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WHY IS THE CLASS NUMBER OF Q( 3
√

11) EVEN?
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Abstract. In this article we will describe a surprising observation that occurred in the
construction of quadratic unramified extensions of a family of pure cubic number fields.
Attempting to find an explanation will lead us on a magical mystery tour through the land
of pure cubic number fields, Hilbert class fields, and elliptic curves.
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Euler was one of the (if not the) most prolific writers in mathematics. Yet few if

any of the articles appearing today are modeled after Euler’s way of writing; Euler

often explained how he attacked a problem even if the attack ultimately proved

unsuccessful: before showing that an equation such as x3 + y3 = z3 is not solvable in

integers he would try out one method of solving diophantine equations after another.

Gauss’s motto “pauca sed matura” places him at the other end of the spectrum:

Gauss did not care very much about conveying the motivation behind his proofs or

about sketching the paths that led him there, and Landau later wrote a whole series

of textbooks that consisted of little more than definitions, theorems and proofs.

Today, articles written in Euler’s style have almost disappeared from the literature

for obvious economic (and other) reasons. Here I would like to revive the Eulerian

tradition and describe in some detail the development from a curious observation on

class numbers to the results in Section 8. What happened was that I numerically

tested a result I wanted to use as an exercise for [10]; it turned out that the family of

pure cubic number fields Q( 3
√

m ) for cubefree values of m = 8b3 +3 with 1 6 b < 89

had even class numbers, but that the class number was odd for b = 89.
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1. An exercise in class field theory

Consider pure cubic number fields K = Q( 3
√

m) with m = a3 + 3, and assume

that m is cubefree. The element a − ω, where ω = 3
√

m, has norm N(a − ω) =

a3 − m = −3. Since m ≡ 2, 3, 4 mod 9, the prime 3 is ramified completely in K/Q.

Thus (a − ω)3 = (3), and the element ε = − 1

3
(a − ω)3 = 1 + a2ω − aω2 must be a

unit in the ring of integers OK .

If a ≡ 0 mod 4, this unit is positive and congruent to 1 mod 4, hence K(
√

ε)/K is

an unramified quadratic extension of K.

Proposition 1.1. Let a > 0 be an integer and assume thatm = a3+3 is cubefree.

If 4 | a, then the class number of K = Q( 3
√

m) is even.

It only remains to show that the unit ε is not a square:

Lemma 1.2. Let a > 0 be an integer and assume that m = a3 + 3 is cubefree.

Then ε = 1 + a2ω − aω2 is not a square in K = Q( 3
√

m ).

P r o o f. From ε = 1

3
(ω−a)3 we see that if ε is a square in OK , then 3ω−3a = β2

is a square in K. With β = r + sω + tω2 we find the equations

r2 + 2stm = −3a, 2rs + mt2 = 3 and s2 + 2rt = 0.

Since m > 3, these equations imply st < 0, rs < 0 and rt < 0: but this is clearly

impossible. �

If a ≡ 2 mod 4, let us write a = 2b and m = 8b3 + 3; the unit ε = 1 + 4b2ω − 2bω2

is not congruent to a square modulo 4, but computing the class numbers of a few

fields Kb = Q( 3
√

m ) produces the following results:

b 1 3 5 7 9 11 13

m 11 3 · 73 17 · 59 41 · 67 3 · 5 · 389 10651 17579
h(Kb) 2 18 54 168 240 564 920

Although these class numbers are all even, searching for a family of explicit generators

of unramified quadratic extensions of these cubic fields was unsuccessful.

Continuing this table shows that h(Kb) is odd for b = 19; but here m = 54875 =

53 · 439 is not cubefree. The calculations have to be extended considerably before

something surprising happens:

b 85 86 87 88 89

m 619 · 7937 232 · 9619 3 · 1756009 5451779 5 · 11 · 412 · 61
h(Kb) 153954 6000 151200 186860 3375
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Thus the class number of Kb for b = 89 is odd, although it is even for all 87 values

less than 89 for which m = 8b3 +3 is squarefree. This clearly cannot be an accident;

but how can we explain this phenomenon?

2. Elliptic curves

Let m = 8b3 + 3 for integers b > 1, assume that m is cubefree, and let Kb = Q(ω)

denote the pure cubic number field defined by ω = 3
√

m.

We now consider the family of elliptic curves Eb : y2 = x3 − m. A rational point

on a curve Eb has the form
1 x = r/t2 and y = s/t3, and clearing denominators shows

that such rational points correspond to solutions of the equation s2 = r3 − mt6. In

other words: the norm of the element r − t2ω ∈ Kb is a square. If this element is

coprime to its conjugates, then there must be an ideal a with (r − t2ω) = a2, and if

a is not principal, then the class number of Ka will be even.

Computing a couple of rational points on these curves Eb produces the following

table of selected points (here we have included even values of b):

b 1 2 3 4 5

P (3, 4) (17/4, 25/8) (55/9, 82/27) (129/16, 193/64) (251/25, 376/125)

These points all have the form (f(b)/b2, g(b)/b3) for some (yet) unknown functions

f and g. Computing the differences we find

3 17 55 129 251 433

14 38 74 122 182

24 36 48 60

12 12 12

The fact that the third differences seem to be constant and equal to 12 = 2 · 3!

suggests that f(b) = 2b3+ terms of lower order, and then it is easy to guess that

(2.1) Pb

(2b3 + 1

b2
,
3b3 + 1

b3

)

is a family of rational points on the elliptic curves Eb. Since torsion points must be

integral, we find:

Let a > 0 be an integer and assume that m = a3 + 3 is cubefree. The elliptic

curves Eb : y2 = x3 − m have rank at least 1, and the rational points in (2.1) have

infinite order.

1 For standard results on the arithmetic of elliptic curves we refer to [15] for a first
introduction.
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Thus all curves Eb have rank at least 1. Does this explain the fact that the class

numbers of Kb tend to be even? Before we return to this question, let us describe

an approach that could have predicted the family of rational points Pb.

3. Quadratic fields

The points Pb = (x, y) from (2.1) satisfy y2 = x3 −m; clearing denominators then

gives

(3.1) (3b3 + 1)2 + b6m = (2b3 + 1)3.

Since the elements τ = 3b3 +1+b3
√
−m and τ ′ = 3b3+1−b3

√
−m generate coprime

ideals in kb = Q(
√−m), there must be an integral ideal a in kb with (τ) = a3. This

suggests that the class numbers of the quadratic number fields kb should have a

tendency to be divisible by 3. Numerical experiments, however, reveal that this is

not correct. In fact, the element τ with norm (2b3 + 1)3 is a cube since

(3.2) 3b2 + 1 + b3
√
−m =

(1 +
√
−m

2

)3

.

Thus we have seen:

The element τ = 3b3 +1 + b3
√−m in Q(

√−m ) is a cube. In particular, the ideal

a with (τ) = a3 is principal.

This also means that the rational points Pb on the family of elliptic curves Eb

could have been constructed in a rather trivial way: for m = 8b3 +3, taking the cube

of the element2 1

2
(1 +

√−m) immediately gives (3.2) and thus the points Pb.

The ideal classes [a] of order dividing 3 in the quadratic number fields kb are all

trivial. This begs the question whether the ideal classes of order dividing 2 in the

number fields Kb deduced from (3.1) are also trivial. This is what we will look into

next.

2 To be honest, this only worked because the coefficient of
√

−m is a cube; taking the third
power of 1

2
(3+

√

−m ), for example, does not work since its cube is −9b3+(3− b3)
√

−m.
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4. Pure cubic fields

Let us now write the equation (3.1) in the form

(3b3 + 1)2 = (2b3 + 1)3 − b6m = N(2b3 + 1 − b2ω).

The element α = 2b3 + 1 − b2ω has square norm; if it is the square of a principal

ideal, it will not explain our observations on class numbers. Playing around with

elements of small norm leads us to the observation3 that

(4b3 + 1)3 − b3 · m2 = 3b3 + 1,

which shows that

N(β) = 3b3 + 1 for β = 4b3 + 1 − bω2.

Thus there exist elements of norm 3b3 + 1; but is β2 = α? The answer is no because

β2 = 16b6 + 8b3 + 1 + b2(8b3 + 3)ω − (8b4 + 2b)ω2.

A simple calculation, however, shows that

εα = β2,

where ε = 1 + 4b2ω − 2bω is the unit in Kb we have started with. Thus (α) is the

square of the principal ideal (β), and so the ideal classes coming from the rational

points Pb are all trivial. It seems that we are back to square one.

5. Back to elliptic curves

The family of points Pb on the elliptic curves Eb shows that these curves all have

rank > 1. In fact, the curves Eb for small values of b all have rank > 2: in fact, the

Mordell-Weil rank is 2 for 1 6 b 6 90 except for

⊲ the values b = 9, 17, 18, 20, 25, 53, 54, 67, 82, 87 for which the rank is 4;

⊲ the value b = 13 for which the computation of the rank is complicated by the

likely presence of a nontrivial Tate-Shafarevich group; here the rank is bounded

by 2 6 r 6 4, and the 2-Selmer rank is even;

⊲ the values b = 77 and a = 80, for which the Selmer rank is 2, but the second

generator has large height;

3Observe that (4b2 + 1)3 = 64b6 + 48b4 + 12b2 + 1 and m2 = 64b6 + 48b3 + 9; in order to
make the second terms vanish we only have to adjust the coefficients slightly.
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⊲ the values b = 44 and a = 89, for which the rank is 1;

⊲ the values b = 56, 68, 69, 86, for which the rank is 3.

These results show that trying to construct two independent families of points on

Eb is bound to fail since there are examples of curves with rank 1. We therefore

should show that the ranks of the curves Eb have a tendency to be even. This can

be accomplished with the help of the parity conjecture.

Parity conjectures. For formulating the various statements connected with the

name partiy conjectures, let r denote the Mordell-Weil rank of an elliptic curve, and

R the analytic rank, that is, the order of vanishing of the L-series of E at s = 1. The

conjecture of Birch and Swinnerton-Dyer predicts that r = R.

The functional equation of the L-series of E connects the values at s and 2 − s;

the completed L-series L∗ satisfies the functional equation

L∗
E(2 − s) = w(E)L∗(s),

where w(E) ∈ {±1} is called Artin’s root number. If w(E) = −1, then setting s = 1

in the functional equation implies L(1) = 0, and the Birch and Swinnerton-Dyer

Conjecture predicts that E has rank > 1. More generally, the parity conjecture

states that (−1)r = w(E). Performing a p-descent on an elliptic curve provides us

with the p-Selmer rank rp of E, and this rank differs from the rank r of E by an

even number if the Tate-Shafarevich group of E is finite.

Theorem 5.1. IfX(E) is finite, then the parity conjecture (−1)r = w(E) holds.

The root number for elliptic curves with j-invariant 0 was computed by Birch and

Stephens; for our curves Eb we find that (see Liverance [11])

w(E) =
∏

p2|m

(−3

p

)

.

Thus we expect that the rank rb of Eb is even whenever m is squarefree, and that

it is odd if rb is divisible by the square of a unique prime p ≡ 2 mod 3. The values

b < 200 for which this happens are

b = 44, 56, 68, 69, 86, 89, 94, 119, 169, 177, 194,

which agrees perfectly with our computations above. Observe that the class number

for b = 419 is even, and that m = 52 · 112 · 227 · 857 is divisible by the square of two

primes p ≡ 2 mod 3.
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The only examples of pure cubic fields Kb with odd class numbers for b < 1630

and cubefree m are

b = 89, 119, 169, 177, 209, 369, 369, 503, 615, 661, 719, 787,

903, 1069, 1145, 1219, 1319, 1365, 1387, 1419, 1629.

For all these b, the number m = 8b3+3 is divisible by exactly one prime p ≡ 2 mod 3.

The many values of b ending in 19 are explained by the observation thatm is divisible

by 52 if m ≡ 19, 69 mod 100.

Nothing so far prevents a pure cubic field Kb from having an odd class number if

the rank of Eb is even: the rational points on Eb give rise to ideals a in Kb whose

squares are principal, but there is no guarantee that a is not principal. Yet all

available numerical evidence points towards the following

Conjecture 1. Let b > 1 be an integer and assume that m = 8b3 + 3 is cubefree.

If the class number of Kb = Q( 3
√

m) is odd, then the rank of the elliptic curve

Eb : y2 = x3 − m is 1.

This conjecture implies, by the parity conjecture, the following, which does not

even mention elliptic curves:

Conjecture 2. Let b > 1 be an integer and assume that m = 8b3 + 3 is cubefree.

If the class number of Kb = Q( 3
√

m ) is odd, then m is divisible by an odd number

of squares of primes p ≡ 2 mod 3.

A weaker formulation of the conjecture would be that the class number of Kb is

even whenever m is squarefree. Even this weaker conjecture is unlike anything I

would have expected. After all, the primes with exponent 1 and 2 in the prime fac-

torization of m change their roles when m is replaced by m2 (observe that Q( 3
√

m ) =

Q(
3
√

m2 )).

6. Nobody expects the Spanish inquisition

In the conjectures above, the condition that m be squarefree seemed quite sur-

prising at first. This condition also occurs in the computation of an integral basis

of pure cubic fields: it is well known that the ring of integers in Q( 3
√

m ) is given

by Z[ 3
√

m] (such cubic fields are called monogenic) if and only if m 6≡ ±1 mod 9 is

squarefree. If, on the other hand, m is divisible by the square of a prime p, then

p−1 3
√

m2 is integral, and the field is not monogenic.
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But what should the form of an integral basis have to do with the parity of the

class number? Ten years ago, just about any number theorist you would have asked

probably would have answered “nothing!” and would have quoted the heuristics of

Cohen, Lenstra and Martinet as supporting evidence. In fact, Cohen and Lenstra [3]

gave an explanation of the numerical evidence for the distribution of class numbers

of quadratic number fields based on certain heuristics; the main idea was that it’s not

the actual size of a class group that matters but rather the size of its automorphism

group. It is clear that the prime 2 behaves differently in quadratic extensions k since

the 2-class group Cl2(k) is far from being random: Gauss’s genus theory predicts its

rank, and even the invariants divisible by 4.

Cohen and Martinet [4] then extended this project to class groups of extensions of

higher degree. As in the case of quadratic extensions there were “bad primes” p for

which the behaviour of the p-class group Clp(k) was not believed to be random; in

[4], the prime 2 was considered to be good for nonnormal cubic extensions k although

it divides the degree of the normal closure of k/Q. In particular, the probability that

the class number of k is even was predicted to be about p = 0.25932. In [5, Sect. 4],

however, the authors cast some doubt on their earlier conjectures and asked whether

the prime 2 actually was bad in this case.

Finally Bhargava and Shankar [1, Thm. 1.9, 1.10] proved the following result:

the average size of the 2-class groups of complex cubic number fields ordered by

discriminant (or height) is smaller than the corresponding average for monogenic

cubic fields. Their result agrees with the Cohen-Martinet prediction based on the

assumption that the prime 2 is good for nonnormal cubic fields.

An observation suggesting a relation between monogenic rings and the distribution

of class groups can actually already be found in the article [7], where the authors

computed the 2-rank of pure cubic number fields Q( 3
√

m ) by studying the elliptic

curves E : y2 = x3 ∓ m and remarked ([7, p. 567]):

The primes4 p ≡ ±1 mod 9 have relatively small 2-class numbers.

It seems that the reason for this is the fact that Ak : y2 = x3 + k has a point of

order 2 in Q3 iff k
2 ≡ 1 mod 9. . .

Let me add the remark that the fact that the 2-class groups of the fields Kb do not

seem to be random does, of course, not imply that the prime 2 is bad in the sense of

Cohen-Martinet because the family of fields Kb has density 0.

4More precisely: the fields Q( 3
√

p ).
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7. Why the class number of Q( 3
√

11 ) is even

Since we have started our tour with the question why the class number of Q( 3
√

11 )

is even it is about time we provide an answer.

Consider the elliptic curve E : y2 = x3−m for some cubefree integerm ≡ 3 mod 4,

and let K = Q(ω) denote the pure cubic number field defined by ω = 3
√

m. If

P = (r/t2, s/t3) is a rational point with t ≡ 0 mod 2, then s2 = r3 −mt6 shows that

α = r − t2ω ∈ K is congruent to 1 mod 4; moreover, (α) is, as we will see below, an

ideal square. Thus the field K(
√

α ) is a quadratic unramified extension of K, and

by class field theory, K has even class number.

Computing the generators of the Mordell-Weil group E(Q) of the elliptic curve

E : y2 = x3 − 11 we find the two points P = (3, 4) and Q = (15, 58). The sum

P + Q = (9/4,−5/8) has the desired form, hence α = 9 − 4ω works. The minimal

polynomial of
√

α is f(x) = x6 − 27x4 + 243x2 − 25, and the discriminant of the

number field generated by a root of f is 36114; a “smaller” polynomial generating

the same number field is g(x) = x6 − 3x5 + 9x4 − 1. Thus K = Q( 3
√

11 ) has the

unramified quadratic extension K(
√

9 − 4ω ).

point α aP [aP ]

(3, 4) P 3 − ω 22
1 1

(15, 58) Q 15 − ω 21 · 29 [2]

(9

4
,− 5

8
) P + Q 9 − 4ω 5 [2]

(345

64
,− 6179

512
) 2P 345 − 64ω 373 · 167 1

(51945

13456
, 10647157

1560896
) 2Q 51945− 13456ω 371 · 83 · 3467 1

(861139

23409
, 799027820

3581577
) 3P 861139− 23409ω 22

1 · 5 · 23 · 1737017 1

The prime 2 splits into two prime ideals in K, namely 21 with norm 2 and 22 with

norm 4. The squares of these ideals are principal: we have 22
1 = (5 + 2ω + ω2) and

22 = (3 + ω − ω2).

The prime number 37 splits into three prime ideals in K; the prime ideals in the

decomposition (37) = 371372373 are determined by the congruences ω ≡ −9 mod

371, ω ≡ −12 mod 372, and ω ≡ −16 mod 373. The first two ideals are nonprincipal,

whereas 373 is generated by 5− 2ω. This is compatible with our construction of the

Hilbert class field of K: a computation of the quadratic residue symbols shows that

[9 − 4ω

371

]

2

=
(45

37

)

= −1,
[9 − 4ω

372

]

2

=
(57

37

)

= −1,
[9 − 4ω

373

]

2

=
(73

37

)

= +1.

Thus only 373 splits in the Hilbert class field.
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Without going into details we remark that a3Q belongs to the ideal class [2]. This

is compatible with the conjecture that the map P → [aP ] is a homomorphism from

E(Q) to Cl(K)[2].

Similarly, for b = 3 and m = 219, the curve E3(Q) is generated by P =

(55/9, 82/27) and Q = (283/9, 4744/27), and the sum P + Q provides us with

the quadratic unramified extension K(
√

α ) for α = 115657− 12996ω. The minimal

polynomial of
√

α is f(x) = x6 − 346971x4 + 40129624947x2 − 1066391672856409,

a “smaller” polynomial whose root generates the same number field is g(x) =

x6 − 3x5 + 21x4 − 37x3 + 126x2 − 108x− 3.

8. Hilbert class fields via elliptic curves

We will now show that this construction works whenever E has rank > 2:

Theorem 8.1. Let b be an odd integer such that m = 8b3 +3 is squarefree. Then

the class number of Q( 3
√

m) is even whenever E : y2 = x3 − m has rank > 2. If the

parity conjecture holds, then the class number is even for all squarefree values of m.

This theorem will be proved by showing that if there is a point P = (r/t2, s/t3)

on E(Q) \ 2E(Q) with 2 | t, then the extension H = K(
√

α ) of K is a quadratic

unramified extension.

For showing that H/K is unramified we have to verify the following claims:

⊲ α > 0, which implies that the extension H/K is unramified at the infinite

primes;

⊲ α ≡ 1 mod 4, which implies that H/K is unramified above 2;

⊲ (α) = a2 is an ideal square, which implies that H/K is unramified at all finite

primes not dividing 2.

The first claim is trivial since Nα = s2 > 0, and the second claim follows from the

assumption 2 | t. It remains to show that (α) is an ideal square:

Lemma 8.2. Let P = (r/t2, s/t3) be a rational point on Eb : y2 = x3 − m for

a squarefree value of m = 8b3 + 3. Assume as above that gcd(r, t) = gcd(s, t) = 1.

Then the ideal (α) for α = r − t2ω is the square of an ideal a in Kb.

P r o o f. The ideal (α) is a square if Nα is a square and (α, α′) = (1) in

K ′
b = Q(

√
−3, ω). In our case, Nα = s2, and any ideal divisor of α and α′ divides

the difference α−α′ = (1−̺)t2ω. Since gcd(s, t) = 1, this ideal must divide (1−̺)ω.

Any prime ideal dividing ω and s also divides r, so its norm divides both r and s,

hence the square of its norm divides mt6. Since gcd(r, t) = 1, it must divide m, and

this contradicts the assumption that m be squarefree.
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Thus the only possibilities for d = (α, α′) are d = (1) and d = 3, where 3 is the

prime ideal above 3 (recall that m ≡ 2, 3, 4 mod 9, hence 3OK = 33). The second

case is only possible if 3 | s, but this leads quickly to a contradiction, since in this

case r and t are not divisible by 3, and r2 − mt6 is not divisibly by 9 in this case.

Thus (α) = a2 is an ideal square. �

For showing that H/K is a quadratic extension we need to know when α is square

in K. To this end let us first characterize the points on E that give rise to squares:

Lemma 8.3. Letm be a cubefree integer,K = Q(ω) the corresponding pure cubic

number field with ω3 = m, and E : y2 = x3 − m an elliptic curve. Every rational

affine point P ∈ E(Q) can be written in the form P = (r/t2, s/t3) for integers r, s, t

with gcd(r, t) = gcd(s, t) = 1.

The map α : E(Q) −→ K×/K× 2 defined by α(P ) = (r − t2ω)K× 2 is a group

homomorphism whose kernel contains 2E(Q); more exactly α(2P ) is represented by

the square of β = (r − t2ω)2 − 3(t2ω)2.

Finally if P ∈ kerα and t is even, then P = 2Q for some Q ∈ E(Q).

P r o o f. For a proof that we may assume gcd(r, t) = gcd(s, t) = 1 see [15, p. 68].

Performing a 2-descent on the elliptic curve E : y2 = x3 − m means studying

the Weil map E(K) −→ K×/K× 2 which sends a K-rational point P = (x, y) to

the coset represented by x − ω. The fact that the Weil map is a homomorphism is

classical (see e.g. [15]); in particular, the restriction of the Weil map to E(Q) is also

a homomorphism.

Since the target group is K× modulo squares, the Weil map can be defined by

α(P ) = (r − t2ω)K× 2.

Now assume that α(P ) = (r − t2ω)K× 2 and set β = α(P )2 − 3t4ω2. Then

β2 = (r2 − 2rt2ω − 2t4ω2)2 = r4 + 8rt6m − 4t2ω(r3 − mt6).

On the other hand, the group law on E gives

2(x, y) =
(9x4

4y2
− 2x,−27x6

8y3
+

9x3

2y
− y

)

=
(x4 + 8mx

(2y)2
,
x6 − 20mx3 − 8m2

(2y)3

)

.

Thus

x2P =
x4 + 8mx

(2y)2
=

x4 + 8mx

4x3 − 4m
=

r4/t8 + 8mr/t2

4r3/t6 − 4m
=

r4 + 8rmt6

4t2(r3 − mt6)
,

and this implies the claim.
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Finally assume that α(P ) ∈ K× 2 for P = (x, y). Since

y2 = x3 − m = (x − ω)(x − ̺ω)(x − ̺2ω),

we find that

x2 + xω + ω2 = (x − ̺ω)(x − ̺2ω) ∈ K× 2.

The ideals (x − ̺ω) and (x − ̺2ω) are coprime in L = K(
√
−3 ) by the proof of

Lemma 8.2, hence

(8.1) r − ̺ωt2 = ηβ2

for some unit η in L. Now we need a variant of Kummer’s Lemma for L:

Proposition 8.4. If η is a unit in L with η ≡ ξ2 mod 4, then η is a square.

Since the left hand side of (8.1) is congruent to 1 mod 4, Prop. 8.4 implies that

η is a square. But then r − ̺ωt2 (and therefore also r − ̺2ωt2) is a square. By

[6, Prop. 1.7.5], we have P = (xP , yP ) = 2Q for some point Q ∈ E(Q) on E : y2 =

f(x) = (x−e1)(x−e2)(x−e3) if and only if xP −ej is a square in Q(ej) for j = 1, 2, 3.

This implies our claims5. �

If E has rank > 2, let P and Q denote two generators of E(Q). If one of them

has the desired form, we are done. If not, then we claim that P + Q works:

Lemma 8.5. If P and Q are independent points with odd denominators, then

P + Q = (r/t2, s/t3) with gcd(r, t) = gcd(s, t) = 1 and 2 | t.

P r o o f. This is a direct consequence of the addition formulas. In fact, we find

x3 = µ2 − x1 − x2 for µ = (y2 − y1)/(x2 − x1). Now (y1 − y2)(y1 + y2) = y2
1 − y2

2 =

x3
1−x3

2 = (x1−x2)(x
2
1 +x1x2 +x2

2); we know by assumption that x1 ≡ x2 ≡ 1 mod 2,

hence the right hand side is divisible by 2. Since the second bracket on the right side

is odd, the whole power of 2 is contained in x1−x2. On the left hand side, the power

of 2 is split among the factors y1 − y2 and y1 + y2, both of which are even. This

implies that the denominator of µ must be even. In particular, the denominator of

x3 = µ2 − x1 − x2 must also be even, which is what we wanted to prove. �

It remains to give a

5A simpler proof that P = 2Q in this case can be found in [9].
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P r o o f of Prop. 8.4. We start by determining the unit group of L. We know

that EK = 〈−1, ε〉; it is easy to verify that E = 〈−̺, ε, ε′〉 has finite index in
EL (for example by showing that the regulator of this group is nonzero), where

ε′ = 1 + 4b2̺ω − 2b̺2ω2 is the conjugate of ε over K. We first show that E = EL.

⊲ The units ±ε are not squares in L. In fact, if ±ε is a square in L, then L =

K(
√±ε ). This implies that L/K is unramified outside 2∞, which contradicts

the fact that L/K is ramified above 3.

⊲ The units ±̺cε are not squares in L: this follows from above by noting that ̺

is a square in L.

⊲ The units ±̺cε′ and ±̺cε′′ are not squares in L: this follows by applying a

suitable automorphism of Gal(L/Q).

⊲ The units ±̺cε′ε′′ are not squares in L: this follows from the above by observing

that ε′ε′′ = 1/ε.

This shows that E has odd index in EL. The fact that the index must then be 1

follows by applying the norm NL/K to any relation of the form (−̺)aεbε′
c

= ηp.

Now assume that η ≡ ξ2 mod 4 for some unit η ∈ EL. Since ̺ is a square, we

may assume that η = (−1)aεbε′
c
with a, b, c ∈ {0, 1}. We know that η ≡ 1 mod 2; if

η ≡ ξ2 mod 4, we must have η ≡ 1 mod 4. Checking the finitely many possibilities

we easily deduce that a = b = c = 0, and this implies the claim. �

This completes the proof of Theorem 8.1. As a matter of fact, we can prove

something stronger:

Theorem 8.6. Let b be an odd integer such that m = 8b3 + 3 is squarefree.

Then the 2-rank s of the class group Cl2(K) of K = Q( 3
√

m ) and the rank r of the

Mordell-Weil group E(Q) of E : y2 = x3 − m satisfy the inequality

(8.2) r 6 s + 1.

P r o o f. Let P1, . . . , Pk denote the generators of E(Q) with even denominators,

and Pk+1, . . . , Pr those with odd denominators. Then the points P1, . . . , Pk, Pk+1 +

Pr, . . . , Pr−1 + Pr are independent points in E(Q) \ 2E(Q) with even denominators;

by what we have proved, the pure cubic field K has r − 1 independent unramified

quadratic extensions. �

In the only case where we have been unable to compute the rank of the curve Eb,

namely for b = 13, we find s = 3 and therefore r 6 4. This does not improve on the

bound coming from the Selmer rank, but it suggests that the rank r of E(Q) in the

preceding theorem may perhaps be replaced by some Selmer rank.
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An inequality similar to (8.2) for general elliptic curves was given by Billing (see

[6, Sect. 3.7]). For curves E : y2 = x3 − m, Billings bound was

r 6

{

s + 1 if m 6≡ ±1 mod 9,

s + 2 if m ≡ ±1 mod 9.

The main difference between Billing’s result applied to Eb and ours is that Billing

proved r 6 s + 1, whereas we proved s > r − 1 by more or less explicitly exhibiting

generators of the quadratic unramified extensions of K.

Additional remarks and open problems

The explanation that the fields Kb tend to have even class numbers could have

been giving by simply citing the parity conjecture and Billing’s bound. We have

shown more by using rational points on elliptic curves for constructing subfields of

Hilbert class fields. It remains to be studied how much of Billing’s bound can be

proved in a similar way.

Instead of using the curves Em : y2 = x3 −m we could also investigate the family

E−m : y2 = x3 + m; in this case, the root number is w(E−m) = −w(Em), so we

expect that its rank is odd whenever m is squarefree. For the curves with rank 1,

the generator seems to have even denominator in most cases. It also seems that the

curves E−m more often have nontrivial Tate-Shafarevich groups than the curves Em,

but this might be a general feature of families of elliptic curves with root number −1

when compared with families of curves with rank > 1 and positive root number.

I would like to call the attention of the readers to the fact that Soleng [16] has

constructed a homomorphism from the group of rational points on elliptic curves

to the class groups of certain quadratic number fields. Our map sending the points

P = (r/t2, s/t3) with even t to the ideal class [b], where (s+ t3
√
−m ) = b2, does not

seem to be a special case of Soleng’s construction. Is this map also a homomorphism?

How are these maps related to the group structure on Pell surfaces y2 + mz2 = x3

studied in [8]?

Our calculations in the Mordell-Weil group of y2 = x3 − 11 and the corresponding

pure cubic fieldK = Q( 3
√

11) paired with a strong belief in the prestabilized harmony

of algebraic number theory suggest the following: If P = (x, y) with x = r/t2 is a

rational point on the elliptic curve E : y2 = x3 − m, then under suitable conditions

on m, the ideal (r − t2ω) = a2
P is an ideal square in K = Q( 3

√
m ), and the map

sending P to the ideal class of aP is a homomorphism from E(Q) to the 2-class

group Cl(K)[2] of the pure cubic field K; this is in fact true, and will be proved

in [9].
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Here is one more question: Paul Monsky gave a proof that the class number of

Q( 4
√

p ) is even for primes p ≡ 9 mod 16 based on the parity conjecture in [13];

an unconditional proof of this fact can be found in [14]. Is it possible to give an

unconditional proof of the results on the parity of the class numbers of the pure

cubic fields Kb?

A c k n ow l e d g em e n t. I thank Dror Speiser [12] for reminding me of the ap-

proach using elliptic curves and for pointing out the relevance of [11]. Paul Monsky

kindly sent me an unpublished manuscript [13] in which he studied connections be-

tween the parity of class numbers of pure quartic fields and elliptic curves. All

calculations were done with pari and sage.
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