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Abstract. Let α(n) be the least number k for which there exists a simple graph with k ver-
tices having precisely n > 3 spanning trees. Similarly, define β(n) as the least number k for
which there exists a simple graph with k edges having precisely n > 3 spanning trees. As an
n-cycle has exactly n spanning trees, it follows that α(n), β(n) 6 n. In this paper, we show
that α(n) 6 1

3
(n+ 4) and β(n) 6 1

3
(n+ 7) if and only if n /∈ {3, 4, 5, 6, 7, 9, 10, 13, 18, 22},

which is a subset of Euler’s idoneal numbers. Moreover, if n 6≡ 2 (mod 3) and n 6= 25
we show that α(n) 6 1

4
(n + 9) and β(n) 6 1

4
(n + 13). This improves some previously

estabilished bounds.
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1. Introduction

Results related to the problem of counting spanning trees for a graph date back

to 1847. In [6], Kirchhoff showed that the number of spanning trees of a graph G

is closely related to the cofactor of the Laplacian matrix of G. Later, a number of

related results followed. In 1889, Cayley [2] derived the number of spanning trees for

the complete graph on n vertices which is nn−2. Later formulas for various families

of graphs have been derived. For example, it was shown by Baron et al. [1] that the

number of spanning trees of the square of a cycle C2
n equals to nFn where Fn is the

n’th Fibonacci number.

Speaking about a seemingly unrelated branch of mathematics, Euler studied

around 1778 a special class of numbers allowing him to find large primes. He called

such numbers idoneal numbers (numerus idoneus). He was able to find 65 such
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numbers: I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30,

33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133,

165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462,

520, 760, 840, 1320, 1365, 1848}, see also [9].

Gauss [5] conjectured that the set of idoneal numbers I is complete. It was later

proved by Chowla [3] that the set of idoneal numbers is finite. We denote by I∗ the

set of idoneal numbers not present in I and remark that if the Generalized Riemann

Hypothesis is true, then I∗ = ∅ [10]. It is also known that any idoneal number in I∗

has at least six odd prime factors [4]. In this paper we use the definition of idoneal

numbers stating that n is idoneal if and only if n is not expressible as n = ab+ac+bc

for integers 0 < a < b < c. For other characterizations of idoneal numbers see [11].

We use this number theoretical result to improve the answer related to the question

Sedláček [7] posed in 1970: Given a number n > 3, what is the least number k such

that there exists a graph on k vertices having precisely n spanning trees? Sedláček

denoted this function by α(n). He was able to show that α(n) 6 1

3
(n + 6) for almost

all numbers. More precisely he proved that α(n) 6 1

3
n + 2 whenever n ≡ 0 (mod 3)

and α(n) 6 1

3
(n+4) whenever n ≡ 2 (mod 3). Nebeský [8] later showed that the only

fixed points of α(n) are 3, 4, 5, 6, 7, 10, 13 and 22, i.e. these are the only numbers n

such that α(n) = n. He also defined the function β(n) as the least number of edges l

for which there exists a graph with l edges and with precisely n spanning trees. He

showed that

α(n) < β(n) 6
n + 1

2
,

except for the fixed points of α in which case it holds that α(n) = β(n) = n.

Moreover, as is observed in [8], from the construction used by Sedláček [7] we have

α(n) < β(n) 6

{

1

3
(n + 9) if n ≡ 0 (mod 3),

1

3
(n + 7) if n ≡ 2 (mod 3),

whenever n /∈ {3, 4, 5, 6, 7, 10, 13, 22}.

In this paper we improve their result by showing that

β(n) 6
n + 13

4
,

whenever n 6≡ 2 (mod 3) and n /∈ {3, 4, 6, 7, 9, 13, 18, 25}.We also prove that α(22) =

β(22) = 22, proof of which in [8] we found to be incomplete as it only states that

there is no graph with cyclomatic number 2 or 3 that has 22 spanning trees and that

every graph with a greater cyclomatic number has more than 22 spanning trees.
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We will refer to the number of spanning trees of a graph G by τ(G). Throughout

the paper we will often use the following identity used to compute τ(G):

(1) τ(G) = τ(G − e) + τ(G/e)

for every e ∈ E(G). Here G/e denotes the graph obtained from G by contracting

the edge e of G and removing the loop that could possibly be created. Note that the

resulting graph may not be simple. If by G+ e we denote the graph that is obtained

after introducing an edge into G and by G + Pk we denote the graph obtained

after interconnecting two vertices of G with a path Pk+1 of length k, then we will

occasionally use the fact that:

(2) τ(G + e) > τ(G) + 2 and τ(G + Pk) > kτ(G)

for a connected graph G and k > 2. The first inequality follows from the fact that

we can form at least two spanning trees in G+ e that are not spanning trees in G by

taking a spanning tree T of G and obtain new trees T1, T2 after removing an edge

(not equal to e) from the cycle that is obtained in T + e. The second inequality is

equally easy to prove.

Graphs with α(n) vertices with n spanning trees possess some structure. For

example, it follows directly from equation (1) that graphs having n spanning trees

with α(n) vertices are always 2-edge-connected. A simple argument can then be used

to show that such graphs have cycles of length at most 1

2
n provided that α(n) < n.

For nonnegative integers a, b, c, let Θa,b,c be the graph comprised of two vertices

connected by three internally disjoint paths of length a, b and c, respectively. We

refer to these paths as Pa, Pb and Pc. Note that Θa,b,c is simple if and only if at

most one of a, b, c equals 1. For a, b > 3 denote by Ca,b the graph obtained after

identifying a vertex of an a-cycle with a vertex of a disjoint b-cycle. Notice that

Θa,b,0 is isomorphic to Ca,b.

2. Lower bounds for the number of spanning trees of

graphs derived from Θa,b,c

In this section, we examine the number of spanning trees that arise in Θa,b,c when

interconnecting two distinct vertices by a disjoint path of length d. In order to do so

we define simple graphs Θ0
a,b,c,d(a1, a2), Θ

1
a,b,c,d(a1), Θ

2
a,b,c,d(a1, b1) that are obtained

from Θa,b,c by introducing a path. Let u, v be the 3-vertices of Θa,b,c.

First we construct Θ0. We assume a > 3. For integers a1 > 1 and a2 > 1

with a1 + a2 < a, let x and y be the vertices of Pa such that dPa
(u, x) = a1 and
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dPa
(v, y) = a2. Then Θ0

a,b,c,d(a1, a2) is the graph obtained by interconnecting x and

y with a disjoint path of length d, see the first graph of Figure 1. As we are only

dealing with simple graphs we require that d > 1 if a1 + a2 = a − 1.

We now construct Θ1. Let x = u and let y be a vertex on Pa such that dPa
(u, y) =

a1 > 1. Then Θ1
a,b,c,d(a1) is the graph obtained by interconnecting x and y by

a disjoint path of length d. See the second graph of Figure 1. Notice that the

possibility y = v is not excluded; in that case Θ1
a,b,c,d(a1) has two 4-vertices. Since

we wish that the resulting graph be simple we require d > 2 whenever a1 = 1 and

d > 2 whenever min(a, b, c) = 1. Moreover, we assume a > 2.

Finally, define Θ2
a,b,c,d(a1, b1) by choosing a vertex x on Pa, x /∈ {u, v} such that

dPa
(u, x) = a1 and similarly let y be a vertex on Pb, y /∈ {u, v} such that dPb

(u, y) =

b1. We always assume a1 > 1 and b1 > 1. Then Θ2
a,b,c,d(a1, b1) is the graph obtained

by connecting x and y by a disjoint path of length d as shown on the third graph of

Figure 1. Observe that this construction requires a, b > 2, a− a1 > 1, and b− b1 > 1

in order to preserve simplicity of Θ2.

We now present some formulas and inequalities for the number of spanning trees

for the graphs we have just defined. The following equalities are easy to derive using

equation (1).

u v

x y

d
a1 a2

u = x v

y

d

u v

x

y

d

a1

b1

Figure 1: Graphs Θ0a,b,c,d(a1, a2), Θ
1

a,b,c,d(a1), Θ
2

a,b,c,d(a1, b1) obtained after adding a path
of length d between two distinct vertices x, y of Θa,b,c.

Lemma 1. The following three equalities hold:

(1) τ(Θ0
a,b,c,d(a1, a2)) = dτ(Θa,b,c) + (a − a′)τ(Θa′,b,c) where a1 + a2 = a′,

(2) τ(Θ1
a,b,c,d(a1)) = dτ(Θa,b,c) + a1 τ(Θa−a1,b,c),

(3) τ(Θ2
a,b,c,d(a1, b1)) = dτ(Θa,b,c) + c(a1 + b1)(a2 + b2) + a1a2b + b1b2a where

a2 = a − a1 and b2 = b − b1.

We use the identities presented in Lemma 1 in order to derive some lower bounds

for the number of spanning trees for the graphs Θ0, Θ1 and Θ2.
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Lemma 2. We have

τ(Θ0
a,b,c,d(a1, a2)) >

{

(d + 1

2
)τ(Θa,b,c) if a = 3 or d > 2,

(d + 1) τ(Θa,b,c) if a > 4 and d = 1.

P r o o f. Let ̺(x) = (a − x)(bc + x(b + c)). By Lemma 1 (1) we have to show

̺(x) >

{

1

2
τ(Θa,b,c) if a = 3 or d > 2,

τ(Θa,b,c) if a > 4 and d = 1.

where x = a1 + a2 As ̺ is a quadratic concave function it is enough to verify the

claim for x ∈ {2, a− 1} if d > 2 and x ∈ {2, a− 2} if d = 1. Suppose first that x = 2,

i.e. a1 = a2 = 1. If a = 3 then ̺(2) = bc + 2b + 2c > 1

2
(3b + 3c + bc) = 1

2
τ(Θa,b,c)

and if a > 4, then

̺(2) = abc + 2ab + 2ac − 2bc − 4b − 4c

> (bc + ab + ac) + (3bc − 2bc + ab + ac − 4b − 4c)

> ab + ac + bc

= τ(Θa,b,c).

Suppose now that d > 2 and x = a − 1. Then, we have ̺(a − 1) = bc + (a −

1)(b + c) > 1

2
(ab + ac + bc) as a > 3. Finally, assume d = 1 and hence a > 4. Then

̺(a − 2) = 2bc + 2(a − 2)b + 2(a − 2)c > ab + bc + ac as 2(a − 2) > a. �

Lemma 3.

τ(Θ1
a,b,c,d)(a1) >

(

d +
1

2

)

τ(Θa,b,c).

P r o o f. By Lemma 1 (2) it is enough to show ̺(x) > 1

2
(ab + ac + bc) for each

x ∈ [1, a], where ̺(x) = x(bc + b(a − x) + c(a − x)). As ̺ is a quadratic concave

function, it is enough to show this inequality only for x = 1 and x = a.

For x = 1, this inequality reduces to ab + bc + ac > 2c + 2b which trivially holds

for a > 2.

For x = a, we have to show the inequality abc > 1

2
(ab+bc+ac). Notice that a > 2

and at least one of b,c is > 2, say b. Then ab > a + b and hence:

2abc > (a + b)c + abc > ab + bc + ac.

�
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Lemma 4. We have

τ(Θ2
a,b,c,d)(a1, b1) > (d + 1)τ(Θa,b,c).

P r o o f. By Lemma 1(3), we have to show that

c(a1 + b1)(a2 + b2) + a1a2b + b1b2a > ac + bc + ab.

It will be enough if we show that:

(a1 + b1)(a2 + b2) > a + b and a1a2b + b1b2a > ab.

The first inequality follows immediately by the known fact xy > x + y for x, y > 2

(just set x = a1 + b1 and y = a2 + b2).

For the second inequality, it is enough to observe that a1a2 > 1

2
a and b1b2 > 1

2
b

as xy > 1

2
(x + y) whenever x, y > 1. �

Using the derived bounds from Lemmas 2–4 we can state the following corollary

that turns out to be useful in the next section.

Corollary 1. Let G be the graph obtained after interconnecting two vertices of

Θa,b,c with a d-path (d > 1). Then

τ(G) >











3τ(Θa,b,c)/2, d = 1,

5τ(Θa,b,c)/2, d = 2,

dτ(Θa,b,c), d > 3.

P r o o f. Let G be the graph obtained after interconnecting two vertices x, y of

Θa,b,c with a d-path. If d = 1 or d = 2 then x and y are distinct and we see from

Lemmas 2, 3 and 4 that the stated inequality holds. If d > 3 and x, y are distinct it

follows from Lemmas 2–4 that the number of spanning trees of G is at least 7

2
times

greater than τ(Θa,b,c). However, if x = y then we obtain a graph that has Cd and

Θa,b,c as blocks and thus τ(G) = dτ(Θa,b,c), which implies our claim. �

3. Inequality with functions α and β

This section presents our main result. We derive some bounds and equalities for

α and β for some small values and afterwards we show that for n 6≡ 2 (mod 3)

β(n) 6
n + 13

4
,

except for a few cases.
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Proposition 1. α(22) = β(22) = 22.

P r o o f. It is enough to show α(22) = 22. Let us assume G is a graph on

|V (G)| < 22 vertices with precisely 22 spanning trees. Since 22 is not expressible as

ab + ac + bc for a > 1, b, c > 2 and since it is not expressible as 22 = ab for a, b > 3

it follows that there exist integers a > 1 and b, c > 2 such that Θa,b,c ⊂ G. The only

Θ’s graphs having less than 22 spanning trees and vertices are Θ1,2,2, Θ1,2,3, Θ2,2,2,

Θ1,2,4, Θ1,3,3, Θ2,3,3, Θ2,2,3, Θ1,2,5, Θ1,3,4, Θ1,2,6 and Θ2,2,4, so G contains at least

one of them. Moreover, we see from Corollary 1 that introducing a d-path (d > 1) to

any of the graphs Θ1,3,3, Θ2,3,3, Θ2,2,3, Θ1,2,5, Θ1,3,4, Θ1,2,6 or Θ2,2,4 yields a graph

with at least ⌈ 1

2
15 · 3⌉ = 23 spanning trees. Thus we can conclude that at least one

of Θ1,2,2, Θ1,2,3, Θ2,2,2 or Θ1,2,4 is a proper subgraph of G.

Assume Θ1,2,2 ⊂ G. Since Θ1,2,2 has four vertices and since any graph on four

vertices has at most 16 spanning trees it follows that there exists a subgraph F of G

that is obtained after interconnecting two vertices of Θ1,2,2 with some k-path (k > 1).

If k > 3 then from Corollary 1 we have that F is a graph with at least 8 · 3 > 22

spanning trees, so k = 2. Observe that this implies that we can assume Θ2,2,2 ⊂ G,

Θ1,2,3 ⊂ G or Θ1,2,4 ⊂ G. Moreover, using Corollary 1 we see that by adding a

d-path (d > 2) to any of the graphs Θ1,2,3, Θ2,2,2, Θ1,2,4 one obtains a graph with

at least ⌈ 1

2
11 · 5⌉ = 28 spanning trees. Combining these two facts we conclude that

G′ + e ⊆ G for an edge e and G′ ∈ {Θ1,2,3, Θ2,2,2, Θ1,2,4}.

G G + e τ(G + e)
Θ1,2,3 Θ1

3,2,1,1(2) 21
Θ2

3,2,1,1(1, 1) 24

Θ1,2,4 Θ1
4,2,1,1(2) 30

Θ2
4,2,1,1(1, 1) 32

Θ2
4,2,1,1(2, 1) 35

Θ0
4,2,1,1(1, 1) 30

Θ1,3,3 Θ1
3,3,1,1(2) 29

Θ2
3,3,1,1(1, 1) 35

Θ2
3,3,1,1(1, 2) 36

Θ2,2,2 Θ2
2,2,2,1(1, 1) 24
Θ1

2,2,2,1(2) 20

Θ2,2,3 Θ1
3,2,2,1(2) 32

Θ2
3,2,2,1(1, 1) 35

Θ2
2,2,3,1(1, 1) 32

Table 1: Graphs constructed in the proof of Proposition 2 and Theorem 5.

After consulting Table 1 we see that all such graphs G′ + e have more than

22 spanning trees with the exception of Θ1
2,2,2,1(2) and Θ1

3,2,1,1(2) which have 20
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and 21 spanning trees, respectively. We now deduce from inequality (2) that H =

Θ1
2,2,2,1(2)+e′ ⊆ G for an edge e′ since the addition of an edge or a path to Θ1

3,2,1,1(2)

produces a graph with at least 23 spanning trees while introducing a > 2-path to

Θ1
2,2,2,1(2) yields a graph having at least 40 spanning trees. Using the recurrence (1)

we see that

τ(G) > τ(H − e′) + τ(H/e′) > τ(Θ1
2,2,2,1(2)) + τ(Θ1,2,2) = 28

since Θ1,2,2 ⊂ H/e′ regardless of the choice of e′. This implies that there is no graph

having 22 spanning trees and less than 22 vertices, thus proving the stated lemma.

�

Proposition 2. The relations β(9) = 6, α(18) = 8, α(25) > 9, β(37) 6 9,

β(58) 6 10, β(30) 6 8 hold.

P r o o f. We consider each claim individually:

⊲ β(9) = 6. It is easy to verify that there is no graph on less than 6 edges with 9

spanning trees and that τ(C3,3) = 9.

⊲ β(30) 6 8. We see from the first equality in Lemma 1 that Θ0
4,1,2,1(1, 1) has 30

spanning trees and 8 edges from where the stated inequality follows.

⊲ β(37) > 9. According to the second identity stated in Lemma 1, τ(Θ1
3,1,4,1(2)) =

37. This implies β(37) 6 9 since Θ1
3,1,4,1(2)(1, 1) has 9 edges.

⊲ β(58) 6 10. From the second identity derived in Lemma 1 we see that Θ1
4,3,2,1(2)

is a graph with 10 edges having precisely 58 spanning trees, which implies

β(58) 6 10.

⊲ α(25) = 9. Clearly, C5,5 is a graph of order 9 with 25 spanning trees. Assume

now α(25) 6 8 and let G be a graph with 25 spanning trees having less than

9 vertices. The only graph of the form Ca,b which has 25 spanning trees is

C5,5 but |V (C5,5)| = 9. Moreover, there exist no integers a > 1, b, c > 2 such

that |V (Θa,b,c)| < 9 and τ(Θa,b,c) = 25. Thus, it follows that G contains as a

subgraph some Θa,b,c with at most 8 vertices, i.e. a+b+c 6 9. It can be verified

that adding a d-path (d > 1) to any of such graphs produces a graph with at

least 25 spanning trees with the exception of the graphs Θ1,2,2, Θ1,2,3, Θ1,2,4,

Θ1,3,3, Θ2,2,2, Θ2,2,3. Moreover, we see from Corollary 1 that adding a 2-path

to the graph Θa,b,c yields a graph with at least
5

2
τ(Θa,b,c) spanning trees. We

now split the proof into two cases:

Case 1: Θ1,2,3, Θ1,2,4, Θ1,3,3,Θ2,2,2 or Θ2,2,3 is a subgraph of G. By the above

observation, adding a 2-path to any of the graphs covered in this case produces

a graph with at least 5

2
· 11 > 25 spanning trees. Thus G′ + e ⊆ G for G′ ∈

{Θ1,2,3, Θ1,2,4, Θ1,3,3, Θ2,2,2, Θ2,2,3} and an edge e. Table 1 lists all the graphs (up to
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isomorphism) and the respective number of spanning trees that can be constructed

after adding an edge to G′. The fact that adding an edge or a path to a connected

graph increases its number of spanning trees by at least 2 reduces our choice for G′

to the elements of the set {Θ1
2,2,2,1(2), Θ1

3,2,1,1(2)}. Moreover, we saw in the proof of

Proposition 1 that τ(Θ1
2,2,2,1(2) + e′) > 28 for any edge e′. As we cannot add a >

2-path to Θ1
2,2,2,1(2) without obtaining a graph with less than 40 spanning trees (by

the second inequality stated in (2)) it follows that G ⊆ H = Θ1
3,2,1,1(2) + e′ for an

edge e′. Using the deletion-contraction recurrence stated in (1), we now see that

τ(G) > τ(H − e′) + τ(H/e′) > τ(Θ1
3,2,1,1(2)) + τ(Θ1,2,2),

since the graph H/e′ contains Θ1,2,2 as a subgraph independently of the choice of e
′.

Case 2: Θ1,2,2 is a subgraph of G. Observe that Θ1,2,2 + e = K4 and τ(K4) = 16.

Moreover, we see from Lemmas 2–4 that adding a 3-path to Θ1,2,2 produces a graph

with at least (3 + 1

2
) · 8 > 25 spanning trees unless the path interconnects the same

vertex in which case we obtain a graph H with 3 · 8 = 24 spanning trees. Observe

that a similar argument holds when we add a longer path to Θ1,2,2. Since by virtue

of inequality (2) we cannot introduce an edge or a path to H that would produce a

graph with less than 26 spanning trees we conclude that G = Θi
1,2,2,2 for i ∈ {0, 1, 2}.

But this implies that Θ2,2,2 ⊂ G or Θ1,2,3 ⊂ G and we can use the same reasoning

as in Case 1 to conclude that there is no graph G satisfying the stated properties.

The proof of the stated inequality is now complete since the above two cases show

that there exist no graph on less than 9 vertices that has 25 spanning trees.

⊲ α(18) = 8. Since τ(C3,6) = 18, it follows that α(18) 6 8.To prove that α(18) > 8

and thus α(18) = 8, one can now use an argument similar to that in the previous

case α(25) = 9. �

Proposition 3. If n ∈ {40, 42, 45, 48, 60, 70, 72, 78, 85, 88, 102, 105, 112, 120,

130, 133, 165, 168, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408,

462, 520, 760, 840, 1320, 1365, 1848} ∪ I∗ then β(n) 6 1

4
(n + 13).

P r o o f. Let n be a number from the set defined in the statement of this lemma.

If n is of the form n = 5k for k > 7 then |E(Θ5,k)| 6 1

4
(n+13) since 5+k 6 1

4
(5k+13)

for every k > 7. Therefore, the inequality holds for every n divisible by 5 since every

such n that is in the list satisfies the required condition. The same reasoning can

be applied to the cases when n is a divisor of 6 or a divisor of 7 leaving us to verify

the inequalities for the numbers n ∈ {88, 232, 253}∪ I∗. It is easy to verify that for

n ∈ {88, 232, 253} the graphs C8,11, C8,29, C11,23 have 88, 232 and 253 spanning

trees, respectively, and that the inequalities on the number of edges and vertices are

satisifed.
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If n ∈ I∗ then we use the fact that n has at least three odd prime factors. Let

p1, p2 be two of these prime factors of n and let d = n/p1p2. We construct the

graph C by taking disjoint cycles Cp1
, Cp2

, Cd and identifying a vertex of every

cycle. Observe that the graph is well defined as d > 3. The obtained graph clearly

has n spanning trees and

p1 + p2 + d 6 3 + 3 +
n

9
6

n + 7

4

edges. The last inequality following from the fact that n is clearly greater than 30.

�

Theorem 5. Let n > 3 be an integer. Then, β(n) 6 1

3
(n + 7) if and only if

n /∈ {3, 4, 5, 6, 7, 9, 10, 13, 18, 22}. Moreover, if n 6≡ 2 (mod 3) and n 6= 25 then

β(n) 6 1

4
(n + 13).

P r o o f. If n is not idoneal then n is expressible as n = ab + ac + bc for

some integers 0 < a < b < c. The reader may verify that the graph Θa,b,c has

a + b + c edges and precisely n spanning trees. Therefore for every non idoneal n,

β(n) 6 a + b + c. Observe also that at most one of a, b, c is 1, therefore a + b + c

is maximal when a = 1, b = 2 and c = 1

3
(n − 2). The latter also implies that n ≡ 2

(mod 3). Otherwise, if n 6≡ 2 (mod 3), then the maximum for a + b + c is attained

whenever a = 2, b = 2 and c = 1

4
(n − 3). Summing up the resulting equalities we

conclucde that a + b + c 6 1

3
(n + 4) if n ≡ 2 (mod 3) and a + b + c 6 1

4
(n + 9)

otherwise.

We now consider the case when n is an idoneal number from the set I\{3, 4, 5, 6, 7,

10, 13, 22}∪I∗. If n is from the set n ∈ {40, 42, 45, 48, 60, 70, 72, 78, 85, 88, 102, 105,

112, 120, 130, 133, 165, 168, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385,

408, 462, 520, 760, 840, 1320, 1365, 1848} then the inequality immediately follows

from Proposition 3; moreover, if n is from {8, 12, 15, 16, 21, 24, 28, 33, 57, 93, 177} then

it can be verified that the graphs Θ2,2,1, Θ2,2,2, Θ3,3,1, Θ2,2,3, Θ3,3,2, Θ2,2,5, Θ2,2,6,

Θ3,3,4, Θ3,3,8, Θ3,3,14, Θ3,3,28 have 8, 12, 15, 16, 21, 24, 28, 33, 57, 93 and 177

spanning trees respectively while also satisfying the stated inequality for the number

of edges.

We are now left with the idoneal numbers 9, 18, 25, 30, 37 and 58. We see from

Proposition 2 that for n ∈ {30, 37, 58} the inequality holds and that for n ∈ {9, 18, 25}

the inequality does not hold, which now proves our theorem. �

Generalizing the graph Θa,b,c to the graph containing four disjoint paths of lengths

a, b, c, d that interconnect two vertices, one obtains a graph with abc+abd+acd+bcd

spanning trees. Using this generalization for a higher number of disjoint paths one
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could lower the constant factor in our inequality to an arbitrary amount. The fact

that there is no result known to the authors related to the solvability of the respective

equations and the fact that there could exist a superior construction yielding a better

lower bound, motivates the following question:

Question 1. Given a real number c > 0 is there an integer n0 such that for every

n > n0 we have

α(n) < cn?

A c k n ow l e d gm e n t s. The authors are thankful for the numerous corrections

suggested by the anonymous referees.
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