(A)\| = \|A\| \}.$$

Note that the result of Duggal [5] guarantees that if A and B are cyclic subnormal operators, then $R(\delta_{A,B})$ is orthogonal to ker $(\delta_{A,B}) \cap S$, and $R(\Delta_{A,B})$ is orthogonal to ker $(\Delta_{A,B}) \cap S$.

From this, the following question naturally arises:

If A and B are cyclic subnormal operators, is $R(\Delta_{A,B})$ orthogonal to ker $(\Delta_{A,B})$ for the usual operator norm?

3) Let $A \in L(H)$, and suppose that f is an analytic function on an open set containing $\sigma(A)$ such that f' does not vanish on some neighborhood of $\sigma(A)$.

If f(A) is isometric or normal, what conditions on f ensure the range-kernel orthogonality of δ_A with respect to the wider class of unitarily invariant norms on L(H)?

A c k n o w l e d g e m e n t. It is our great pleasure to thank the referee for careful reading of the paper and useful suggestions.

References

[1]	J. Anderson: On normal derivations. Proc. Am. Math. Soc. 38 (1973), 135–140.	$\mathrm{zbl}\ \mathrm{MR}$
[2]	C. A. Berger, B. I. Shaw: Selfcommutators of multicyclic hyponormal operators are al-	
	ways trace class. Bull. Am. Math. Soc. 79 (1974), 1193–1199.	zbl MR
[3]	S. Bouali, Y. Bouhafsi: On the range kernel orthogonality and P-symmetric operators.	
	Math. Inequal. Appl. 9 (2006), 511–519.	$\mathrm{zbl}\ \mathrm{MR}$
[4]	M. B. Delai, S. Bouali, S. Cherki: A remark on the orthogonality of the image to the ker-	
	nel of a generalized derivation. Proc. Am. Math. Soc. 126 (1998), 167-171. (In French.)	$\mathrm{zbl}\ \mathrm{MR}$
[5]	B. P. Duggal: A perturbed elementary operator and range-kernel orthogonality. Proc.	
	Am. Math. Soc. 134 (2006), 1727–1734.	$\mathrm{zbl}\ \mathrm{MR}$
[6]	B. P. Duggal: A remark on normal derivations. Proc. Am. Math. Soc. 126 (1998),	
	2047 - 2052.	$\mathrm{zbl}\ \mathrm{MR}$
[7]	I. C. Gohberg, M. G. Krein: Introduction to the Theory of Linear Nonselfadjoint Oper-	
	ators. Translations of Mathematical Monographs 18, American Mathematical Society,	
	Providence; translated from the Russian, Nauka, Moskva, 1965 .	zbl MR
[8]	F. Kittaneh: Normal derivations in norm ideals. Proc. Am. Math. Soc. 123 (1995),	
	1779–1785.	$\mathrm{zbl}\ \mathrm{MR}$
[9]	Y. Tong: Kernels of generalized derivations. Acta Sci. Math. 54 (1990), 159–169.	zbl MR
[10]	A. Turnšek: Orthogonality in \mathcal{C}_p classes. Monatsh. Math. 132 (2001), 349–354.	$\mathbf{zbl} \mathbf{MR}$
[11]	A. Turnšek: Elementary operators and orthogonality. Linear Algebra Appl. 317 (2000),	
	207–216.	$\mathbf{zbl} \mathbf{MR}$
[12]	T. Yoshino: Subnormal operator with a cyclic vector. Tôhoku Math. J. II. Ser. 21 (1969),	
	47–55.	zbl MR

Authors' addresses: Said Bouali, Department of Mathematics, Faculty of Science, Ibn Tofail University, B.P. 133, 24000 Kénitra, Morocco, e-mail: said.bouali@yahoo.fr; Youssef Bouhafsi, Department of Mathematics, Faculty of Science, Chouaib Doukkali University, Iben Maachou Street, P.O.Box 20, 24000 El Jadida, Morocco, e-mail: ybouhafsi@yahoo.fr.